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Abstract: Let M, denote the classes of all s-nilpotent groups and G¥ be the o-nilpotent residual of
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. set of all primes dividing the order of G.
0 Introduction In what follows, ¢ = {o, | i € I} is some

Throughout this paper, all groups are finite partition of all primes P, that is, P = U, and
and G always denotes a finite group. If n is an o,No, =0 for all i7j. We write -
integer, the symbol 7w (n) denotes the set of all 6(G)={o;, | o, N 7(G) # D}.

primes dividing n; as usual, 7(G) == (|G [), the Following Refs. [1-2], the group G is said to
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be o-primary if |6(G)|<C1. A chief factor H/K of
G is said to be o-central in G if (H/K) %
(G/C;(H/K)) is o-primary. Recall also that G is
o-soluble if every chief factor of G is o-primary;o-
nilpotent if every chief factor of G is os-central. We
use &, and N, to denote the classes of all s-soluble
groups and o-nilpotent groups, respectively. G
denotes the s-nilpotent residual of G, that is, the
intersection of all normal subgroups N of G with
c-nilpotent quotient G/N.

Moreover, a set # of subgroups of G is said to
be a complete Hall s-set of G if every non-identity
member of # is a Hall ¢;-subgroup of G for some
o, and # contains exactly one Hall o¢;-subgroup for
every 0; € 6 (G). Let #={H,, -, H,} be a
complete Hall 5-set of G. #'is said to be a o-basis
of Gl HHH;=H;H, foralli,j. G is said to be o~
full if G possesses a complete Hall s-set; a o-full
group of Sylow type if every subgroup of G is a
D, -group for all 6, € 6 (G). Recently, Guo et
al. ! introduce the definition of o-supersoluble
group: the group G is said to be s-supersoluble if
every chief factor of G below G 1is cyclic. They
also give some important results about o-
supersoluble groups. In this paper, we use %, to
denote the class of all s-supersoluble groups.

A subgroup H of G is said to be completely c-
permutable with T in G if there exists = €
(H,T) such that HT*=T"H, where (H,T) is
the subgroup of G generated by H and T. By
using the concept of completely c¢-permutable,
some conditions under which the product G =AB
of two supersoluble subgroups A and B is still
supersoluble™. Therefore, similar to the above
applying completely c-
permutablity, we may study the product G =AB

discussion, by

which A and B are two s-supersoluble subgroups.
In this paper, we determine the structure of the
criterions of o-

above Some new

group.
supersoluble groups will be given.

We prove here the following results in this
line researches.

Theorem 0.1 Suppose that G has a complete

Hall 6-set #={H,, H,, **=, H,} such that H, is
supersoluble whenever H, N1G™ #1. Let G=AB,
where A
subgroups of G. If G’ is o-nilpotent or (|G:A |,
|G:B|)=1, then G is o-supersoluble.

Theorem 0.2 Suppose that G has a complete
Hall 6-set #/={H,, H,, -+, H,} such that H, is
supersoluble for i =1,2,++, t. Let G=AB, where

and B are normal o-supersoluble

A and B are s-subnormal subgroups of G. If A
and B are o-supersoluble and every o-subnormal
subgroup of A is completely c-permutable with
every subgroup of B in G, then G is o-
supersoluble.

Theorem 0.3 Suppose that G has a complete
Hall 6-set #/={H,, H,, -+, H,} such that H, is
supersoluble for i =1,2,:+, t. Let G=AB, where
A and B are s-subnormal subgroups of G. If A
and B are o-supersoluble and every primary cyclic
subgroup of A is completely c-permutable with
primary cyclic subgroup of B in G, then G is o-
supersoluble.

All unexplained terminologies and notations

are standard. The reader is referred to Refs. [ 6-8]

if necessary.

1 Preliminaries

Lemma 1. 1" 21 The class &, and N, are
closed under taking direct products, homomorphic
images and subgroups. Moreover, any extension
of a o-soluble group by a o-soluble group is a o-
soluble group as well.

Lemma 1, 20-emmal3] The class A, is a
hereditary formation.

Lemma 1, 3P T Al If G is g-soluble and G
has a Hall II-subgroup E for any II, then every II-
subgroup of G is contained in some conjugate of E
and permutes with some Sylow p-subgroup of G
for all primes p.

Lemma 1, 4/'™51  Tet H, K and N be
pairwise permutable subgroups of G, and suppose
that H is a Hall subgroup of G. Then N1 HK =
(NNH)(NNKD.

Lemma 1 SLI-,Lcmma2.6:11.I,umma2.1j Iet A K be
. — b
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subgroups of G and N be a normal subgroup of G.
Suppose that A is s-subnormal in G.

@D If K<A and A is o-nilpotent, then K is o-
subnormal in G.

@ If H#1 is a Hall O-subgroup of G and A
is not a II'-group, then A (N1 H #1 is a Hall =n-
subgroup of A.

® AN/N is s-subnormal in G/N.

@ If N<XK and K/N is o-subnormal in G/
N, then K is g-subnormal in G.

® If G is o-group and A is s-nilpotent, then
A<F,(G).

©® If G is n-full and A is a [I-group, then A<C
0.(G).

Lemma 1, 6" emme 4]

and only if the following assertions hold:

G is o-supersoluble if

@D G is nilpotent;
@ G’ is s-nilpotent;

® [G", G% ] =1 and G" N G% <
D(GHONZ.(G).
Lemma 1, 703-temmaz9] Let G be a o-

supersoluble group and N be a normal subgroup
of G.

@ G/N is o-supersoluble.

@ I for some o, €6 (G) we have that o, )
7(G)Ep, then G is p-supersoluble.

Lemma 1. Let A=G/O, (G).
Then G is p-supersoluble if and only if A/O,(A)
is an abelian group of exponent dividing p —1, p is
the largest prime dividing |A | and F(A)=0,(A)
is a normal Sylow subgroup of A.

et G be a p-

8’73.1‘(\mma 2.10]

Lemma 1, 9C!2:Theorem 2.16]

supersoluble group. Then the derived subgroup G’
of G is p-nilpotent. In particular, if O, (G)=1,
then G is supersoluble and has a unique Sylow p-
subgroup.

Lemma 1, 10"~ 24 If A B are normal o-
nilpotent subgroups of G, then AB is os-nilpotent.

Lemma 1, 1155 bemma2.80 Tf T/N is a primary
cyclic subgroup of AN/N, then T = <(a) N for
some a € A of prime power order.

Lemma 1. 12
group and #= {H,, H,, -

Let G be a o-supersoluble
, H,} be a complete

Hall s-set of G such that every H; is supersoluble
fori=1,2,+-, t. Suppose that p is the largest
prime divisor of | G | and P is the Sylow p-
subgroup of G. Then P is normal in G and so G
satisfies the Sylow tower property, that is, G is
soluble.

Proof Without loss of generality, we assume
that p€Ex(H,). If G® =1, then G is s-nilpotent.
Hence H; is normal in G for every 7. Since H; is
supersoluble, P is normal in H, and so P is
normal in G. Now assume that G™ #1 and let N
be a minimal normal subgroup of G contained in
G . Then |N|=gq, where ¢ is a prime divisor of
|G|. It is clear that G/N satisfies the hypothesis
of the lemma by induction on |G |. Hence PN/N
is normal in G/N and so PN is normal in G. If p
=g, clearly, P is normal in G. Assume that p7#
g. Then PN = P X N by Ref. [ 8, Chapter IV,
Theorem 2. 8]. It follows that P is normal in G.
Let p=>p, > py, >+ p, be the all distinct prime
divisor of |G|. Now we consider G/P, then p, is
the largest prime divisor of |G/P|. Clearly, G/P
is o-supersoluble by Lemma 1. 7 and

H={H,P/P,H.P/P.~, HP/P)
is a complete Hall s-set of G/P such that every
H.P/P is supersoluble for i =1,2, -, ¢.

by induction, PP, is normal in G, where P, is the

Hence

Sylow p,-subgroup of G. The rest can be deduced
by analogy that there exists Sylow subgroups P,,
P,,--, P, such that PP,P,P,++ P, is normal in
G, where k=2,++,n.
the Sylow tower property and so G is soluble.

Recall that G is called a CLT,-group™ if G
has a complete Hall o-set #={H,,H,,+, H,}
such that for all A, <<XH,, G has a subgroup of
order A, |-+]A,[.

Lemma 1, 1308 Theoren L12] Let D = G%.
Suppose that G has a complete Hall 6-set #={H, ,
H,, -, H,} such that H, 1is supersoluble
whenever H,(1D+#1. Then G is o-supersoluble if
and only if every section of G is a CLT ,-group.

2 Proofs of Theorems 0.1,0.2 and 0. 3

This shows that G satisfies

Proof of Theorem 0.1 Assume that this is
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false and let G be a counterexample with minimal
|G|. We now proceed via the following steps.

@ G has a unique minimal normal subgroup
N such that G/N is s-supersolule.

Let N be a minimal normal subgroup of G.
Obviously, #={H,N/N,H,N/N,-, H,N/N}
is a complete Hall s-set of G/N. By Lemma 1.7,
AN/N and BN/N are o-
supersoluble. Assume that H,N/NNG*%»N/N#1
for some i. Because H_NNG»N=(H, 1G%)N
by Lemma 1. 4, so H; [1 G" # 1. Then by
hypothesis, H; is supersoluble and so H;N/N is

we have that

supersoluble. If G" is o-nilpotent or (| G: A |,
|G:B|)=1., then clearly, G'N/N 1is o-nilpotent
or (|G/N:AN/N|,|G/N:BN/N|)=1. Hence
G/N satisfies that hypothesis of the theorem. The
choice of G shows that G/N is s-supersoluble. It
follows from Lemma 1. 2 that N is the unique
minimal normal subgroup of G.

@ NLDO(G).

Assume that N<X®(G). Then N is an abelian
p-group, say p € x (H,). It implies that by @
that O,(G)=F (G). By © and Lemma 1. 6, we
have that G™ /N is nilpotent, and thereby G™ is
nilpotent. This follows that G << F (G) << H,.
Since G/G™ is o-nilpotent, H,/G% is normal in
G/G% and so H, is normal in G. By the
hypothesis of theorem, we know that H, is
supersoluble. Then by O, we have that p is the
largest prime divisor of H,. Let P be the Sylow
p-subgroup of G. Then it is easy to see that P is
normal in G. Now let V be a complement to P in
H, and U be a complement to P in G such that
V<U. Since G <0, (G)< P, ULG/PXL
(G/G™%)/(P/G™) is o-nilpotent. Hence

U=V X H, X H; X+ XH,.
Let S;, =PH,, where : € {2,3,+,t}. First we
show that G # PH,; for every i. If not, assume
that for some ¢, we have G=PH ;. Then in this

cases H, =P, that is, #={P, H,}. It follows

that #={P/N,H,N/N} is a complete Hall s-set
of G/N. Since G/N is s-supersoluble, G/N is p-

supersoluble by Lemma 1. 7, which implies that G
is p-supersoluble and so G 1is supersoluble by
Lemma 1. 9 because O, (G) = 1. This is a
contradiction. Hence G#PH, for every i.

By Lemma 1.4, we know that
PH,=(P NAM®PNBMH, NAMH, N B)=

(PNAH, AP N B)H, NB)=

(PH, N A)(PH,; N B),
that is, S, =(S,NA)(S,NB). Clearly, S,"<<G’
is o-nilpotent or (|S;:S;NAI, |S;:S.NB)=1,
so S, satisfies the hypothesis of the theorem. The
choice of G implies that S; is s-supersoluble. Then
by Lemma 1. 7, we have that S, is p-
supersolule. Since

[0,(G), 0,(S)H]=1,

0,(S)H)<Ci(0,(G)) <0,WG),

which forces that O, (S;) =1. Hence H, is an
abelian group of exponent dividing p —1 by Lemma
1. 8. Similarly, V is an abelian group of exponent
dividing p —1. Therefore U is an abelian group of
exponent dividing p —1, which implies that G is
supersoluble, a contradiction. Hence NEP(G).

@ N=F(G)=C;(N)>=0,(G) and H, is
supersoluble, say p&x(H ).

Since A and B are o-supersoluble, A% and
B¥ are nilpotent by Lemma 1. 6. If A% =B% =1,
then A and B are s-nilpotent. By Lemma 1. 10,
we have that G is o-nilpotent, a contradiction.
Therefore A% # 1 or B¥ # 1. Without loss of
generalization, we assume that A% 1. Then by
@D, N<XA" and so N is an elementary abelian p-
group, say p €7 (H,). Then by @ and @, it is
easy to see that N=F(G)=C;(N)=0, (G).
Obviously, N <CG™ and thereby H, N G% # 1.
Then by hypothesis of the theorem, H, is
supersoluble,

@ If H is a normal o-supersoluble subgroup
of G, then H is supersoluble.

First assume that H" = 1. Then H is o-
nilpotent and so H (1 H, is normal in H for every
i. Clearly, N<XH by . Hence when i =2, -,
t, HNH,<C;(N)=N by @, which implies that
HNH;=1. So H<H, is supersoluble by ©®.
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Now suppose that H¥ 4 1. Since H is o-
supersoluble, [H", H¥ ]=1 and H™ is nilpotent
by Lemma 1. 6. Clearly, that N=F (H). Hence
N<<H" <F(H)=N and so N = H", This
implies from @ that H"<<C;(N)=N. Hence H/
N is supersoluble. Clearly, N=N; X N, X -+ X
N, ., where N; is a minimal normal subgroup of H
. s .
supersoluble and N, <<N =H%, [N, | =p. It

derives that H is supersoluble.

for every 1 € {1, 2, - Since H 1is o-

® The final contradiction.

By @, we know that A
supersoluble. If (|G:A|,|G:B|)=1, then by
Ref. [ 7, Chapter 1, Corollary 4. 7], G is

supersoluble, a contradiction. Hence assume that

and B are

G’ is o-nilpotent. Clearly, A" and B’ are nilpotent
and N=F(A)=F(B). If A’=1, clearly, A/N is
abelian. Now assume that A’#1. Then A"’=N,
which follows that A/N is abelian. By a similar
discussion, we always have that B/N is abelian. It
implies that G/N is nilpotent. Hence
G/N=H,/N XH;N/N X+ X H,N/N.

Since G’ is o-nilpotent, G'<<F, (G) = 0, (G)<
H, by @. This implies that H, is normal in G and
G/H, is abelian. By a similar discussion as above,
we have that H,/N is abelian. Because H,; L&
H,;H,/H, is abelian, so

G/N=H,/N XH,;N/N X+ X H,N/N
is abelian. Therefore G'=N is nilpotent. By Ref.
[7,Chapter 1, Corollary 4.6], G is supersoluble.
The contradiction completes the proof the
theorem.

Proof of Theorem 0.2 Assume that this is
false and let G = AB be a counterexample of
minimal order. Without loss of generality, we may
assume that for any proper s-subnormal subgroup
A, of A and any proper subgroup B, of B, we
have that G# A B and G# AB,. We prove the
theorem via the following steps:

@D G has a unique minimal normal subgroup
N such that G/N is o-supersoluble and so N is
non-cyclic.

Let N be a minimal normal subgroup of G.

Clearly, #={H,N/N,H,N/N,*+, H,N/N} be
a complete Hall s-set of G/N such that every
H;N/N is supersoluble for i = 1,2, =+, . By
Lemmas 1.5@ and 1.7, we have that AN/N and
BN/N are o-subnormal subgroup of G/N and
they are o-supersoluble. Now let H/N be a o-
subnormal subgroup of AN/N and T/N be a
subgroup of BN/N. Then by Lemmal. 5@, H is
a o-subnormal subgroup of AN and so HNA is a
o-subnormal subgroup of A. Hence by the
hypothesis of the theorem, there exists x € (H, T)
such that (HNA(TNB)*=(TNB)*(HNA). It
follows that
(H/N)Y(T/N)™N =
(HNAN)/NWT (N BN)/N)™N =
((H NAN/N)T N B)YN/N) =
(HNATNB'N/N=
(TN BHNAN/N=(T/N)N(H/N),

where N € ¢H, T)/N. This shows that G/N
satisfies that hypothesis of the theorem. Hence G/
N is o-supersoluble. It implies from Lemma 1. 2
that N is the unique minimal normal subgroup of
G. I N is

supersoluble. The contradiction shows that N is

cyclic, then clearly, G 1is o-
non-cyclic.

@ G is o-soluble and N is an abelian p-group.,
where p €x (H,). Moreover, O{,/l (G)=1 and so
F,(G)=0, (G)<H,.

If F,(G) =1, then by Lemmas 1. 5& and
1.6, A%< F_,(G)=1. Hence A is o-nilpotent and
so A<<F,(G)=1. Then G=B is o-soluble. Hence
we assume that F, (G)# 1. Then by @, N <
F,(G). It follows from @ and Lemma 1.1 that G
is o-soluble. Hence N <X H, for some i, without
loss of generality, we may say i =1. Because H, is
supersoluble, so N is an abelian p-group, where
p€ w(H,). It follows from @ that 0, (G)=
O, (G)=1and so F,(G) =0, (G).

@ Every proper subgroup of G containing A
or B is o-supersoluble.

Let K be a proper subgroup of G containing A
or B. Then K=A(KNB) or K=(K[(1A)B. By
Lemma 1.1, K is os-soluble, so by Lemma 1.3, K
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) Ks}

such that every K;<CH? is supersoluble for some

has a complete Hall o-set #, ={K,, K,,

x € G. Hence K satisfies the hypothesis of the
theorem. The choice of G implies that K is o-
supersoluble.

@ If K is a o-supersoluble subgroup of G,
then K is soluble.

By a similar discussion as in @, K has a
, K.} such
that every K, is supersoluble. Hence by Lemma
1.12, K is soluble.

® NLP(G) and so

N=F(G)=Cs;(N)=0,(0G).

Assume that N<<®(G). By @ and Lemma

1.6, we have that G /N is nilpotent and so G™ is

complete Hall 6-set #, = {K,, K,,

nilpotent. It is easy to see that F (G)<CH,. This
follows that G¥ <<F (G)<CH,. Since G/G% is o-
nilpotent, H;/G" is normal in G/G" and so H,
is normal in G. Because H, is supersoluble, so by
@D, it is obvious that p is the largest prime divisor
of |[H,|. Let P be the Sylow p-subgroup of G.
Then P is normal in G and so G is p-soluble. Now
let V be a complement to P in H, and U be a
complement to P in G such that V<CU. Since G™
<0 ,(G)<P,UXLG/P is s-nilpotent. Hence U=
VXH,XH;X-+ XH,. Moreover, since G'/N is
o-nilpotent by @ and Lemma 1. 6, G’ is o-
nilpotent by Lemma 1. 1. Hence G' < F,(G)=
O‘,1 (GY<XH, by @. Tt implies that

H, L H,H,/H, <G/H,
is abelian, where i = 2, 3, =+, t. Therefore
(H,NA>Y(H;NB) is a group. By Lemma 1.5®,
we have that H, N A and H, | B are Hall o,-
subgroups of A and B, respectively. Since

|G:(H, N AY(H, N B) |=

| AB:(H, N A)>(H, N B) |
divides [A:H,NA||IB:H,NBI|, |G:(H,NA)
(H,NB)| is a ¢~number and so (H, N A)(H, N B)
is a Hall o;-subgroup of G. Hence

H,=(H, N A(H, N B).

Now, let S;=PH,, where i #1. By using a

same argument as in Step @ of Theorem 0.1, G#
S, for every i. We show that S, satisfies the

hypothesis of the theorem. By Lemma 1. 3, S; has
a complete Hall s-set such that every member of
Moreover, it is

the set is supersoluble.

obvious that
(PH; N A)(PH, N B) =
(H, N AP NAMP NBYH, B =
(H, NAY(H, N B)P=H,P,

that is, S;=(S,;NA)(S, N B). Since A% <G% <
P, A/(PA) is o-nilpotent and thereby (H, (]
AXY(PNA)/(PA) is s-subnormal in A/(P
A). This implies by Lemma 1. 5 that S; 1A =
PH, NA=(H,NA)(PNA) is c-subnormal in A.
Let L be any o-subnormal subgroup of S; N A,
then L is a o-subnormal subgroup of A. Hence by
hypothesis. L completely c-permutes with every
of B. Therefore S,
hypothesis of the theorem. The choice of G implies

subgroup satisfies the
that S, is o-supersoluble. It follows from Lemma
1. 7 that S, is p-supersoluble. Because G is p-
soluble, so C; (0O, (G0 ,(G). Since [O,(G),
O, (S)H]=1, 0, (S;)=1. Hence H, is an abelian
group of exponent dividing p —1 by Lemma 1. 8.
Similarly, V is an abelian group of exponent
dividing p —1. Therefore U is an abelian group of
exponent dividing p — 1, which implies that G is
supersoluble, a contradiction. Hence N E® (G).
Then by @ and @), it is easy to see that

N =F(G)=C;(N)=0,(G).

® p is the largest prime of |G| and N is the
Sylow p-subgroup of G. Moreover, AN/N and
BN /N are s-nilpotent.

Let ¢ be the largest prime divisor of |G| with
pF#q and Q be the Sylow g-subgroup of G. By
Lemma 1. 13, A exists a maximal subgroup A,
such that | A: A, | =r and B exists a maximal
subgroup B, such that |B:B,|=s, where r is the
least prime divisor of |A| and s is the least prime
divisor of |B|. Then A, is normal in A and B, is
normal in B. By the hypothesis of the theorem,
we have that T, = A,B and T, = AB, are two
subgroups of G. And |G:T,|=|AB:A,B|=r
and |G:T,|=|AB:AB,| =5, so T, and T, are

two maximal subgroups of G. By @ . we have that
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T, and T, are o-supersoluble. We show that N<C
T,NT,. Assume that N&ET, or NET,. Without
loss of generality, we may assume that N T,.
Then by @, it is clear that G=N % T,. It follows
that IN|=1|G: T,|=r=p, which contradicts D.
Hence N<XT, N T,. If r=gq, then the order of A
is power of prime g because g be the largest prime
divisor of | A |. Clearly, s #¢g. Hence Q<< T,
because |G: T, | =s. Since T, is o-supersoluble,
Q is normal in T, by Lemma 1. 12 and so Q<<
Co;(N)=N by @, a contradiction. Hence r#gq.
Then Q<<T; and so Q<<C;(N)=N by ® too.
This contradiction shows that p is the largest
prime divisor of |G |. Since G/N is o-supersoluble
by @, P/N is normal in G/N by Lemma 1. 12
and so P=N by ®.
Moreover, since
(O, (T),N]=[0,(T,),N]=1
and
Co(N)=N,O,(T,)=0,(T,)=1.

It follows from @ that
F(Ty)=0,(T,)=F(T,)=0,(T,)=N.
Since T, and T, are o-supersoluble, by Lemma
1.6, T,%
T3 <N. This implies that T,/N and T,/N are
o-nilpotent and thereby AN/N and BN/N are o-

nilpotent.

and T3 are nilpotent and so T, ,

@ Final contradiction.

Since A/JANNXL2AN/N and B/B(\NXLBN/
N are og-nilpotent by ®, A%, B% <IN. Assume
that A% = 1. Let N, be a minimal normal
subgroup of A such that N;<CAY. Then |N;|=
p. Let ¢ be any prime divisor of | B | such that
p7#q and B, be a Sylow g-subgroup of B. Then by
hypothesis, there exists an element x € (N,, B,)
such that N, B; =B;N,. This follows that N, =
N (1 N,B; is normal in N,B], that is, Bl <<
N (N). It implies that B!<CN, (N,) for some
b€ B. Clearly, B! is a Sylow ¢-subgroup of B
and B(IN<XN;(N,). Hence BS<N;(N,) and so
N, is normal in G. This implies that | N | =p,
which contradicts to O. Hence A™ =1. Then A is
o-nilpotent and so A<<F, (G) =0, (GY< H, by

Lemma 1.5 and @. Similarly, it is easy to derive
that BY% 1. Therefore we suppose that N, is a
minimal normal subgroup of B such that N, <<
BY . Then | N, | = p. By the hypothesis of
theorem, we know that AN; =N3;A for some 2 €
G. Let x =ab, where a € A, b € B. Then it is
obvious that AN, = N,A. If A(1 N =1, then
N,=AN, (I N is normal in AN,, that is, A <
N (N,). This follows that N, is normal in G,
which is impossible from the above discussion.
Therefore we assume that A1 N1 and let R be a
minimal normal subgroup of A such that R<CA )
N. Then |R|=p because A is supersoluble. By a
similar argument as above, we can still derive that
R is normal in G and so | N | = p. The final
contradiction completes the proof of the theorem.

Proof of Theorem 0.3 Assume that this is
false and let G be a counterexample with minimal
G,

@D G has a unique minimal normal subgroup
N such that G/N is o-supersoluble and so N is
non-cyclic.

Let N be a minimal normal subgroup of G.
Let T/N and L/N be primary cyclic subgroups of
AN/N and BN/N, respectively. Then by Lemma
1. 11, there exists elements « € A and b € B with
prime power order such that T=<a)>N and L =
(b>N. Hence (a)<{b) =<{b)" (a) for some x €
{({a>, (b)) by hypothesis of the theorem. It
follows that

({a)N/N)YKbYN/N)HI™N =
({a)<b) IN/N =b) {a))N/N =
({BYN/NYNKaYN/N),

where tN € ({<a)N/N, (b>N/N>. By a similar
proof as in Step @ of Theorem 0.2, we have that
G/N satisfies that hypothesis of the theorem.
Hence G/N is o-supersoluble, N is the unique
minimal normal subgroup of G and N is non-
cyclic.

@ N is an abelian p-group, say p € x(H,),
O, (G) =1 and so F, (G) = O, (G) < H,.
Moreover, every o-supersoluble subgroup of G is

soluble.
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See Steps @ and @ of Theorem 0. 2.
@ NLP(G) and so
N=F(G)=Cs;(N)=0,(0G).

See Step @ of Theorem 0. 2.

@ p is the largest prime of |G| and N=P is
the Sylow p-subgroup of G.

Assume that ¢ is the largest prime divisor of
|G| with p7#q and Q is the Sylow g-subgroup of
G. If Q<< H,, then Q < C; (N) = N, a
contradiction. Hence g &€ x(H,). Clearly, q is the
largest prime divisor of |A | or | B|. without loss
of generality, we may assume that ¢ is the largest
prime divisor of | A [. Let A, be the Sylow ¢-
subgroup of A. Then by Lemma 1. 12, A
normal in A and so A, is o-subnormal in G. It
follows from @ that A, < O, (G) = 1. This

contradiction shows that p is the largest prime of

. 18

|G|. Let P be the Sylow p-subgroup of G. Since
G/N is o-supersoluble by @, P/N is normal in
G/N by Lemma 1.12 and so P=N by ®.

® Final contradiction.

First, we show that N &€ A and N ¢ B.
Without loss of generality, we may assume that N
<<A. Then O, (A)<C; (N)>=N by ®, so
O, (A)=1. It follows that O ,(A)=F(A)=N.
Hence A% <C N by Lemma 1. 6. Let N, be a
minimal normal subgroup of A such that N, <CN.
First, we assume that A% =1, then A is o-
nilpotent. By @ and Lemma 1.5, A<CH, and so
A is supersoluble. So |N;|=p. Now assume that
A% #1, we also let N, <XA%. Then | N, | =p
too. Let b be an arbitrary element of B of prime
power order. If the order of b is p*, then (b) <<
N<N,; (N,) because N is abelian. Now suppose
that 6 is a p’-element. Then by hypothesis,
Ni<{b>=<b)N7 forx € {{b>, N)=<(b>N. Hence
Ni=P*[INi<b) and so (b)<N; (N7). Denote
that xt=0"n, where 6" € (b), n € N. Then (b)<
No (NY) = Ni (Ny) and so (b) = (b)'<
N (N ). Since B is generated by all its elements
of prime power order, B<X N, (N,). It follows
that N, is normal in G and thereby | N | = p,
which contradicts (D. Therefore N &€ A and

N<EB.

Clearly, A, = N [1A is a normal Sylow p-
subgroup of A. If A, =1, then A is a p’'-group
and so N<XB, a contradiction. Hence A,7#1. Tt is
clear that A, = {(a, ) X {a,» X +=» X <a,», where
every {a;) is a cyclic group of order p contained in
N. We use a similar claim as above, let b be an
arbitrary element of B of prime power order. If
the order of b is p*, then (b) << N<N, ({a;)).
Then by
hypothesis of the theorem, there exists some
element + € ((a;)s (b)) < (b) N such that
Ca;y(b>*=<{b)" (a;) for every i. Let x =0b,p,
where b, € (b) and p € N. Then we have

Ca Y b)Yt =<byn*La,)
and so {a,;»<{b)=<(b){a,;) because {a, is normal
in P. It follows that <(a;>=P () {(a;){b) and so
(bY<N; ({a,;»). This shows that B<<N.; ({a;))
for every i and thereby B<XN;(A,). Hence A, is
normal in G, which implies that A,=N or A, =

Assume that &6 is a p -element.

1. These two cases are impossible. This completes

the proof of the theorem.
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