powers of I_{Δ} .

文章编号:0253-2778(2020)02-0349-11

The a_i -invariants of powers of ideals

TIAN Shixin¹, SHEN Yihuang^{1,2}

(1. School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, China;

2. CAS Wu Wen-Tsun Key Laboratory of Mathematics, University of Science and Technology of China, Hefei 230026, China) Abstract: Inspired by the recent work of Lu and O'Rourke, we study the a_i -invariants of (symbolic) powers of some graded ideals. When I and J are two graded ideals in two distinct polynomial rings R and S over a common field K. We study the a_i -invariants of the powers of the fiber product via the corresponding conditions on I and J. When I_{Δ} is the Stanley-Reisner ideal of a k-dimensional complex Δ with $k \ge 2$. We investigate the a_i -invariants of the symbolic

Key words: a_i -invariants; local cohomology; complex; symbolic power

CLC number: O153, 3 **Document code:** A doi:10.3969/j.issn.0253-2778, 2020, 03, 013

2010 Mathematics Subject Classification: Primary 13D45; Secondary 05E40

Citation: TIAN Shixin, SHEN Yihuang. The a_i -invariants of powers of ideals[J]. Journal of University of Science and Technology of China, 2020,50(3):349-359.

田世新,申伊境. 理想幂次的 a_i -不变量[J]. 中国科学技术大学学报,2020,50(3):349-359.

理想幂次的 a_i -不变量

田世新1,申伊塃1,2

(1. 中国科学技术大学数学科学学院,安徽合肥 230026;

2. 中国科学院吴文俊数学重点实验室(中国科学技术大学),安徽合肥 230026)

摘要:在 Lu 和 O'Rourke 最近的工作基础上,我们研究了分次理想及其幂次的 a_i -不变量。设 R 和 S 是域 \mathbb{K} 上的两个多项式环, $T=S\bigotimes_{\mathbb{K}}R$,I 和 J 分别是 R 和 S 中的分次理想。我们利用 I 和 J 的信息研究 a_i $(T/(I+J+mn)^k)$ 的性质。再设 $k\geqslant 2$,并令 Δ 为一个 k 维复形且 I_Δ 是其 Stanley-Reisner 理想。我们研究 $I_{k}^{(n)}$ 的 a_i -不变量。

关键词: a_i-不变量;局部上同调;复形;形式幂

0 Introduction

Let $S = \mathbb{K} [x_1, \dots, x_s]$ and $R = \mathbb{K} [y_1, \dots, y_r]$ be two polynomial rings over a field \mathbb{K} and $T = S \bigotimes_{\mathbb{K}} R$. Let $I \subseteq S$ and $J \subseteq R$ be two graded

ideals. The fiber product of I and J is defined by $F = I + J + \mathfrak{m}$ \mathfrak{n} , where \mathfrak{m} and \mathfrak{n} are the graded maximal ideals of S and R respectively. One may observe that $(S \bigotimes_{\mathbf{K}} R)/(I + J + \mathfrak{m}\mathfrak{n})$ can be decomposed as a direct sum of rings $\frac{S}{I} \oplus \frac{R}{I}$.

Received: 2020-01-06; Revised: 2020-03-28

Foundation item: Supported by the Fundamental Research Funds for the Central Universities (AHY150200).

Biography: TIAN Shixin, male, born in 1995, Master. Research field: Algebra. E-mail: tsx@mail.ustc.edu.cn

Corresponding author: SHEN Yihuang, PhD/associate professor. E-mail: yhshen@ustc.edu.cn

Furthermore, if I and J are edge ideals of two vertex-disjoint graphs, then $I+J+\min$ corresponds to the edge ideal of the join of the graphs. Fiber products of ideals were studied by many authors; c. f. [1-8]. But little is known about the a_i -invariants of $T/(I+J+\min)^k$ yet.

Recall that when M is a finitely generated S-module and $0 \le i \le \dim(M)$, the a_i -invariant of M is given by

$$a_i(M) := \max\{t : H_{\mathfrak{m}}^i(M)_t \neq 0\},$$

where $H_{\mathfrak{m}}^{i}$ (M) is the i-th local cohomology module of M with support in \mathfrak{m} . Notice that $a_{\dim(M)}$ (M) is exactly the a-invariant introduced by Goto and Watanabe in Ref. [9]. It plays an important role in local duality, since -a (M) is the initial degree of the canonical module of M; see, for instance, Refs. [9-10].

The a_i -invariant also has a close relation with the Castelnuovo-Mumford regularity:

$$\operatorname{reg}(M)_{:} = \max\{a_{i}(M) + i : 0 \leqslant i \leqslant \dim(M)\}.$$

In fact, the a_i -invariant takes an important part in studying its asymptotic behaviour. For example, in Ref. [11], Herzog, Hoa and Trung proved that if J is a homogeneous ideal of R, then $reg(R/J^n)$ is a linear function of the form cn+e for $n\gg 0$ via investigating $a_i(R/J^n)$. Meanwhile, in Ref. [2], Hoa and Trung showed that $a_i(R/J^n)$ is also asymptotically a linear function of n.

For any subset F of $\lceil s \rceil$, we set

$$x_F := \prod_{i \in F} x_i \in S.$$

For a positive integer s, let $=\{1,2,\cdots,s\}$. For any simplicial complex Δ on [s], we use I_{Δ} to denote its Stanley-Reisner ideal. Precisely speaking,

$$I_{\Lambda} := (\mathbf{x}_F : F \in \mathfrak{N}(\Delta)) \subseteq S$$

where $\mathfrak{N}(\Delta)$ is the set of minimal non-faces of Δ . When G is a simple graph on [s] considered as a 1-dimensional simplicial complex and G' is obtained from G by adding an isolated vertex $\{s+1\}$, we may find that $I_G' = (I_G, \mathfrak{m} \ x_{s+1})$. Based on this observation, in addition to other beautiful results, Lu showed the following important result in Ref. [4].

Theorem 1.1^[4] Let $S = \mathbb{K}[x_1, \dots, x_s]$ be a polynomial ring over a field \mathbb{K} . Assume that $m = (x_1, \dots, x_s)$ is the graded maximal ideal of S and y is a new variable over S. $I \subseteq S$ is a monomial ideal and $J = (I, m, y) \subseteq S[y]$.

- (a) If $i \ge 2$, then $a_i(S[y]/J^k) = \max\{a_i(S/I^{k-t}) + t : 0 \le t \le k-1\}$.
- (b) If $\sqrt{I} \neq \mathfrak{m}$, then $a_1(S[y]/J^k) = \max\{2k 2, a_1(S/I^{k-t}) + t : 0 \leq t \leq k 1\}$.

Notice that the ideal $(I, \mathfrak{m} \ y)$ above can also be considered as a fiber product of $I \subseteq S$ and $0 \subseteq \mathbb{K}$ [y]. It is then very natural to ask: what can be said towards $a_i (T/(I+J+\mathfrak{m}\mathfrak{n})^k)$ in a more general framework? We will answer this in Theorem 2.9.

Next, we turn our attention to the Stanley-Reisner ideal of simplicial complexes. Assume that Δ is a simplicial complex on [s] and I_{Δ} is the Stanley-Reisner ideal of Δ in $S = \mathbb{K}[x_1, \dots, x_s]$. We will deal with the its powers I_{Δ}^n and its symbolic powers $I_{\Delta}^{(n)}$. Assume P is a prime ideal of S, the P-primary component of the n-th power of P is called the n-th symbolic powers of ideals have a nice geometric description, due to Zariski and Nagata in Ref. [12]. Recall that the n-th symbolic power of an ideal $I \subseteq S$ is defined to be

$$I^{\scriptscriptstyle(n)}:=igcap_{\mathfrak{p}\in Ass(S/I)}\mathfrak{p}^n$$

for $n \ge 1$. Since by Ref. [13], the ideal I_{\triangle} has the following primary decomposition

$$I_{\Delta} = \bigcap_{F \in \mathscr{T}(\Delta)} P_F. \tag{1}$$

Then it follows from (1) that the n-th symbolic power of I_{Δ} in our situation is precisely

$$I_{\Delta}^{(n)} = \bigcap_{F \in \mathcal{F}(\Delta)} P_F^n \tag{2}$$

The research of related topics has continuously attracted the attention of many researchers; see for instance the recent survey^[14] and the references therein.

Previous related work mainly focuses on symbolic powers of 2-dimensional square free ideals. In Refs. [1, 6], the a_i -invariants of symbolic powers of Stanley-Reisner ideals was

described explicitly in this case. And in Ref. [4], the author proved that for any 1-dimensional complex Δ without isolated vertex, one has $a_2(S/I_{\Delta}^{(n)})=a_2(S/I_{\Delta}^n)$. From these phenomena, it is natural to ask whether a_{k+1} ($S/I_{\Delta}^{(n)}$) = $a_{k+1}(S/I_{\Delta}^n)$ always holds and under what conditions will $a_{k+1}(S/I_{\Delta}^{(n)})$ be maximal when dim $(\Delta)=k\geqslant 2$. We will give definite answers to these two questions in Theorem 3. 9 and Tehorem 3. 11.

2 a_i -invariants of powers of fiber product ideal

In this section, we will always assume the following settings.

Setting 2.1 Let $S = \mathbb{K}[x_1, \dots, x_s]$ and $R = \mathbb{K}[y_1, \dots, y_r]$ be two polynomial rings over a common field \mathbb{K} and \mathbb{M} and \mathbb{M} be the corresponding graded maximal ideals respectively. Let $I \subseteq \mathbb{M}$ and $J \subseteq \mathbb{M}$ be two graded ideals and $F = I + J + \mathbb{M}\mathbb{M}$ the {fiber product} of I and J in $T = S \bigotimes_{\mathbb{K}} R$. Fix a positive integer k.

The aim of this section is to describe the a_i -invariants of T/F^k via the corresponding conditions of I and J.

Let us start by recalling some pertinent facts of local cohomology and Čech complex.

Definition 2.2 Let M be an S-module M and \mathfrak{a} be an S-ideal.

(a) Set

 $\Gamma_{\mathfrak{a}}(M)_{:} = \{x \in M : \mathfrak{a}^{t}x = 0 \text{ for some } t \in \mathbb{N} \}.$ Let $H^{i}_{\mathfrak{a}}(-)$ be the i-th right derived functor of $\Gamma_{\mathfrak{a}}(-)$, namely, $H^{i}_{\mathfrak{a}}(M)_{:} = H^{j}(\Gamma_{\mathfrak{a}}(I^{+}))$, in which I^{+} is an injective resolution of M. The module $H^{i}_{\mathfrak{a}}(M)$ will be called the i-th local cohomology of M with support in \mathfrak{a} .

(b) The module M is called \mathfrak{a} -torsion if $\Gamma_{\mathfrak{a}}(M)=M$, namely, if each element of M is annihilated by some power of \mathfrak{a} .

Next, we collect some well-known facts from Refs. [3] and [15] regarding local cohomology modules.

Lemma 2.3 Let M be an S-module and $\mathfrak a$ an S-ideal.

- (a) Let $\{M_{\gamma}\}$ be a family of S-modules. Then $H^{j}_{\alpha}(\bigoplus_{\gamma} M_{\gamma}) \cong \bigoplus_{\gamma} H^{j}_{\alpha}(M_{\gamma})$ for all $j \geqslant 0$.
- (b) If $S \rightarrow R$ is a ring homomorphism and N is an R-module, then $H^j_{\mathfrak{a}}(N) = H^j_{\mathfrak{a}R}(N)$.
- (c) Any short exact sequence of S-modules $0 \rightarrow M \rightarrow N \rightarrow L \rightarrow 0$ induces a long exact sequence of local cohomology modules

$$\cdots \to H^{j}_{\mathfrak{a}}(M) \to H^{j}_{\mathfrak{a}}(N) \to$$
$$H^{j}_{\mathfrak{a}}(L) \to H^{j+1}_{\mathfrak{a}}(M) \to \cdots.$$

- (d) Assume that M is \mathfrak{b} -torsion for some S-ideal \mathfrak{b} . Then, $H_{\mathfrak{a}+\mathfrak{b}}^{j}(M) \cong H_{\mathfrak{a}}^{j}(M)$ for all $j \geqslant 0$.
- (e) If M is \mathfrak{a} -torsion, then $H^{j}_{\mathfrak{a}}(M) = 0$ for all j > 0.

Our argument afterwards also depends heavily on the computation of local cohomologies in terms of Čech complexes.

Definition 2.4 For elements m_1, \dots, m_r in a commutative ring R, set $m_{\sigma} = \prod_{i \in \sigma} m_i$ for $\sigma \subseteq [r]$.

The Čech complex \check{C} (m_1, \dots, m_r) is the cochain complex (upper indices increasing from the copy of R sitting in cohomological degree 0)

$$0 \to R \to \bigoplus_{i=1}^{r} R[m_i^{-1}] \to \cdots \to$$
$$\bigoplus_{|\sigma|=k} R[m_{\sigma}^{-1}] \to \cdots \to R[m_{[r]}^{-1}] \to 0,$$

with the map

$$\partial_{|\sigma|}^{i}: R[m_{\sigma}^{-1}] \rightarrow R[m_{\sigma|J\{i\}}^{-1}]$$

between the summands in \check{C} (m_1, \dots, m_r) being $\operatorname{sign}(i, \sigma \bigcup \{i\})$ times the canonical localization homomorphism.

Čech complex facilitates the computation of local cohomologies.

Lemma 2. $\mathbf{5}^{[5]}$ The local cohomology of M supported on the ideal $\mathfrak{a} = (m_1, \dots, m_r)$ in R is the cohomology of the Čech complex tensored with M:

$$H_{\mathfrak{a}}^{i}(M) = H^{i}(M \otimes \check{C}^{\cdot}(m_{1}, \dots, m_{r})).$$

The following results are also crucial for our argument in this section.

Lemma 2. $6^{[16]}$ Take the assumptions as in setting-section-2. Assume in addition that $I \subseteq \mathfrak{m}^2$ and $J \subseteq \mathfrak{n}^2$. Furthermore, let $H = I + \mathfrak{mn}$. For

each $1 \le t \le k$, denote $G_t = H^k + \sum_{i=1}^t (\mathfrak{mn})^{k-i} J^i$ and $G_0 = H^k$. Then,

(a) there is an equality $F^k=H^k+\sum_{i=1}^k (\,{\mathfrak m}{\mathfrak n})^{k-i}J^i$ for each positive integer k .

(b) one has $G_{t-1} \cap (\mathfrak{m} \mathfrak{n})^{k-t} J^t = \mathfrak{m}^{k-t+1} \mathfrak{n}^{k-t} J^t$ for each t.

Lemma 2. $7^{[12]}$ Let (S, \mathfrak{m}) be a local ring, and let M be a finitely generated S-module. We have $H^i_{\mathfrak{m}}(M) = 0$ for $i < \operatorname{depth}(M)$ and for $i > \operatorname{dim}(M)$.

Before presenting the main result of this section, we collect some preliminary results.

Proposition 2.8 Take the assumptions as in setting 2.1.

- (a) For any integer $0 \le t \le k$, $a_1(S/\mathfrak{m}^t I^{k-t}) = a_1(S/I^{k-t})$.
- (b) If $\dim(R) > 2$ and $\dim(S) > 2$, then a_1 $(\frac{T}{\mathfrak{m}^k \mathfrak{n}^k}) = 2k 2.$
 - (c) If $\dim(S) > 2$, then $a_1(S/I) = a_2(I)$.
- (d) Set $m_{\vartheta} := \prod_{i \in \sigma} x_i \cdot \prod_{j \in \delta} y_j$ for $\sigma \subseteq [s]$ and $\delta \subseteq [r]$. Let $F = I + J + \min \subseteq T$. We use ∂_j to denote the differential map in $\frac{T}{F^k} \otimes \check{C}^+(x_1, \dots, x_s, y_1, \dots, y_r)$ at the positions from j to j+1. Let $\partial_j^1 \rangle$ and ∂_j^2 be the restriction of ∂_j on $\bigoplus_{|\sigma|=j} \frac{T}{F^k} [m_{\vartheta}^{-1}]$ and $\bigoplus_{|\delta|=j} \frac{T}{F^k} [m_{\vartheta}^{-1}]$ respectively. Then $\partial_j = \partial_i^1 \bigoplus \partial_j^2$ for each integer $j \geqslant 1$.

Proof When $0 \le t \le k-1$, the following short exact sequence

$$0 \to \frac{I^{k-t}}{I^{k-t} \operatorname{\mathfrak{m}}^{t}} \to \frac{S}{I^{k-t} \operatorname{\mathfrak{m}}^{t}} \to \frac{S}{I^{k-t}} \to 0$$

induces a long exact sequence

$$\cdots \to H^{1}_{\mathfrak{m}}(\frac{I^{k-t}}{I^{k-t}\mathfrak{m}^{t}}) \to H^{1}_{\mathfrak{m}}(\frac{S}{I^{k-t}\mathfrak{m}^{t}}) \to$$

$$H^{1}_{\mathfrak{m}}(\frac{S}{I^{k-t}}) \to H^{2}_{\mathfrak{m}}(\frac{I^{k-t}}{I^{k-t}\mathfrak{m}^{t}}) \to \cdots.$$

Since $\frac{I^{k-i}}{I^{k-i}\mathfrak{m}^i}$ is \mathfrak{m} —torsion for $1\leqslant i\leqslant k$, we

have
$$H^1_{\mathfrak{m}}(\frac{I^{k-i}}{I^{k-i}\mathfrak{m}^i}) = 0 = H^2_{\mathfrak{m}}(\frac{I^{k-i}}{I^{k-i}\mathfrak{m}^i})$$
 by 2. 3

(e). Consequently

$$H^{1}_{\mathfrak{m}}(\frac{S}{I^{k-t}\mathfrak{m}^{t}}) \cong H^{1}_{\mathfrak{m}}(\frac{S}{I^{k-t}}),$$

and hence $a_1(S/\mathfrak{m}^t I^{k-t}) = a_1(S/I^{k-t})$.

- (b) We will prove this after Lemma 3.2.
- (c) The short exact sequence

$$0 \rightarrow I \rightarrow S \rightarrow S/I \rightarrow 0$$

yields a long exact sequence

$$\cdots \to H^{1}_{\mathfrak{m}}(S) \to H^{1}_{\mathfrak{m}}(S/I) \to$$
$$H^{2}_{\mathfrak{m}}(I) \to H^{2}_{\mathfrak{m}}(S) \to \cdots.$$

Applying a graded version of Lemma 2.7, we get $H^1_{\mathfrak{m}}(S) = H^2_{\mathfrak{m}}(S) = 0$. As a result, $a_1(S/I) = a_2(I)$.

(d) When $j \ge 1$, we have

$$\frac{T}{F^k} \bigotimes \check{C}^j(x_1, \, \cdots, \, x_s, \, y_1, \, \cdots, \, y_r) =$$

$$\bigoplus_{|\sigma \cup \delta| = j} \frac{T}{(I + J + \mathfrak{m}\mathfrak{n})^k} [m_{\sigma\delta}^{-1}].$$

If both σ and δ are nonempty, then

$$\frac{T}{(I+J+\mathfrak{m}\mathfrak{n})^k} [m_{\sigma\delta}^{-1}] = 0.$$

Therefore, the module $\bigoplus_{|\sigma \cup \delta|=j} \frac{T}{(I+I+\mathfrak{m}\mathfrak{n})^k} [m_{\sigma\delta}^{-1}]$

is simply

$$\left(\bigoplus_{|\sigma|=j} \frac{T}{F^k} \left[m_{\sigma 0}^{-1}\right]\right) \bigoplus \left(\bigoplus_{|\delta|=j} \frac{T}{F^k} \left[m_{\partial \delta}^{-1}\right]\right).$$

Since $\mathfrak{m} T \llbracket m_{\sigma \emptyset}^{-1} \rrbracket = T \llbracket m_{\sigma \emptyset}^{-1} \rrbracket$ and $J + \mathfrak{n} = \mathfrak{n}$, we have $F^k T \llbracket m_{\sigma \emptyset}^{-1} \rrbracket = (I + J + \mathfrak{m} \mathfrak{n})^k T \llbracket m_{\sigma \emptyset}^{-1} \rrbracket = (I + \mathfrak{n})^k T \llbracket m_{\sigma \emptyset}^{-1} \rrbracket$.

This means

$$\frac{T}{F^k} [m_{\sigma\emptyset}^{-1}] = \frac{T}{(I+\mathfrak{n})^k} [m_{\sigma\emptyset}^{-1}].$$

Likewise,

$$\frac{T}{F^k} [m_{\varnothing \delta}^{-1}] = \frac{T}{(J+\mathfrak{m})^k} [m_{\varnothing \delta}^{-1}].$$

So the Čech complex at the positions from j to j +1 can be written as

$$\cdots \rightarrow \left(\bigoplus_{|\sigma|=j} \frac{T}{(I+\mathfrak{n})^k} \left[m_{\sigma \wp}^{-1} \right] \right) \oplus$$

$$\left(\bigoplus_{|\delta|=j} \frac{T}{(J+\mathfrak{m})^k} \left[m_{\wp \delta}^{-1} \right] \right)$$

$$\xrightarrow{\partial_j} \left(\bigoplus_{|\sigma|=j+1} \frac{T}{(I+\mathfrak{n})^k} \left[m_{\sigma \wp}^{-1} \right] \right) \oplus$$

$$\left(\bigoplus_{|\delta|=j+1} \frac{T}{(I+\mathfrak{m})^k} \left[m_{\wp \delta}^{-1} \right] \right) \rightarrow \cdots.$$

Furthermore, when j > 1, $\partial_j \left(\frac{T}{(I+\mathfrak{n})^k} \right)$

 $[m_{\sigma\emptyset}^{-1}]$) is a subset of

$$\left(\bigoplus_{\substack{|\sigma|=j,\\i\in [s]\setminus \sigma}} \frac{T}{F^k} \left[m_{\sigma\emptyset}^{-1} x_i^{-1}\right]\right) \oplus \left(\bigoplus_{\substack{|\delta|=j,\\i\in [r]\setminus \delta}} \frac{T}{F^k} \left[m_{\emptyset\delta}^{-1} y_i^{-1}\right]\right) = \bigoplus_{\substack{|\sigma|=i+1\\\sigma\emptyset}} \frac{T}{(I+\mathfrak{n})^k} \left[m_{\sigma\emptyset}^{-1}\right].$$

by (3) and (4). Then

$$\operatorname{im}\partial_{j}^{1}\subseteq\bigoplus_{|\sigma|=j+1}\frac{T}{(I+\mathfrak{n})^{k}}[m_{\sigma\emptyset}^{-1}].$$

Likewise,

$$\operatorname{im} \partial_{j}^{2} \subseteq \bigoplus_{|\delta|=j+1} \frac{T}{(I+\mathfrak{m})^{k}} [m_{\emptyset\delta}^{-1}].$$

Thus $\partial_i = \partial_i^1 \oplus \partial_i^2$ for each integer $i \ge 1$.

Now, we are ready to present the first main result of this paper.

Theorem 2.9 Take the assumptions as in setting 2.1.

(a) If
$$j \ge 2$$
, then
$$a_{j}(T/F^{k}) = \max\{a_{j}(S/I^{k-t}) + t, a_{j}(R/J^{k-t}) + t : 0 \le t \le k-1\}.$$

(b) Assume in addition that $\dim(S) > 2$, $\dim(R)$

$$>2$$
, $I\subseteq \mathfrak{m}^2$, $\sqrt{I}\neq \mathfrak{m}$, $J\subseteq \mathfrak{n}^2$ and $\sqrt{J}\neq \mathfrak{n}$. Then, $a_1(T/F^k)=\max\{2k-2,a_1(S/I^{k-t})+t,\ a_1(R/J^{k-t})+t:0\leqslant t\leqslant k-1\}.$

Proof Assume that $j \ge 1$. Then Lemma 2.5 says

$$H^{j}_{\mathfrak{m}+\mathfrak{n}}(T/F^{k}) = H^{j}((T/F^{k}) \otimes$$

$$C^{\cdot}(x_1, \dots, x_s, y_1, \dots, y_r)).$$

Set $m_{\sigma\delta} = \prod_{i \in \sigma} x_i \cdot \prod_{i \in \delta} y_i \in T$ for $\sigma \subseteq [s]$ and $\delta \subseteq$

[r]. We have

$$\frac{T}{F^k} \otimes C^j(x_1, \dots, x_s, y_1, \dots, y_r) = \bigoplus_{|\sigma| \cup \delta| = i} \frac{T}{(I + I + \min)^k} [m_{\sigma\delta}^{-1}].$$

Notice that both S and R have multigraded structures respectively. Hence T will have inherited multigrading, bigrading and standard grading. We will use this fact freely in the following proof.

(a) When $j \ge 2$, we have the following bigraded decomposition via Lemma 2. 3 (b), Lemma 2. 5 and Proposition 2.8(d):

$$\begin{split} H^{j}_{\mathfrak{m}+\mathfrak{n}}\Big(\frac{T}{(I+J+\mathfrak{m}\mathfrak{n})^{k}}\Big) &= \\ \frac{\ker(\partial_{j})}{\mathrm{im}(\partial_{j-1})} &= \frac{\ker(\partial_{j}^{1} \oplus \partial_{j}^{2})}{\mathrm{im}(\partial_{j-1}^{1} \oplus \partial_{j-1}^{2})} \cong \\ \frac{\ker(\partial_{j}^{1})}{im(\partial_{j-1}^{1})} &\oplus \frac{\ker(\partial_{j}^{2})}{\mathrm{im}(\partial_{j-1}^{2})} \cong \\ H^{j}_{\mathfrak{m}T}(\frac{T}{(I+\mathfrak{n})^{k}}) &\oplus H_{\mathfrak{n}T}^{j}(\frac{T}{(J+\mathfrak{m})^{k}}) = \\ H^{j}_{\mathfrak{m}}(\frac{T}{(I+\mathfrak{n})^{k}}) &\oplus H^{j}_{\mathfrak{n}}(\frac{T}{(I+\mathfrak{m})^{k}}). \end{split}$$

This implies

$$a_j(T/(I+J+\mathfrak{m}\mathfrak{n})^k) = \max\{a_j(T/(I+\mathfrak{n})^k),\$$
$$a_j(T/(I+\mathfrak{m})^k)\}.$$

As S — modules, we have the following bigraded isomorphism:

$$\frac{T}{(I+n)^k} \cong \bigoplus_{\beta \in \tilde{\mathbf{N}}, |\beta| < k} \frac{S}{I^{k-|\beta|}} (0, -|\beta|).$$

Then the canonical epimorphism $T \rightarrow S$ induces an isomorphism

$$\begin{split} H^{j}_{\mathfrak{m}}(\frac{T}{(I+\mathfrak{n})^{k}}) & \cong H^{j}_{\mathfrak{m}}(\bigoplus_{\beta \in \mathbf{N}, |\beta| < k} \frac{S}{I^{k-|\beta|}}(0, -|\beta|)) \cong \\ & \bigoplus_{\beta \in \mathbf{N}, |\beta| < k} H^{j}_{\mathfrak{m}}(\frac{S}{I^{k-|\beta|}})(0, -|\beta|), \end{split}$$

via Lemma 2.3(a). Hence

$$a_j(T/(I+\mathfrak{n})^k) = \max\{a_j(S/I^{k-t}) + t:$$

$$0 \le t \le k-1\}.$$

Likewise,

$$a_j(T/(J+\mathfrak{m})^k) = \max\{a_j(R/\{J^{k-t}) + t: 0 \le t \le k-1\}.$$

Therefore, when $j \geqslant 2$, we arrive at the conclusion

$$a_j(T/F^k) = \max\{a_j(S/I^{k-t}) + t, a_j(R/J^{k-t}) + t : 0 \le t \le k - 1.$$

(b) Now we consider the case with j=1. The proof will be divided into three steps.

Claim 1
$$a_1(T/F^k) \ge \max\{a_1(S/I^{k-t}) + t, a_1(R/J^{k-t}) + t : 0 \le t \le k-1\}.$$

Since $\partial_1 = \partial_1^1 \bigoplus \partial_1^2$ by Proposition 2.8(d), one has $\ker \partial_1 = \ker \partial_1^1 \bigoplus \ker \partial_1^2$. Let ∂_0^1 be the composition of ∂_0 with the projection map from

$$\bigoplus_{|\sigma| \cup \delta| = 1} \frac{T}{(I + J + mn)^k} [m_{\sigma\delta}^{-1}] \text{ to its direct summand}$$

$$\bigoplus_{|\sigma|=1}^{} \frac{T}{(I+J+\mathfrak{m}\mathfrak{n})^k} \left[m_{\sigma\emptyset}^{-1}\right]$$
, and similarly define

 ∂_0^2 . It is clear that $\operatorname{im}(\partial_0) \subseteq \operatorname{im}(\partial_0^1) \oplus \operatorname{im}(\partial_0^2)$ holds. Therefore,

$$\frac{\ker(\partial_1^1) \bigoplus \ker(\partial_1^2)}{\operatorname{im}(\partial_0^1) \bigoplus \operatorname{im}(\partial_0^2)} \cong \frac{\ker(\partial_1^1)}{\operatorname{im}(\partial_0^1)} \bigoplus \frac{\ker(\partial_1^2)}{\operatorname{im}(\partial_0^2)}$$
 is an epimorphic image of $H^1_{\mathfrak{m}+\mathfrak{n}}$ (T/F^k) $\cong \frac{\ker(\partial_1)}{\operatorname{im}(\partial_0)}$, which in turn implies

$$a_1(T/F^k) \geqslant \max\{\ l \in \mathbb{Z} : (\frac{\ker(\partial_1^1)}{\operatorname{im}(\partial_0^1)})_l \neq 0$$

$$\operatorname{or} (\frac{\ker(\partial_1^2)}{\operatorname{im}(\partial_0^2)})_l \neq 0\}.$$

Then

$$\max\{\ l \in \mathbb{Z}: (\frac{\ker(\partial_1^1)}{\operatorname{im}(\partial_0^1)})_l \neq 0\} =$$

$$\max\{\ l \in \mathbb{Z}: H^j_{\mathfrak{m}}(\frac{T}{(L+n)^k})_l \neq 0\} =$$

$$\max\{l\in\mathbb{Z}: \bigoplus_{\beta\in\tilde{\mathbf{N}}, |\beta|< k} H^1_{\mathfrak{m}}(\frac{S}{I^{k-|\beta|}}(0,-|\beta|))_l\neq 0\} =$$

 $\max\{a_1(S/I^{k-t}) + t: 0 \le t \le k-1\}.$

Similarly, one has

$$\max\{l \in \mathbb{Z}: (\frac{\ker \partial_1^2}{\operatorname{im} \partial_0^2})_l \neq 0\} =$$

 $\max\{a_1(R/J^{k-t})+t: 0 \le t \le k-1\}.$

Thus, $a_1(T/F^k) \geqslant \max\{a_1(S/I^{k-t}) + t, a_1(R/J^{k-t}) + t : 0 \le t \le k-1\}$, establishing the first claim.

Claim 2
$$a_1(T/F^k) \ge 2k - 2$$
.

It is sufficient to find a bigraded element $u \in \ker(\partial_1)$ such that its total degree $\deg(u) = 2k - 2$ and $u \notin \operatorname{im}(\partial_0)$. For any $v \in T$, let [v], $[v]_{x_i}$ and $[v]_{y_i}$ be the equivalence classes of v in $\frac{T}{F^k}$, $\frac{T}{F^k}$. $[x_i^{-1}]$ and $\frac{T}{F^k}[y_i^{-1}]$ respectively.

Suppose $f \in S$ and $g \in R$ with $\deg(f) = \deg(g) = k-1$, then

 $\lceil fg \rceil_{x_i} \neq \lceil 0 \rceil_{x_i} \Leftrightarrow x_i^l fg \notin (I+\mathfrak{n})^k \text{ for } l \geqslant 0$ by the equality (4). Since $\deg(g) = k-1$ and $g \in R$, we have $g \notin \mathfrak{n}^k$ and $g \in \mathfrak{n}^p$ for any $1 \leqslant p \leqslant k-1$. Meanwhile, it is clear that $I^k \subseteq I^{k-1} \subseteq \cdots \subseteq I^2 \subseteq I$ holds. Therefore, the above equivalent statements can be further simplified into saying $x_i^l f \notin I$ for $l \geqslant 0$, i. e., $f \notin I: (x_i)^\infty$.

As $\sqrt{I} \neq \mathfrak{m}$, we can find some homogeneous

element $f \in S$ of degree k-1 satisfying $f \notin I : \mathfrak{m}^{\infty}$. Similarly, we can find some homogeneous element $g \in R$ of degree k-1 satisfying $g \notin J : \mathfrak{n}^{\infty}$. We will verify that $u = (\bigoplus_{i=1}^{s} [fg]_{x_i}) \oplus (\bigoplus_{i=1}^{r} [0]_{y_i})$ is the expected element.

To see this, notice first that $u \in \ker(\partial_1)$ and u is bi-homogeneous of degree (k-1,k-1). Consequently, the total degree $\deg(u) = 2(k-1)$. Thus, it remains to show that $u \notin \operatorname{im}(\partial_0)$. Assume to the contrary that there exists an element $h \in T$ such that $\partial_0(\lceil h \rceil) = (\bigoplus_{i=1}^s \lceil fg \rceil_{x_i}) \oplus (\bigoplus_{i=1}^r \lceil 0 \rceil_{y_i})$. Without loss of generality, we may assume that h is homogeneous of bidegree (k-1,k-1). Whence, $\lceil h-fg \rceil_{x_i} = \lceil 0 \rceil_{x_i}$ and $\lceil h \rceil_{y_j} = \lceil 0 \rceil_{y_j}$ for each $1 \le i \le s$ and $1 \le j \le r$. Notice that

Since the partial degree $\deg_y(h-fg)=k-1$, it is clear that $h-fg\notin \mathfrak{n}^k:\mathfrak{m}^\infty$ unless h-fg=0. So by bigrading, $h-fg\in I:\mathfrak{m}^\infty$. Likewise, we will have $h\in J:\mathfrak{n}^\infty$. As a result, $fg=h-(h-fg)\in (I:\mathfrak{m}^\infty)+(J:\mathfrak{n}^\infty)$. Then, again, by bigrading, we will have $f\in I:\mathfrak{m}^\infty$ or $g\in J:\mathfrak{n}^\infty$, a contradiction. And this completes our proof for the second claim.

So far, we have proved

$$a_1(T/F^k) \geqslant \max\{2k - 2, a_1(S/I^{k-t}) + t,$$

 $a_1(R/J^{k-t}) + t : 0 \leqslant t \leqslant k - 1\}.$ (5)

Claim 3 The converse direction of the inequality (5) also holds.

Let
$$H = I + \mathfrak{m}\mathfrak{n}$$
 and $G_i = H^k + \sum_{i=1}^{n} (\mathfrak{m}\mathfrak{n})^{k-i} J^i$

for $0 \le t \le k$. Since

$$G_{t-1} \cap (\mathfrak{m} \mathfrak{n})^{k-t} J^t = \mathfrak{m}^{k-t+1} \mathfrak{n}^{k-t} J^t$$

for $1 \le t \le k$ by Lemma 2.6, the following short exact sequence arises

$$0 \rightarrow \frac{(\mathfrak{m}\mathfrak{n})^{k-t}J^{t}}{\mathfrak{m}^{k-t+1}\mathfrak{n}^{k-t}J^{t}} \rightarrow \frac{T}{G_{t-1}} \rightarrow \frac{T}{G_{t}} \rightarrow 0,$$

which induces a long exact sequence

$$\cdots \rightarrow H^{1}_{\mathfrak{m}+\mathfrak{n}}(\frac{T}{G_{t-1}}) \rightarrow H^{1}_{\mathfrak{m}+\mathfrak{n}}(\frac{T}{G_{t}}) \rightarrow$$

$$H^{\frac{2}{\mathfrak{m}+\mathfrak{n}}}(\frac{(\mathfrak{m}\mathfrak{n})^{k-t}J^{t}}{\mathfrak{m}^{k-t+1}\mathfrak{n}^{k-t}J^{t}}) \rightarrow \cdots$$

by Lemma 2.3(c). Since $\frac{(\mathfrak{m}\mathfrak{n})^{k-t}J^t}{\mathfrak{m}^{k-t+1}\mathfrak{n}^{k-t}J^t}$ is an \mathfrak{m} T-torsion T-module, according to Lemma 2.3(b) and (d) we have

$$\begin{split} H^{\frac{2}{(\mathfrak{m}+\mathfrak{n})T}}(\frac{(\mathfrak{m}\mathfrak{n})^{k-t}J^{t}}{\mathfrak{m}^{k-t+1}\mathfrak{n}^{k-t}J^{t}}) &\cong H^{\frac{2}{\mathfrak{n}T}}(\frac{(\mathfrak{m}\mathfrak{n})^{k-t}J^{t}}{\mathfrak{m}^{k-t+1}\mathfrak{n}^{k-t}J^{t}}) = \\ H^{\frac{2}{\mathfrak{n}}}(\frac{(\mathfrak{m}\mathfrak{n})^{k-t}J^{t}}{\mathfrak{m}^{k-t+1}\mathfrak{n}^{k-t}J^{t}}) &\cong H^{\frac{2}{\mathfrak{n}}}(\frac{\mathfrak{m}^{k-t}}{\mathfrak{m}^{k-t+1}} \otimes \mathfrak{n}^{k-t}J^{t}) \cong \\ &\frac{\mathfrak{m}^{k-t}}{\mathfrak{m}^{k-t+1}} \otimes H^{\frac{2}{\mathfrak{n}}}(\mathfrak{n}^{k-t}J^{t}). \end{split}$$

Hence,

$$a_1(T/G_t) \leqslant \max\{a_1(T/G_{t-1}), a_2(\{(\mathfrak{mn})^{k-t}J^t\}/\{\mathfrak{m}^{k-t+1}\mathfrak{n}^{k-t}J^t)\} =$$
 $\max\{a_1(T/G_{t-1}), a_2(\mathfrak{n}^{k-t}J^t) + k - t\} =$
 $\max\{a_1(T/G_{t-1}), a_1(R/J^t) + k - t\}.$

The last equality holds via Proposition 2. 8 and (c). Thus we can conclude

$$a_1(T/(I+J+mn)^k) = a_1(T/G_k) \le$$

 $\max\{a_1(T/G_0), a_1(R/J^t) + k - t : 1 \le t \le k\} =$
 $\max\{a_1(T/H^k), a_1(R/J^t) + k - t : 1 \le t \le k\}.$

Notice that H = I + mn can also be viewed as the fiber product of $I \subseteq S$ and $(0) \subseteq R$. With a similar argument, we can get

$$\begin{aligned} a_1(T/H^k) &\leqslant \max\{a_1(T/\mathfrak{m}^k\mathfrak{n}^k), \\ a_1(S/I^t) + k - t : 1 &\leqslant t \leqslant k\} = \max\{2k - 2, \\ a_1(S/I^t) + k - t : 1 &\leqslant t \leqslant k\} \end{aligned}$$

by Proposition 2. 8 (b). These arguments altogether yield

$$a_1(T/F^k) \le \max\{2k - 2, a_1(S/I^{k-t}) + t,$$

 $a_1(R/J^{k-t}) + t : 0 \le t \le k - 1\},$ (6)

which establishes the third claim. Now, combing the inequalities (5) with (6), we complete the proof.

Remark 2. 10 In Theorem 2. 9(b), if T = S[y] and J = 0, then the conditions $\dim(S) > 2$ and $I \subseteq \mathfrak{m}^2$ can be removed. The proof is only slightly different and will be omitted here.

3 Top dimensional a_i -invariants of $S/I_{\Lambda}^{(n)}$

Let Δ be a k-dimensional simplicial complex over $[s] := \{1, 2, \dots, s\}$ for some positive integers

k and s. Assume that $S = \mathbb{K} [x_1, \cdots, x_s]$ is a polynomial ring over a field \mathbb{K} and $I_\Delta \subseteq S$ is the Stanley-Reisner ideal associated to Δ . The main task of this section is to investigate the a_{k+1} -invariants associated to its power I_Δ^n and its symbolic power $I_\Delta^{(n)}$. The case when k=1 has already been considered in Ref. [4]. There, it was shown that $a_2(S/I_\Delta^{(n)}) = a_2(S/I_\Delta^n)$ holds when Δ has no isolated vertex. We will generalize this result here by showing $a_{k+1}(S/I_\Delta^{(n)}) = a_{k+1}(S/I_\Delta^n)$ for any k-dimensional simplicial complex Δ . After that, we will characterize when $a_{k+1}(S/I_\Delta^{(n)})$ is maximal.

Let us start with reviewing some basic notions. Recall that Δ is a simplicial complex on [s] if Δ is a collection of subsets of [s] such that if $F \in \Delta$ and $F' \subseteq F$ then $F' \in \Delta$. Each element $F \in \Delta$ is called a face of Δ . The dimension of F is defined to be $\dim(F):=|F|-1$ and the dimension of Δ is defined to be $\dim(\Delta):=\max\{\dim(F):F\in\Delta\}$. A facet is a maximal face of Δ with respect to inclusion. We will use $\mathcal{F}(\Delta)$ to denote the set of facets of Δ . Meanwhile, a non-face of Δ is a subset F of [s] with $F \notin \Delta$. We will use $\Re(\Delta)$ to denote the set of minimal non-faces of Δ .

In order to describe $a_i(S/I_{\Delta}^{(n)})$, we need to know when $H_{\mathrm{m}}^i(S/I_{\Delta}^{(n)})_a$ is vanishing. Due to a formula in Ref. [17] of Takayama, this problem boils down to computing the dimension of the simplicial homology of the degree complex. Set $G_a := \{i \in [s]: \alpha_i < 0\}$. Recall that the degree complex $\Delta_a(I)$ of a monomial ideal I is given by

$$\Delta_{a}(I) := \{ F \subseteq [s] \backslash G_{a} : \mathbf{x}^{a} \notin IS_{F \cup G_{a}} \}.$$
Here, $S_{F \cup G_{a}} = S[x_{i}^{-1}: i \in F \cup G_{a}]$ and $\mathbf{x}^{a} =$

 $x_1^{a_1}\cdots x_s^{a_s}$.

For each monomial ideal I, consider a simplicial complex

$$\Delta(I) := \{ F \subseteq \lceil s \rceil : x_F \notin \sqrt{I} \}.$$

It is clear that $\Delta(I) = \Delta(\sqrt{I})$ holds. And when I is square free, it is exactly the Stanley-Reisner complex of I. We also have $\Delta(S) = \emptyset$ since for any $F \subseteq [s]$, $x_F \in \sqrt{S} = S$. % Here is the

Takayama's formula.

Lemma 3. 1 (Takayama) Let I be a monomial ideal in S and α a vector in \mathbb{Z} . Then

$$\dim_{\mathbf{K}} H_{\mathfrak{m}}^{i}(S/I)_{\alpha} = \begin{cases} \dim_{\mathbf{K}} \widetilde{H}_{i-|G_{\alpha}|-1}(\Delta_{\alpha}(I)), \\ & \text{if } G_{\alpha} \in \Delta(I), \\ 0, & \text{otherwise.} \end{cases}$$

Here, \widetilde{H}_i (Δ_a (I)) is the i-th reduced simplicial homology group of the complex Δ_a (I) over \mathbb{K} .

Lemma 3. 2^[18] Take the assumptions as in setting 2.1. Assume in addition that $I \subseteq S$ and $J \subseteq R$ are two monomial ideals. Then, for any $\alpha \in \mathbb{Z}$, $\beta \in \mathbb{Z}$ and $\gamma = (\alpha, \beta) \in \mathbb{Z}^{+r}$, we have the following two cases:

(a) if p=1 while both Δ_a ($I^{s-|\beta|}$) and Δ_β ($I^{s-|\alpha|}$) are nonempty, then

$$\dim_{\mathbf{K}} H_{\mathfrak{m}+\mathfrak{n}}{}^{p} (T/(I+J+\mathfrak{m}\mathfrak{n})^{k})_{\gamma} = \dim_{\mathbf{K}} H_{\mathfrak{m}}{}^{p} (S/I^{k-|\beta|})_{a} + \dim_{\mathbf{K}} H_{\mathfrak{n}}{}^{p} (R/J^{k-|\alpha|})_{\beta} + 1;$$

(b) otherwise,

$$\dim_{\mathbf{K}} H_{\mathfrak{m}^{+n}}(T/(I+J+\mathfrak{m}\mathfrak{n})^{k})_{\gamma} = \\ \dim_{\mathbf{K}} H_{\mathfrak{m}^{p}}(S/I^{k-|\beta|})_{a} + \dim_{\mathbf{K}} H_{\mathfrak{n}^{p}}(R/J^{k-|a|})_{\beta}.$$

Here, $|\alpha| = \sum_{i=1}^{s} \alpha_i$ for $\alpha = (\alpha_1, \dots, \alpha_s)$ and one can similarly define $|\beta|$.

As a quick application of the above two lemmas, we finish the proof of Proposition 2.8.

Proof(Proof of Proposition 2.8(b)) Notice that the ideal $\mathfrak{m}^k \mathfrak{n}^k \subseteq T$ is the fiber product of $I = (0) \subseteq S$ and $J = (0) \subseteq R$. Now, take arbitrary $\alpha \in \mathbb{Z}$ and $\beta \in \mathbb{Z}$.

First, we consider $H^1_{\mathfrak{m}}(S/I^{k-|\beta|})_a$. If $|\beta| < k$, then $I^{k-|\beta|} = 0$. Hence $H^1_{\mathfrak{m}}(S/I^{k-|\beta|})_a = H^1_{\mathfrak{m}}(S)_a = 0$ by Lemma 2. 7. When $|\beta| \ge k$, we have $I^{k-|\beta|} = S$. Then $H^1_{\mathfrak{m}}(S/I^{k-|\beta|})_a = H^1_{\mathfrak{m}}(0)_a = 0$. Thus for any α and β , $H^1_{\mathfrak{m}}(S/I^{k-|\beta|})_a = 0$. Likewise, $H^1_{\mathfrak{m}}(R/I^{k-|\alpha|})_\beta = 0$.

So, according to Lemma 2.6, if $H^1_{\mathfrak{m}+\mathfrak{n}}(T/(I+J+\mathfrak{m}\mathfrak{n})^k)_{(a,\beta)}\neq 0$, then both $\Delta_a(I^{k-|\beta|})$ and $\Delta_\beta(I^{k-|\alpha|})$ are nonempty. In the following, we will suppose that this is the case.

Notice that if $|\beta| \geqslant k$, then $I^{k-|\beta|} = S$.

Whence, for any $F \subseteq [s] \setminus G_a$, we have $\mathbf{x}^a \in S_{F \cup G_a}$, which implies $F \notin \Delta_a$ (S) by definition. So Δ_a ($I^{k-|\beta|}$) $= \emptyset$, contradicting the assumption. Thus $|\beta| \leqslant k-1$ and similarly $|\alpha| \leqslant k-1$. Consequently, $a_1(\frac{T}{\mathbf{w}^k \mathbf{v}^k}) \leqslant 2k-2$.

On the other hand, let $\alpha=(k-1,0,\cdots,0)\in\mathbb{Z}$ and $\beta=(k-1,0,\cdots,0)\in\mathbb{Z}$. We have $\lceil s\rceil \backslash \{1\}\in\Delta_a$ $(I^{k-|\beta|})$ since $x_1^{k-1}\notin(0)S_{\lceil s\rceil \backslash \{1\}}$. So $\Delta_a(I^{k-|\beta|})$ is nonempty. Likewise, $\Delta_\beta(J^{k-|a|})$ is nonempty. Thus, $H^1_{\mathfrak{m}+\mathfrak{n}}(T/(\mathfrak{mn})^k)_{(a,\beta)}\neq 0$ via Lemma 2.6, meaning $a_1(\frac{T}{\mathfrak{m}^k\mathfrak{n}^k})\!\geqslant\! 2k-2$. So $a_1(\frac{T}{\mathfrak{m}^k\mathfrak{n}^k})\!=\! 2k-2$, completing the proof.

The following lemma gives a precise description of $\Delta_a(I_\Delta^{(n)})$.

Lemma 3.3^[1] Assume that $G_{\alpha} \in \Delta$ for some $\alpha \in \mathbb{Z}$. Then

$$\begin{split} \mathscr{F}(\Delta_{\alpha}(I_{\Delta}^{(n)})) &= \\ \{F \in \mathscr{F}(\mathrm{link}_{\Delta}(G_{\alpha})) : \sum_{i \in F \cup G_{\alpha}} a_{i} \leqslant n - 1\}. \end{split}$$

The concept of monomial localization was introduced in Ref. [19] as a simplification of the localization. Fix a subset $F \subseteq [s]$. Let $\pi_F : S \rightarrow \mathbb{K}[x_i:i \in [s] \setminus F]$ be the \mathbb{K} -algebra homomorphism sending x_i to x_i for $i \in [s] \setminus F$ and x_i to 1 for $i \in F$. The image of a monomial ideal I of S under the map π_F is called the monomial localization of I with respect to F and will be denoted by I[F]. It is clear that if I and J are both monomial ideals of S, then (IJ)[F] = I[F] J[F] and $(I \cap J)[F] = I[F] \cap J[F]$.

The degree complex can be expressed using the monomial localization as follows.

Lemma 3.4^[4,6] Let I be a monomial ideal in $S = \mathbb{K}[x_1, \dots, x_s]$ and $\alpha = (\alpha_1, \dots, \alpha_s)$ be a vector in \mathbb{Z} . Define α_+ to be the non-negative part of α , i. e., $\alpha_+ := (\alpha'_1, \dots, \alpha'_s)$ where $\alpha'_i = \max(0, \alpha_i)$ for each i.

(a) Δ_{α} (I) is a subcomplex of Δ (I). Moreover, if I has no embedded associated prime and $\alpha \in \mathbb{N}$, then $\mathcal{F}(\Delta_{\alpha}(I)) \subseteq \mathcal{F}(\Delta(I))$.

(b)
$$\Delta_{\alpha}(I) = \{ F \subseteq [s] \setminus G_{\alpha} : x^{\alpha_{+}} \notin I [F \cup G_{\alpha}] \}$$

S.

(c) If $G_{\alpha} \neq \emptyset$, then $\Delta_{\alpha}(I) = \operatorname{link}_{\Delta_{\alpha}(I)}(G_{\alpha})$.

Lemma 3. 5 Let Δ be a k-dimensional complex on $\lceil s \rceil$. If $F \in \Delta$ with $\dim(F) = k$, then $I_{\Delta} \lceil F \rceil = (x_i : i \in \lceil s \rceil \backslash F)$.

Proof As $1 \notin I_{\Delta}[F]$, it follows that $I_{\Delta}[F] \subseteq (x_i : i \in [s] \setminus F)$ holds. Conversely, for each $i \in [s] \setminus F$, $F \cup \{i\} \notin \Delta$ since $\dim(\Delta) = k$. So $\mathbf{x}_{F' \cup \{i\}} \in I_{\Delta}$ for some $F' \subseteq F$, implying $x_i \in I_{\Delta}[F]$. Since this holds for any $i \in [s] \setminus F$, we have the converse containment $I_{\Delta}[F] \supseteq (x_i : i \in [s] \setminus F)$.

Proposition 3.6 Let Δ be a k-dimensional complex on [s]. For each $\alpha = (\alpha_1, \dots, \alpha_s) \in \mathbb{N}^s$ and each k-dimensional simplex $F \subseteq [s]$, the following statements are equivalent:

(a)
$$F \in \Delta_{\alpha}(I_{\Lambda}^{n})$$
;

(b)
$$F \in \Delta$$
 and $\sum_{i \in \lceil s \rceil \setminus F} \alpha_i \leqslant n - 1$.

Proof First assume that $F \in \Delta_a$ (I_Δ^n) holds. Since $G_a = \emptyset$, according to Lemma 3.4(a) we have $F \in \Delta_a$ (I_Δ^n) $\subseteq \Delta$ (I_Δ^n) $= \Delta$ (I_Δ) $= \Delta$. It follows from Lemma 3.4(b) and Lemma 3.5 that $\mathbf{x}^a \notin I_\Delta^n[F]S = (I_\Delta[F])^nS = (x_i:i \in [s] \backslash F)^nS$ holds. Hence $\sum_{i \in [s] \backslash F} \alpha_i \leqslant n-1$ and this proves (a) \Rightarrow (b).

Conversely, assume that $F\in\Delta$ and $\sum_{i\in \lceil s\rceil\backslash F} \alpha_i \leqslant n-1$ hold. Then by Lemma 3.5,

$$\mathbf{x}^{a} \notin (x_{i}: i \in [s] \backslash F)^{n} = (I_{\Delta}[F])^{n} S = I_{\Delta}^{n}[F] S.$$

Thus $F \in \Delta_{\alpha}(I_{\Delta}^{n})$ via Lemma 3.4(b), which proves (b) \Rightarrow (a).

Lemma 3.7 If Δ is a simplicial complex on $\llbracket s \rrbracket$ and I_{Δ} is its Stanley-Reisner ideal in $S = \mathbb{K}$ $\llbracket x_1, \cdots, x_s \rrbracket$ over a field \mathbb{K} , then $\Delta = \Delta \left(I_{\Delta}^n \right) = \Delta \left(I_{\Delta}^{(n)} \right)$ for all positive integer n.

Proof It follows from (1) and (2) that

$$\begin{array}{c} \sqrt{I_{\Delta}^{(n)}} = \sqrt{\bigcap_{F \in \mathcal{F}(\Delta)} P_F^n} = \bigcap_{F \in \mathcal{F}(\Delta)} \sqrt{P_F^n} = \\ \bigcap_{F \in \mathcal{F}(\Delta)} \sqrt{P_F} = \sqrt{\bigcap_{F \in \mathcal{F}(\Delta)} P_F} = \sqrt{I_{\Delta}} = \sqrt{I_{\Delta}^n} \end{array}$$

holds. Therefore,

$$\Delta(I_{\Delta}^{(n)}) = \Delta(\sqrt{I_{\Delta}^{(n)}}) = \Delta(\sqrt{I_{\Delta}^{n}}) = \Delta(I_{\Delta}^{n}),$$

and they agree with $\Delta(\sqrt{I_{\Delta}}) = \Delta(I_{\Delta}) = \Delta$.

Recall that the pure ith skeleton of Δ is the

pure simplicial complex $\Delta^{(i)}$ whose facets are the faces F of Δ with $\dim(F) = i$.

Proposition 3.8 Let Δ be a k-dimensional simplicial complex over [s]. For any $\alpha \in \mathbb{Z}^s$ with $G_\alpha \in \Delta$, we have $\Delta_\alpha (I_\Delta^n)^{(k)} = \Delta_\alpha (I_\Delta^{(n)})^{(k)}$.

Proof If $G_{\alpha} \neq \emptyset$, then dim $(\Delta_{\alpha}(I_{\Delta}^{(n)})) \leq \dim$ (link_{\Delta} (G_{α})) $< \dim (\Delta) = k$ by Lemma 3. 3. Similarly, if $G_{\alpha} \neq \emptyset$, then dim $(\Delta_{\alpha}(I_{\Delta}^{n})) < \dim (\Delta_{\alpha_{+}}(I_{\Delta}^{n})) \leq \dim (\Delta(I_{\Delta}^{n})) = \dim (\Delta) = k$ by Lemma 3.4(a) and (c). Therefore, $\Delta_{\alpha}(I_{\Delta}^{n})^{(k)} = \{\emptyset\} = \Delta_{\alpha}(I_{\Delta}^{(n)})^{(k)}$.

When $G_{\alpha} = \emptyset$, then $\operatorname{link}_{\Delta}(G_{\alpha}) = \Delta$. Now, for each $F \in \Delta$ with $\dim(F) = k$, we have $F \in \Delta_{\alpha}(I_{\Delta}^{(n)}) \Leftrightarrow F$ is a facet of Δ and $\sum_{i \in [s] \setminus F} \alpha_i \leqslant n - 1 \Leftrightarrow F \in \Delta_{\alpha}(I_{\Delta}^n)$.

The first equivalence comes from Lemma 3.3 and the second comes from Proposition 3.6. So we can conclude safely with $\Delta_a(I_{\Delta}^n)^{(k)} = \Delta_a(I_{\Delta}^{(n)})^{(k)}$.

Now, we can state the second main result of this paper.

Theorem 3. 9 Let Δ be a k-dimensional complex on [s]. If I_{Δ} is the Stanley-Reisner ideal in the polynomial ring $S = \mathbb{K}[x_1, \dots, x_s]$ over a field \mathbb{K} , then $a_{k+1}(S/I_{\Delta}^{(n)}) = a_{k+1}(S/I_{\Delta}^{n})$ for all $n \ge 1$.

Proof We have already seen that $\Delta = \Delta (I_{\Delta}^{n})$ = $\Delta (I_{\Delta}^{(n)})$ holds by Lemma 3. 7. Now, take an arbitrary $\alpha \in \mathbb{Z}$. If $G_{\alpha} \notin \Delta$, then

$$H_{\mathfrak{m}}^{k+1}(S/I_{\Delta}^{(n)})_{\alpha} = H_{\mathfrak{m}}^{k+1}(S/I_{\Delta}^{n})_{\alpha} = 0$$

by Lemma 3.1. Thus, we may assume instead $G_{\alpha} \in \Delta$. In this case, we claim

$$\Delta_{\alpha}(I_{\Delta}^{n})^{(k-|G_{\alpha}|)} = \Delta_{\alpha}(I_{\Delta}^{(n)})^{(k-|G_{\alpha}|)}$$

$$\tag{7}$$

Notice that

$$\Delta_{\alpha_{+}} (I_{\Delta}^{n})^{(k)} = \Delta_{\alpha_{+}} (I_{\Delta}^{(n)})^{(k)}$$

holds by Lemma 3. 8. Therefore, (7) holds when $|G_{\alpha}| = 0$. In the following, we will assume additionally $|G_{\alpha}| \ge 1$. Now, $\Delta_{\alpha} (I_{\Delta}^{(n)})^{(k-|G_{\alpha}|)}$ is actually a simplicial complex over $[s] \setminus G_{\alpha}$ by Lemma 3. 3. Meanwhile, $\Delta_{\alpha} (I_{\Delta}^{(n)})^{k-|G_{\alpha}|}$ is also a simplicial complex over $[s] \setminus G_{\alpha}$ by Lemma 3. 4(c). Hence, to establish (7) in this situation, we will take an arbitrary $(k-|G_{\alpha}|)$ -dimensional face $A \in$

(10)

 Δ with $A \cap G_{\alpha} = \emptyset$. Now,

$$A \in \Delta_{\alpha}(I_{\Delta}^{(n)}) \Leftrightarrow A \in \mathcal{F}(\Delta_{\alpha}(I_{\Delta}^{(n)}))$$

$$\Leftrightarrow A \in \mathcal{F}(\operatorname{link}_{\Delta}(G_{\alpha})) \text{ and } \sum_{i \notin A \cup G_{\alpha}} \alpha_{i} \leqslant n - 1 (8)$$

$$\Leftrightarrow A \cup G_{\alpha} \in \Delta \text{ and } \sum_{i \notin A \cup G_{\alpha}} \alpha_{i} \leqslant n - 1$$

$$\Leftrightarrow A \cup G_{\alpha} \in \Delta_{\alpha_{+}}(I_{\Delta}^{n})$$

$$(9)$$

The equivalences in (8), (9) and (10) come from Lemma 3.3, Proposition 3.6 and Lemma 3.4 (c) respectively. And this establishes the equality in Ref. [11].

 $\Leftrightarrow A \in \Delta_{\alpha}(I_{\Lambda}^{n}).$

Notice that dim $(\Delta_{\alpha} (I_{\Delta}^{n})^{(k-|G_{\alpha}|)}) = \dim (\Delta_{\alpha} (I_{\Delta}^{(n)})^{(k-|G_{\alpha}|)}) = k - |G_{\alpha}|$. Consequently, the boundaries

$$\begin{split} B_{k-|G_a|} \left(\Delta_a \left(I_\Delta^n \right)^{(k-|G_a|)} \right) = \\ B_{k-|G_a|} \left(\Delta_a \left(I_\Delta^{(n)} \right)^{(k-|G_a|)} \right) = 0. \end{split}$$

Thus, by (7), the simplicial homologies

$$\begin{split} H_{k-|G_a|}(\Delta_a(I_\Delta^n);\mathbb{K}) = & \frac{Z_{k-|G_a|}\left(\Delta_a(I_\Delta^n)^{(k-|G_a|)}\right)}{B_{k-|G_a|}\left(\Delta_a(I_\Delta^n)^{(k-|G_a|)}\right)} = \\ & Z_{k-|G_a|}\left(\Delta_a(I_\Delta^n)^{(k-|G_a|)}\right) = \\ Z_{k-|G_a|}\left(\Delta_a(I_\Delta^{(n)})^{(k-|G_a|)}\right) = \\ \frac{Z_{k-|G_a|}\left(\Delta_a(I_\Delta^{(n)})^{(k-|G_a|)}\right)}{B_{k-|G_a|}\left(\Delta_a(I_\Delta^{(n)})^{(k-|G_a|)}\right)} = H_{k-|G_a|}\left(\Delta_a(I_\Delta^{(n)});\mathbb{K}\right), \end{split}$$
 and consequently,

$$\widetilde{H}_{k-|G_a|}(\Delta_{\alpha}(I_{\Delta}^n);\mathbb{K}) = \widetilde{H}_{k-|G_a|}(\Delta_{\alpha}(I_{\Delta}^{(n)});\mathbb{K}).$$

This equality together with Lemma 3. 1 will yield

 $H^{k+1}_{\mathfrak{m}}(S/I^{(n)}_{\Delta})_{a}\neq 0 \Leftrightarrow H^{k+1}_{\mathfrak{m}}(S/I^{n}_{\Delta})_{a}\neq 0$, which finishes the proof.

In the rest of this paper, we will examine when a_{k+1} ($S/I_{\Delta}^{(n)}$) is maximal. The following lemma allows us to clarify some details.

Lemma 3. 10 Let Δ be a k — dimensional complex on $\lceil s \rceil$ and I_{Δ} the Stanley-Reisner ideal in the polynomial ring $S = \mathbb{K} \left[x_1, \cdots, x_s \right]$ over a field \mathbb{K} . Suppose $\alpha = (\alpha_1, \cdots, \alpha_s) \in \mathbb{Z}$ such that $\widetilde{H}_{k-|G_a|} (\Delta_a(I_{\Delta}^{(n)})) \neq 0$ and $G_a \in \Delta$ hold. Then, $\alpha_i \leqslant n-1$ for each $i \in \lceil s \rceil$.

Proof Assume that this is not true. Without loss of generality, we may assume $\alpha_1 \geqslant n$. Let A_1 , \cdots , A_l be the complete list of $(k - |G_a|)$ — dimensional faces in $\Delta_a(I_{\Delta}^{(n)})$. Then, according to Lemma 3. 3, we have $1 \in A_l$ for each $1 \leqslant i \leqslant l$.

Hence, $\Delta_{a}(I_{\Delta}^{(n)})^{(k-|G_{a}|)}$ is a cone. Thanks to Ref. [7], $\widetilde{H}_{k-|G_{a}|}(\Delta_{a}(I_{\Delta}^{(n)})^{(k-|G_{a}|)})=0$. Since $\Delta_{a}(I_{\Delta}^{(n)})$ is $(k-|G_{a}|)$ -dimensional, this implies $\widetilde{H}_{k-|G_{a}|}(\Delta_{a}(I_{\Delta}^{(n)}))=0$, contradicting the assumption.

Finally, we are ready to present the last main result of this paper.

Theorem 3. 11 Let Δ be a k-dimensional complex on $\lceil s \rceil$ and I_{Δ} the Stanley-Reisner ideal in the polynomial ring $S = \mathbb{K} \lceil x_1, \cdots, x_s \rceil$ over a field \mathbb{K} . Then

$$a_{k+1}(S/I_{\Delta}^{(n)}) \leqslant (k+2)(n-1)$$

for each positive integer n. Furthermore, the following statements are equivalent for $n \ge 2$:

(a)
$$a_{k+1}(S/I_{\Lambda}^{(n)}) = (k+2)(n-1)$$
;

(b) there exists a subset $B = \{p_1, \dots, p_{k+2}\} \subseteq [s]$ such that $\mathcal{F}(\Delta \mid_B)$ is a k-dimensional sphere, namely

$$\mathcal{F}(\Delta \mid_B) = \{B \setminus \{p_i\} : 1 \leqslant i \leqslant k+2\}.$$

Proof Take arbitrary $\alpha \in \mathbb{Z}^s$ with $H_{\mathbb{m}}^{k+1}(S / I_{\Delta}^{(n)})_{\alpha} \neq 0$. According to Lemma 3.1, this simply means $\widetilde{H}_{k-|G_a|}(\Delta_{\alpha}(I_{\Delta}^{(n)})) \neq 0$ and $G_{\alpha} \in \Delta$. Since $\dim(\Delta_{\alpha}(I_{\Delta}^{(n)})) \leqslant \dim(\Delta) - |G_{\alpha}| = k - |G_{\alpha}|$ by Lemma 3.3, the nonvanishing of $\widetilde{H}_{k-|G_{\alpha}|}(\Delta_{\alpha}(I_{\Delta}^{(n)})) = k$ $-|G_{\alpha}|$ holds. Therefore, we can take some $F \in \Delta_{\alpha}(I_{\Delta}^{(n)})$ with $\dim(F) = k - |G_{\alpha}|$. Notice that $F \cap G_{\alpha} = \emptyset$, $\sum_{i \notin F \cup G_{\alpha}} \alpha_i \leqslant n-1$ and $\sum_{i \in F} \alpha_i \leqslant |F|(n-1)$ hold by Lemma 3.2 and Lemma 2.9 respectively. Henceforth,

$$\mid \alpha \mid = \sum_{i \in F} \alpha_i + \sum_{i \notin F \cup G_a} \alpha_i + \sum_{i \in G_a} \alpha_i \leqslant \\ \mid F \mid (n-1) + (n-1) - \mid G_a \mid = \\ (k - \mid G_a \mid + 2)(n-1) - \mid G_a \mid \leqslant (k+2)(n-1),$$
 establishing the expected upper bound. It remains to prove the equivalence of (a) and (b) when $n \geqslant 2$.

(a) \Rightarrow (b): Assume that $a_{k+1}(S/I_{\Delta}^{(n)}) = (k+2)$ (n-1). Then, we can find some $\alpha \in \mathbb{Z}^s$ satisfying $H_{\mathfrak{m}}^{k+1}(S/I_{\Delta}^{(n)})_{\alpha} \neq 0$ and $|\alpha| = (k+2)(n-1)$. From the above argument, we can see $|G_{\alpha}| = 0$, i. e., $G_{\alpha} = \emptyset$. Furthermore, there exists some $F \in \Delta_{\alpha}(I_{\Delta}^{(n)})$ with dim(F) = k. And since $\widetilde{H}_{k}(\Delta_{\alpha}(I_{\Delta}^{(n)})) \neq 0$ holds, $\Delta_{\alpha}(I_{\Delta}^{(n)}) \neq \langle F \rangle$. Assume

F = [k+1] for convenience. Now, $\sum_{i \in [k+1]} \alpha_i = (k+1)(n-1)$ and $\sum_{i \notin [k+1]} \alpha_i = n-1$. Hence $\alpha_1 = \alpha_2 = \cdots$ $= \alpha_{k+1} = n-1$ by Lemma 3. 10. Our task is then reduced to describing α_j when $k+1 < j \le s$.

We claim that there exists precisely one j with $\alpha_i > 0$ and $k+1 < j \le s$. If this is not true, we may assume that α_{k+2} , $\alpha_{k+3} > 0$ holds. As $\Delta_{\alpha}(I_{\Delta}^{(n)}) \neq$ $\langle F \rangle$, we may find some facet G of $\Delta_{\alpha}(I_{\Lambda}^{(n)})$ with $G \neq F$. Since $\dim(G) \leq \dim(F) = k$, either $|F \setminus G| \geq 2$ or $|\{k+2,k+3\}\setminus G| \ge |F\setminus G| = 1$. In both cases, we have $\sum_{i=0}^n \alpha_i > n-1$, which implies $G \not\in \Delta_{\scriptscriptstyle{\alpha}} \, (\, I_{\scriptscriptstyle{\Delta}}^{\, (n)} \,)$ by Lemma 3.2, a contradiction to the choice of G. Therefore, we may assume $\alpha_{k+2} = n - 1$ and $\alpha_k = 0$ for $k+2 \le h \le s$. An argument as in the previous paragraph also shows $G \subseteq B_{:} = \lceil k + 2 \rceil$ and $\dim(G) = k$ for any $G \in \mathcal{F}(\Delta_{\alpha}(I_{\Delta}^{(n)}))$. If the pure simplicial complex $\Delta_{\alpha}(I_{\Delta}^{(n)})|_{B}$ is not a sphere, then it is collapsible and consequently $\widetilde{H}_k(\Delta_a(I_\Delta^{(n)})) =$ 0, contradicting the assumption. Hence $\Delta \mid_B$ $\Delta_{\alpha}(I_{\Delta}^{(n)})|_{B}$ is indeed a sphere.

(b) \Rightarrow (a): Without loss of generality, we may assume that B = [k+2] holds and $\Delta \mid_B$ is a k-dimensional sphere. Take $\alpha = (\alpha_1, \dots, \alpha_s) \in \mathbb{N}^s$ where $\alpha_i = n-1$ for $0 \le i \le k+2$ and $\alpha_i = 0$ for $k+2 < i \le s$. Then by Lemma 3. 3, we have $\Delta \mid_B = \Delta_\alpha(I_\Delta^{(n)})$ and $\widetilde{H}_k(\Delta_\alpha(I_\Delta^{(n)})) \ne 0$. So $H_m^{k+1}(S/I_\Delta^{(n)})_\alpha \ne 0$ via Lemma 3. 1, which implies $\alpha_{k+1}(S/I_\Delta^{(n)}) \ge (k+2)(n-1)$. Since $\alpha_{k+1}(S/I_\Delta^{(n)}) \le (k+2)(n-1)$ holds in general, the proof is completed.

References

- [1] HOA L T, TRUNG N V. Cohen-Macaulayness of powers of two-dimensional squarefree monomial ideals [J]. Journal of Algebra, 2009, 322; 4219-4227.
- [2] HOA L T, TRUNG N V. Partial Castelnuovo-Mumford regularities of sums and intersections of powers of monomial ideals [J]. Mathematical Proceedings of the Cambridge Philosophical Society, 2010, 149: 229-246.
- [3] IYENGAR S B, LEUSCHKE G J, LEYKIN A, et al.

 Twenty-four hours of local cohomology [M].

 Providence: American Mathematical Society, 2007.
- [4] LU D C. Geometric regularity of powers of two-

- dimensional squarefree monomial ideals[J]. (2018. 8. 22)[2020. 4. 20]. https://arxiv.org/pdf/1808.07266. pdf. Accepted by Journal of Algebraic Combinatorics.
- [5] MILLER E, STURMFELS B. Combinatorial commutative algebra [M]. New York: Springer-Verlag, 2005.
- [6] MINH N C, TRUNG N V. Cohen-Macaulayness of powers of two-dimensional squarefree monomial ideals [J]. Journal of Algebra, 2009, 322; 4219-4227.
- [7] MUNKRES J R. Elements of algebraic topology[M].

 Menlo Park: Addison-Wesley Publishing Company, 1984.
- [8] NASSEH S, SATHER-WAGSTAFF S. Vanishing of Ext and Tor over fiber products[J]. Proceedings of the American Mathematical Society, 2017, 145: 4661-4674.
- [9] GOTO S, WATANABE K. On graded rings. I[J]. Journal of the Mathematical Society of Japan, 1978, 30: 179-213.
- [10] BRUNS W, HERZOG J. Cohen-Macaulay rings[M]. Cambridge: Cambridge University Press, 1993.
- [11] HERZOG J, HOA L T, TRUNG N V. Asymptotic linear bounds for the Castelnuovo-Mumford reg- ularity [J]. Transactions of the American Mathematical Society, 2002, 354; 1793-1809.
- [12] EISENBUD D. Commutative algebra[M]. New York: Springer-Verlag, 1995.
- [13] HERZOG J, HIBI T. Monomial ideals[M]. London: Springer-Verlag London, Ltd., 2011.
- [14] DAO H, DE STEFANI A, GRIFO E, et al. Symbolic powers of ideals [C]. Cham: Springer. 2018, 222: 387-432.
- [15] BRODMANN M P, SHARP R Y. Local cohomology [M]. Cambridge: Cambridge University Press, 2013.
- [16] NGUYEN H D, VU T. Homological invariants of powers of fiber products [J]. Acta Mathematica Vietnamica. 2019, 44: 617-638.
- [17] TAKAYAMA Y. Combinatorial characterizations of generalized Cohen-Macaulay monomial ideals [J]. Bulletin Mathematique de la Societe des Sciences Mathematiques de Roumanie Nouvelle Serie, 2005, 48 (96): 327-344.
- [18] O' ROURKE J L. Local Cohomology and Degree Complexes of Monomial Ideals [OL]. (2019, 11, 14) [2020, 4, 22]. https://arxiv.org/pdf/1910, 14140, pdf.
- [19] HERZOG J, HOA L T, TRUNG N V. The stable set of associated prime ideals of a polymatroidal ideal[J]. Journal of Algebraic Combinatorics. An International Journal, 2013, 37: 289-312.