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Abstract: Inspired by the recent work of Lu and O’ Rourke, we study the a,-invariants of

(symbolic) powers of some graded ideals. When I and J are two graded ideals in two distinct

polynomial rings R and S over a common field K. We study the a;-invariants of the powers of
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0 Introduction

Let S=K[z1sy 2, ] and R=K [y, **,
y. ] be two polynomial rings over a field K and
T=S®g R. Let IS and ] &R be two graded
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ideals. The fiber product of I and J is defined by
F=I-+J]+mn, where m and n are the graded
maximal ideals of S and R respectively. One may
observe that (S ®x R)/(I + J + mn) can be
S R

decomposed as a direct sum of rings %@T
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Furthermore, if I and J are edge ideals of two Theorem 1.1" Let S=K [x,,*s x.] be a

I + J + mn
corresponds to the edge ideal of the join of the

vertex-disjoint graphs, then
graphs. Fiber products of ideals were studied by
many authors; c. f. %, But little is known about
the a;-invariants of T/(I+J +mn)* yet.

Recall that when M is a finitely generated S-
module and 0<{; <{dim (M), the a,-invariant of M
is given by

a;(M) : =max{t : H,(M), # 0},

where HY{ (M) is the i-th local cohomology
module of M with support in m. Notice that a gman
(M) is exactly the a-invariant introduced by Goto
and Watanabe in Ref. [9]. It plays an important
role in local duality, since -a (M) is the initial
degree of the canonical module of M; see, for
instance, Refs.[9-10].

The a;-invariant also has a close relation with
the Castelnuovo-Mumford regularity:
reg (M) : =max{a, (M) +i : 0<<i<<dim(M)}.

In fact, the a;-invariant takes an important
part in studying its asymptotic behaviour. For
example, in Ref. [11], Herzog, Hoa and Trung
proved that if J is a homogeneous ideal of R, then
reg(R/J") is a linear function of the form cn +e
for n>>0 via investigating a; (R/J"). Meanwhile,
in Ref. [27], Hoa and Trung showed that a; (R/J") is
also asymptotically a linear function of »n.

For any subset F of [s], we set

cri= [« €5

i€F

For a positive integer s, let = {1,2,,s}.
For any simplicial complex A on [s ], we use I, to
denote its  Stanley-Reisner ideal.  Precisely
speaking,

I,: =(xp:F € NA)) S,

where N(A) is the set of minimal non-faces of A.
When G is a simple graph on [ s | considered as a 1-
dimensional simplicial complex and G’ is obtained
from G by adding an isolated vertex {s + 1}, we
may find that I;' = (I;.m x,.,). Based on this
observation, in addition to other beautiful results, Lu

showed the following important result in Ref. [4].

polynomial ring over a field K. Assume that m =
(x1,**,x,) is the graded maximal ideal of S and y
is a new variable over S, IS is a monomial ideal
and J = ,m y)E&S[y].

(a) If i=2, then a,(S[y]/J*)=max{a,;(S/
I+ 0 <<k —1).

(b) If /T #m, then a, (S[y]/J")=max{2k
—2,a,(S/T"") +1. 0 1<k —17}.

Notice that the ideal (I, m y) above can also
be considered as a fiber product of IS and 0=K
[y]. Tt is then very natural to ask: what can be
said towards a; (T/(I +J + mn)*) in a more
general framework? We will
Theorem 2. 9.

answer this in

Next, we turn our attention to the Stanley-
Reisner ideal of simplicial complexes. Assume that
A is a simplicial complex on [s ] and I, is the
Stanley-Reisner ideal of A in S=K [z,

We will deal with the its powers Ii and its

91‘.\].

symbolic powers I

. Assume P is a prime ideal
of S, the P-primary component of the n-th power
of P is called the n-th symbolic power of P,
written as P, The symbolic powers of ideals
have a nice geometric description, due to Zariski
and Nagata in Ref. [12]. Recall that the n-th
symbolic power of an ideal I =S is defined to be

I(u) .= ﬂ pn

p€ Ass(S/D
for n==1. Since by Ref. [13], the ideal I, has the

following primary decomposition

I,= (1 Pr. @)

Fe i)
Then it follows from (1) that the n-th symbolic

power of I, in our situation is precisely

If" =N P} (2)
Fe A
The research of related topics has

continuously attracted the attention of many
researchers; see for instance the recent survey''"
and the references therein.

Previous related work mainly focuses on
symbolic powers of 2-dimensional square free

IH Refs. [1’ 6]5

symbolic powers of Stanley-Reisner ideals was

ideals. the a;-invariants of



% 34

The a;-invariants of powers of ideals 351

described explicitly in this case. And in Ref. [4],
the author proved that for any 1-dimensional
complex A without isolated vertex, one has
a,(S/I1)=a,(S/I4). From these phenomena,
it is natural to ask whether a,.; (S/I{ )=
a1 (S/I%) holds and

conditions will @, (S/I$”) be maximal when dim

always under what
(A)=Fk=2. We will give definite answers to these

two questions in Theorem 3.9 and Tehorem 3. 11.

2  a;-invariants of powers of fiber

product ideal

In this section, we will always assume the
following settings.

Setting 2.1 Let S=K [x,,*, x,] and R=
K[yis+ s y,] be two polynomial rings over a
common field K and m and n be the corresponding
graded maximal ideals respectively. Let I &< m and
J<n be two graded ideals and F=1-+J +mn the
{fiber product} of I and J in T=S®xg R. Fix a
positive integer k.

The aim of this section is to describe the a;-
T/F* via the

conditions of I and J.

invariants  of corresponding

Let us start by recalling some pertinent facts

of local cohomology and Cech complex.

Definition 2.2 Let M be an S-module M and
a be an S-ideal.

(a) Set

' (M).:={x €M : a'x =0 for somet € N }.
Let H,;(—) be the i-th right derived functor of I",
(—), namely, Hi;(M).:= H/(I",(I1")), in which
I * is an injective resolution of M. The module H}
(M) will be called the i-th local cohomology of M
with support in a.

(b) The module M is called a-torsion if
I'(M)= M, namely, if each element of M is
annihilated by some power of a.

Next, we collect some well-known facts from
Refs. [ 3] and [15] regarding local cohomology
modules.

Lemma 2.3 Let M be an S-module and a an
S-ideal.

(a) Let {M,} be a family of S-modules. Then
Hi(D,M,)=D,H,(M,) for all j =0.

(b) If SR is a ring homomorphism and N is
an R-module, then H{(N)=HIi, (N).

(c¢) Any short exact sequence of S-modules
0—>M—>N —L—>0 induces a long exact sequence of
local cohomology modules

- —> H{(M) > H,(N) —

H{(L) — H (M) — -,
(d) Assume that M is b-torsion for some S-ideal b.
Then, Hi. ((M)=H’ (M) for all j =0,

(e) If M is a-torsions then H:i (M) =0 for all
i >o0.

Our argument afterwards also depends heavily

on the computation of local cohomologies in terms

of Cech complexes.
Definition 2. 4 For elements m,,**,m, in a

commutative ring R, set m, = 1Tm, for s = [ ].
i€ao

The Cech complex C° (mys <+ m,) is the
cochain complex (upper indices increasing from the

copy of R sitting in cohomological degree 0)
0—>R _’C‘IDRI:?’)’[,]:I —> eee —>
i=1
@ Rlm,'] >

ol =k

- RI:T}’ZE,IJ:I —> O,
with the map
ol :RIm," ] = Rm, b ]

between the summands in C~ (m,, *==s m,) being
sign(i, o U {7}) times the canonical localization

homomorphism.

Cech complex facilitates the computation of
local cohomologies.
Lemma 2. 57 The local cohomology of M

supported on the ideal a=(m,,+**,m,) in R is the

cohomology of the Cech complex tensored
Hi(M)=H (M C" (my, *+, m,)).

The following results are also crucial for our
argument in this section.

Lemma 2. 6" Take the assumptions as in
setting-section-2. Assume in addition that I & m?

and J &n*. Furthermore, let H =1+ mn. For



352 TEAFHRRXFEFIR

% 50 &

each 1<<t<<k, denote G, =H" + Z (mm)* ] and

i=1

G,=H"*. Then,

(a) there is an equality F* = H* +

k
E (mm)* '] for each positive integer k.

i=1

(b) one has G, , N (mmw)* " Jr=mt""nt J
for each ¢.

Lemma 2, 7"'%
and let M be a finitely generated S-module. We
have Hi, (M) =0 for i <<depth(M) and for i >
dim(M).

Before presenting the main result of this

Let (S, m) be a local ring,

section, we collect some preliminary results.

Proposition 2. 8 Take the assumptions as in
setting 2. 1.

(a) For any integer 0<xt<<k, a,(S/m'I* ") =
a,; (S/I""D.

(b) If dim(R)>2 and dim(S)>2, then a,

T
(W):2k—2.

() If dim(S)>2, then a,(S/I)=a,(I).
(d) Set myy:= I, « lly, forc=[s] and &
j€s

i€o
Clr]. Let F=T1+]J +mn<T. We use 9, to

T .
denote the differential map in F7'®C (xys =,

Zys Y1s **» y,) at the positions from j to j +1.

Let @)} and % be the restriction of 9; on @), -,

T T
i —1 i
prlmed Jand B =

~Lmos ] respectively. Then 9;

=0!®a! for each integer j =1.
Proof When 0<<t<<k —1. the following short

exact sequence
I S S
O g k—t t - k—t t g k—t - O
I*'m I"*m I*

induces a long exact sequence

k—t

- —>H, — H,, —
(Ik rmz) (Ik rmz)
S I+
H! ( ) > Hi{(—) — =
Ik t Ik rlnr
Jhi
Since i is m — torsion for 1<8i <<k, we
ki ki
have H"'(I‘ )—O—Hil(lk im") by 2. 3

(e). Consequently
S
Hm( ) = Hm(

and hence a, (S/m’ I"f’)zal (S/I* ).
(b) We will prove this after Lemma 3. 2.
(¢) The short exact sequence
0—>I—>S—>S/I—>0
yields a long exact sequence
> H,(S)—> H,(S/I) —
H, () > HL(S) > -
Applying a graded version of Lemma 2.7, we get
HL(S)=H:%(S)=0. As a results a,(S/I)=ua,
.
(d) When j =1, we have

s XLy Y1 ot

T _
ﬁ@cl(fil’

T
\UUG?\:; (I +J +m*
If both 6 and § are nonempty, then

T
[my ]=0.

(I +J + mn)*
Therefore, the module @ — —
ereiore, € moaule leUs1=; (I+]+mn)*

[my .

[m '
is simply
(@0 2 m3]) @ (@ lmat).
F =i
Since m T[m o |=T[m,o ] and J +n=n, we have
F'Tlm,l=U+] +m)*Tlm,s ] =
(I4+m*T[m, .

This means

T
prlmeo )= silma].

(I+ n*

Likewise,

T
ka[m 0(13] [7’1 0o :|

(]+

So the Cech complex at the positions from j to j

+1 can be written as

- (\SB] (I +n )ﬁ[nza():l)@

(@,(]+ cbmos )

- (ﬁﬂ <1+ >f['”“”]>@

(m@, G + [mm])
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T T
’ ‘ ’ j H{n n -
Furthermore, when j > 1, 9; ( EESE + ((I+] ern)"’)
[m,s ]) is a subset of ker(9;)  ker(d; @o}) __
T im(,,) im@®@,Dal,)
—1 4 -1 -1 _ /
<\a@ FrLmeo ]) @ (\a\@zjn F* Limosy: ]) ker(9})} __ ker(d)}
i€l:sN\e i€lrl\e : @ - - ~
im (9,) im(3% )
@ ,,[muo .
” . v T
lol =j+1 (I Jr n Hj'“”‘(li)k) @ Hn,r](i)k) —
by (3) and (4). Then (I+n (J+m
v T
H, Hi( .
imo} _\H\C_D] 1 (I+ X ——lm. . ((I+ )ﬁ) @ (J —Q—m)k)
Likewise. This implies
a; (T/(I4J +m*) =maxia,(T/(I+m"),
imo! & @ [mm

L= (J —l—
Thus 9, =2!@a? for each integer j =1.
Now, we are ready to present the first main
result of this paper.
Theorem 2. 9
setting 2. 1.
(a) If j =2, then
a;(T/F*) =max{a;(S/I"") +¢,
a;(R/JFD) 4. 0t <k —1).
(b) Assume in addition that dim(S)>2, dim(R)
>2, ISm?, JTI#m, J&n® and /J #n. Then,
a,(T/F*) =max{2k — 2,a,(S/I*") +1t,
a (R/J"D) 4+t .0t <<k —1).
Assume that j = 1.

Take the assumptions as in

Proof Then Lemma
2.5 says

H{nfn(T/Fk):Hj((T/Fk)®

V'(ll? e Lse Vi "t y,))
Set m ;= Hz 1;[“3/, €T forc=[s] and 6&
[~]. We have

s s Vi % yr):

T .
ﬁ@C/(Ilv b

T -1
\cuezi?\:j m[ﬁlaﬁ :|

Notice that both S and R have multigraded
T will

structures respectively. Hence have

inherited multigrading, bigrading and standard

grading. We will use this fact freely in the
following proof.
(a) When j = 2,

bigraded decomposition via Lemma 2. 3 (b),

we have the following

Lemma 2.5 and Proposition 2. 8(d) :

a; (T/(J +m)*)}.
As S — modules,
bigraded isomorphism:
T
(I +m)*

Then the canonical epimorphism T — S

we have the following

~® S 0. 18D

peN. i<k J* H‘

induces an isomorphism

T

H;n(i);H]l‘n( (0’* ));
(I +nmt ﬂeN@‘)ﬁQI’ I8 N
@ Hm(IA M)(O,*|B|)9
BEN, Bl <k
via Lemma 2. 3(a). Hence

a; (T/(I4+nm*) =max{a;(S/I"") +1t:
0t << k—1j.
Likewise,
a; (T/(J +m") =maxia,(R/{J"") +¢t:
0t <<k—1j.
Therefore,
the conclusion
a;(T/F*) =max{a;(S/I"") +1¢,
a;(R/JF"D) 4+t 0t <k —1.
(b) Now we consider the case with j = 1. The

when j = 2, we arrive at

proof will be divided into three steps.
Claim1 «,(T/F*)Z>=max{a,(S/I* ")+,
a, (R/J" D)+t 0t <<k—1).
Since 9, =31@3? by Proposition 2. 8(d), one
has kerd, = kerd! @ kerdl. Let 3} be the
composition of 9, with the projection map from
T

\au@\:l (I+J +mn)*
T

\E—E:l (I+J+mn)*

[m,' ] to its direct summand

[m,y ], and similarly define
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9. Tt is clear that im(9,) &im (3)) @im(3%)
holds. Therefore,
ker(a1) @ ker(a}) __ ker(op) ker (%)
im(9}) @ im(d3) — im(d)  im(d})
is an epimorphic image of HL., (T/F*) =

ker(al) h h 3 1
Ws which 1n turn implies
ker(a1)
a (T/F) =max( [ € 2, (210 =0
1m(80)
ker(2%)
- O .
or (im(ag))[ 7 0}
Then
ker(a})
max{ [ € Z ﬁ*a;fﬂ#o}:
{leZ H’(L) # 0} =
max : m (I+n)k ! -
S

BEN .|l <k
max{a, (S/I* ") +1.0<¢t <<k —1}.
Similarly, one has
kero?
max{l € Z . (m)/ # 0} =
max{a,(R/J¥") +t.0<t <<k —1}.

Thus, a, (T/F*)=max{a, (S/I*""")+t, a,
(R/J*" ")+t :0<t<{k—1}, establishing the first
claim.

Claim 2 «,(T/F")>= 2k—2.

It is sufficient to find a bigraded element u €
ker(9,) such that its total degree deg(u) =2k —2
and u €im(3,). Forany v& T, let [v ], [fvl.’ and
T T
F'° F*

[‘Z}]yi be the equivalence classes of v in

[z, '] and P‘lk[yfl:l respectively.

Suppose f€ S and g € R with deg(f) =deg
(g)=k—1, then

[fgl. #[0]., ®zifg & U+ forl =0

by the equality (4). Since deg(g)=%k—1 and g €
R, we have g & n' and g €n* for any 1<<p<<k —1.
Meanwhile, it is clear that 'S [* ' C...C[*C ]
holds. Therefore, the above equivalent statements
can be further simplified into saying x!f € I for
(=0, i.e., f&1:(x))".

As /T #m, we can find some homogeneous

element fE€S of degree b —1 satisfying f&I.:m™.
Similarly, we can find some homogeneous element
g €R of degree £ —1 satisfying g ¢ J :n~. We will

verify that u = (@ [fgl ) @D (@ |:O:|yi ) is the
expected element.

To see this, notice first that u € ker(9,) and
u 1s bi-homogeneous of degree (& — 1,% — 1).
Consequently, the total degree deg(u)=2(k—1).
Thus, it remains to show that u & im (3,).

Assume to the contrary that there exists an

element h € T such that 9,([h ])= (@[fgl NO)
i=1 !

(®L0], ). Without loss of generality, we may
i=1 i

assume that 4 is homogeneous of bidegree (£ —1,k
—1). Whence, [h—fg]fl 2[01.[ and [h:lyj Z[O]y]
for each 1<Ci<{s and 1<{j <{r. Notice that
[h—fgl., :[0]1, Sh-fg € (I4+nm*: ()7
holds for 1<{i<{s. Consequently, we have
h—fge 4+ :m™C (+n"):m™.
Since the partial degree deg, (h — fg) =k —1,
it is clear that h — fg & n* ;:m™ unless h — fg =0.
So by bigrading, h — fg € I . m".
will have h € J :n~. As a result, fg=h — (h —
fg) € (I.m )+ (J:n" ). Then, again, by
bigrading, we will have f€I.:m" or g€ J:n", a

Likewise, we

contradiction. And this completes our proof for the
second claim.
So far, we have proved
a,(T/F*) = max{2k —2,a,(S/I*"") +1t,
a (R/J") 41 .0t <<k —1}. (5)
Claim 3
inequality (5) also holds.

The converse direction of the

Let H=1+mn and G, = H* + >, (mn)* ]

i=1
for 0<{t<{k. Since

G,fl ﬂ (m n)k*t ]z :Inkfr}lnkfr Jr
for 1<\t <<k by Lemma 2. 6, the following short

exact sequence arises

(mm)*J* T T
0> ——m= >~ >~ >0,
mE et nt 1]z (1/ ' (]’

which induces a long exact sequence

T
1 1
m+n ( ) mtn (

G,

) —

G,
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. ¢ (mm)*“ ' J! y -
Tk
(mm)* ' J!
mt kg
torsion T-module, according to Lemma 2. 3 (b)

and (d) we have

by Lemma 2. 3(c). Since is an m T-

, (mw* g, (mm*rge o
(11|+11)T(W) = H:r W) =
(mm)*~J* m
2 ~ 2 k=t Tt ~
HH(W):HH(W®11 JH =
k—t
m 9 _
W@HE( n* t]’).

Hence,

a (T/G,) < max{a,(T/G, ),

a, ((Cm)* ' J ) /{m a0 ) =
max{a,(T/G,1)sa, (M J)+k—1}=
max{a,(T/G, ) ,a, (R/J") +k—1t}.

The last equality holds via Proposition 2. 8 and
(c). Thus we can conclude

a (T/U+]+mm") =a,(T/G,) <

max{a,(T/Gy)sa, (R/J") +k—1t:1<t < k}=
max{a, (T/H"),a, (R/J") +k—1:1 <1t <k}

Notice that H =1+ mn can also be viewed as
the fiber product of IS and (0) & R. With a
similar argument, we can get

a, (T/H*") < max{a,(T/mtn*),

a, (S/T1") +k—1t:1<<t<<k})=max{2k —2,

a (S/T) +k—t:1 <t <Pk}
by Proposition 2. 8 (b). These
altogether yield

a, (T/F*) < max{2k —2,a,(S/I*") +1,
a (R/J"D) +t .0t <<k —1}, (6)

which establishes the third claim. Now, combing

arguments

the inequalities (5) with (6), we complete the
proof.

Remark 2. 10 In Theorem 2. 9(b), if T =
S[y] and J =0, then the conditions dim(S)>2
and I & m” can be removed. The proof is only

slightly different and will be omitted here.
3 Top dimensional a;-invariants of S/I3"

Let A be a k-dimensional simplicial complex

over [s]:=1{1,2,+,s} for some positive integers

k and s. Assume that S=K [z, *

polynomial ring over a field K and I, =S is the

,x. ] is a

Stanley-Reisner ideal associated to A. The main
task of this section is to investigate the a,:,-
invariants associated to its power I3 and its
The case when # =1 has
already been considered in Ref.[4]. There, it was
shown that a, (S/I{)=a,(S/I%) holds when A
has no isolated vertex. We will generalize this
result here by showing a,, (S/I1{’)=a,+, (S/I%)

for any k-dimensional simplicial complex A. After

symbolic power I§".

that, we will characterize when a,4+; (S/I) is
maximal.

Let us start with reviewing some basic
notions. Recall that A is a simplicial complex on
[s]if A is a collection of subsets of [ s ] such that if
FEA and F'SF then F'€A. Each element F €A
is called a face of A. The dimension of F is defined
to be dim(F):=|F|—1 and the dimension of A is
defined to be dim(A):= max{dim(F).FE€A}. A
facet is a maximal face of A with respect to
inclusion. We will use 7(A) to denote the set of
facets of A. Meanwhile, a non-face of A is a subset
F of [s] with FEA. We will use N(A) to denote
the set of minimal non-faces of A.

In order to describe a; (S/I{’), we need to
know when Hi, (S/IS’), is vanishing. Due to a
formula in Ref, [17] of Takayama, this problem
boils down to computing the dimension of the
simplicial homology of the degree complex. Set
G,:={i € [s]:a;<<0}. Recall that the degree
complex A, (I) of a monomial ideal I is given by

A (D) ={F S [s\G,:x* & ISryc }.

Here, Sryc, =S[x;': i€ FUG,] and x* =
281 e

For each monomial ideal I, consider a
simplicial complex

A ={F S [s]:x, ¢ JT).
It is clear that A (I)=A (J/T) holds. And

when [ is square free, it is exactly the Stanley-

Reisner complex of I. We also have A(S) =0
since for any FC[s], xr €+/S =S. %Here is the
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Takayama’s formula.

Lemma 3. 1 ( Takayama ) Let I be a
monomial ideal in S and « a vector in Z. Then
dimg H 16, 1 (A, (1)),

itG, € A,

0, otherwise.

dimg H,,(S/D), J

Here, H, (A, (I)) is the i-th reduced
simplicial homology group of the complex A, (1)
over K.

Lemma 3, 2!'%

setting 2. 1. Assume in addition that &S and J &

Take the assumptions as in

R are two monomial ideals. Then, for any a €7,
BEZ and y=(a.p)EZ"", we have the following
two cases:
(a) if p =1 while both A, (I*"'#) and A,
(I*"'“') are nonempty, then
dimg H, " (T /(I + ] +mn)*), =
dimg H,”(S /I*""), +
dimg H," (R /J* ), + 15
(b) otherwise,
dimg H " (T /(I +J +mm*), =
dimg H,”(S /I*'"), 4+ dimg H,” (R /J" ),
Here, | « |:2a, fora=(a;,***sa,) and one

i=1

can similarly define [B].

As a quick application of the above two
lemmas., we finish the proof of Proposition 2. 8.

Proof (Proof of Proposition 2. 8(b))
that the ideal m*n* & T is the fiber product of [ =
(0OOES and ] =(0)E=R. Now, take arbitrary a €
Z and BEZ.

First, we consider H}, (S /I* "), If [p] <<
ko then I" "' =0, Hence H. (S /I* '), =H}
(S),=0 by Lemma 2. 7. When |B|= k, we have
1" "'=S. Then H, (S /1" "), =H, (0), =0.
Thus for any « and B, H,; (S /I' By, =o.
Likewise, H,' (R /J* ) =0,

So, according to Lemma 2.6, if Hy. ,(T /(I
+J +mn*) ., #0. then both A, (I*"#) and A,

(I*"'“) are nonempty. In the following, we will

Notice

suppose that this is the case.
Notice that if | 8| = k, then I""'# =S,

Whence, for any F&[s ]\G, . we have x* € SFU(;R s
which implies F &€ A, (S) by definition. So A,
(I*""*"Yy=@, contradicting the assumption. Thus
|1 <k — 1 and similarly | o« | < k& — 1.

Consequently, a, (W)<2k —2.

On the other hand, leta=(—1,0,:-,00E€Z
and 3= (£ —1,0.+,0)0€Z. We have [s \{1} €A,
(I* ") since x,* Y (0)Srv. So A, (IF Py is
nonempty. Likewise. A, (J* '“') is nonempty.

Thus, Hy, (T /(mn)* ), 4 70 via Lemma 2. 6,
. T
meaning al(w)>2k—2. So al(W)ZZk—

2, completing the proof.

The following lemma gives a precise
description of A, (I§”).
Lemma 3, 3"
a€Z. Then
FAL ) =

{F € 7(ink,(G,)) -

Assume that G, € A for some

2 a; <n—1}.

¢ FUG,

The concept of monomial localization was
introduced in Ref. [19] as a simplification of the
localization. Fix a subset FC&[s]. Let wp: S—
Klx,: i€[s]\F] be the K -algebra
homomorphism sending x; to x; for i € [s ]\F and
x; to 1l for i € F. The image of a monomial ideal I
of S under the map =nr is called the monomial
localization of I with respect to F and will be
denoted by I[ F]. It is clear that if I and J are
both monomial ideals of S, then (IJ)[F]J=I[F]
JLF]and ANDOLF]=I[FINTLF ]

The degree complex can be expressed using
the monomial localization as follows.

Lemma 3, 4%
S=K [z,

in Z. Define a to be the non-negative part of a,

Let I be a monomial ideal in
, 2, and a="(a,s***ya,) be a vector
ie.sar:= (al,+,a) where a,=max(0,a;) for
each 7.

(a) A, (I) is a subcomplex of A (I).
Moreover, if I has no embedded associated prime

and « €N, then 7(A, (1)) SF(A)).
(b A (DH={F<[s]\G,: x+ € I[FUG,]
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S}.
(o) f G,#@, then A, (I)=link, 4 (G,).
a4

Lemma 3. 5 Let A be a k-dimensional
complex on [s]. If FEA with dim(F)=Fk, then
I,[Fl=(x::i € [s \F).

Proof As1€1I1,[F], it follows that I,[F]
C(x;: i €[s]\F) holds. Conversely, for each i €
[s N\F, FU{i} €A since dim(A)=F. So xry, €
I, for some F'CF, implying x; € I,[F]. Since
this holds for any i €[s ]\F, we have the converse
i €sT\F).

Let A be a k-dimensional

,a,) €N and
each k-dimensional simplex F<[s ], the following

containment I, [ F ]2 (x;:
Proposition 3. 6

complex on [ s ]. For each a = (a;,+*

statements are equivalent:

(a) FEA (I3
(b) FEA and Z a; <<n— 1.

ie[sI\F

Proof First assume that F € A, (I4) holds.
Since G, =@, according to Lemma 3. 4(a) we have
FEA (ITNHCTAUIN)=A,)=A.
Lemma 3. 4(b) and Lemma 3.5 that
x* & IL[FIS=ULLFD"'S =(x,:i € [s \F)"S
holds. Hence 2 a; <<n —1 and this proves (a)=

It follows from

i€[s]\F
(b).
Conversely, assume that FE€A and E a; <
i€[s]\F
n — 1 hold. Then by Lemma 3.5,
x & (x,:i € [s \F)"=U,[F]D"'S=I4[F]S.

Thus FE€A,(I4) via Lemma 3. 4(b), which
proves (b)=(a).
Lemma 3.7 If A is a simplicial complex on
[s] and I, is its Stanley-Reisner ideal in S =K
(2155 2, ] over a field K, then A=A(I4)=A

(I§”) for all positive integer n.

Proof It follows from (1) and (2) that
JITT =/ N Pr= (N v =
Fesa) FeiA)

Feﬂ(m Py :’\/FQ(/](A) Pr=vIs =i
holds. Therefore,

ALY =ACI ) =AC/T5) =AU4),
and they agree with A(J/I,)=AI,)=A.

Recall that the pure ith skeleton of A is the

pure simplicial complex A’ whose facets are the
faces F of A with dim(F)=1.

Proposition 3. 8 Let A be a k-dimensional
simplicial complex over [s]. For any a« € Z' with
G,€EA, we have A, (I =A_ (I5)H)®,

Proof If G,#®, then dim (A, (I{’))< dim
(link, (G,)) < dim (A) =% by Lemma 3. 3.
Similarly, if G, Z @, then dim (A, (I%)) <dim
(A, (I3)<dim(A3))=dim(A)=k by Lemma
3.4(a) and (¢). Therefore, A, (I2)* ={0}=A,
(I5”)H™.

When G, =0, then link, (G,)=A. Now, for
each F € A with dim (F) =k, we have F &

A, (I$")SFE is a facet of A and E a; < n —
i€[s\F

1SF € A (I,

The first equivalence comes from Lemma 3. 3
and the second comes from Proposition 3. 6. So we
can conclude safely with A, (I3)® =A_(I§)®,

Now, we can state the second main result of
this paper.

Theorem 3. 9 Let A be a k-dimensional
complex on [s]. If I, is the Stanley-Reisner ideal
, x,] over a
field K , then a, . (S/I)=a,.,(S/I%) for all n
=1.

in the polynomial ring S=K [z, -

Proof We have already seen that A=A (I})
=A(I$) holds by Lemma 3. 7. Now, take an
arbitrary « €Z. If G, €A, then

HY'(S /1), =HLH (S /T3, =0

by Lemma 3. 1. Thus, we may assume instead G,
€ A. In this case, we claim

A, () * 16 =A, (T§ )+ 6.0 D)

Notice that
A, (ID™ =4, )W

holds by LLemma 3. 8. Therefore, (7) holds when
| G. | =o0.
additionally | G, | = 1. Now, A, (I )% 16D g
actually a simplicial complex over [ s ]\ G, by
Lemma 3. 3. Meanwhile, A, (I$’)* %! is also a

simplicial complex over [ s \G, by Lemma 3. 4(c).

In the following, we will assume

Hence, to establish (7) in this situation, we will

take an arbitrary (# — |G, |)-dimensional face A €
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A with ANG,=0@. Now,
A 6 AQ(I‘(A”))‘(:}A 6 ;?/T(AG(IZ”)))

SA € F(ink,(G,) and D, a, <n —1(8)

i¢AUG,
=A UG, € A and Z a;, <n—1
i¢AUG,
SA UG, €4, U (9
SA € A, 5. (10)

The equivalences in (8), (9) and (10) come
from Lemma 3. 3, Proposition 3. 6 and Lemma 3. 4
(c¢) respectively. And this establishes the equality
in Ref. [11].

Notice that dim (A, (I3)* '%") =dim (A,
(IgeH“ ey =k — | G, .
the boundaries

Bije,| (A, (Ip)* ey =
Biie, | (A, (T H* ey =0,
Thus, by (7), the simplicial homologies
Zie, (A, Tg)" 0
H;\y—\(;a A, (T4 ;3K :ka\(,;u B IHT o) —
Zije, (A, (I3)* 10y =
Zi-ia, (A, (T H*1eDy =
Zia, (A TP
Biic,| (A, (T ) * e
and consequently,
H, 6, (A, (I3):K) =H, 5, (A, (I5)KD.
This equality together with Lemma 3. 1

Consequently,

:H"’*‘Ga‘ (AQ(I(AH));K)y

will yield

HY'W(S /I8, # 0SHE'(S /14, # 0,
which finishes the proof.

In the rest of this paper, we will examine
when a, 1, (S/I$’) is maximal. The following
lemma allows us to clarify some details.

Lemma 3. 10

complex on [s ] and I, the Stanley-Reisner ideal in

Let A be a & — dimensional

the polynomial ring S=K [x,,***, x, ] over a field

“va,) €Z such that H, |5 |
(A (I”))%0 and G, €A hold. Then, a;<<n—1
for each i € [s].

Proof Assume that this is not true. Without

K. Suppose a=(a, ,**

loss of generality, we may assume a; =>n. Let A,

<+, A, be the complete list of (& — | G, |) —

dimensional faces in A, (15"

Lemma 3. 3, we have 1 € A, for each 1< </[.

. Then, according to

Hence, A, (I$?)% %P is a cone. Thanks to Ref. [7],
H, o (A, )% %) =0, Since A, (I§”) is (k—
|G, |)-dimensional, this implies ﬁkf‘(,-ﬂ‘ A (I5”))=0,
contradicting the assumption.
Finally, we are ready to present the last main
result of this paper.
Theorem 3. 11

complex on [ s ] and I, the Stanley-Reisner ideal in

Let A be a k-dimensional

the polynomial ring S=K [z, .+, x, ] over a field
K. Then
a (S/IV) < (k+2)(n—1

for each positive integer n. Furthermore, the
following statements are equivalent for n=2:

(a) aps  (S/I)=(+2)(n—1);

(b) there exists a subset B={p .. p,1:1 &
[s] such that 7 (A |, ) is a k-dimensional
sphere, namely

FA ) ={B\{p,}:1<<i<<k+2}.

Proof Take arbitrary a € Z' with H%™' (S /

I15),70. According to Lemma 3. 1, this simply

means ’I-V[kf‘(,vn‘ (A, (I§))7#0 and G, €A. Since
dim(A, (I5”)) < dim(A) —| G, |=k —| G, |
by Lemma 3. 3, the nonvanishing of H, o1 (A,
(I$”)) implies particularly that dim(A, (I§”))=F
— |G, | holds. Therefore, we can take some F €
A, (1) with dim(F)=%k—1|G,|. Notice that F ()

G, =0, 2 a; <<n—1and Zaig\F | (n —1)

i¢FUG, i€EF

hold by Lemma 3. 2 and Lemma 2. 9 respectively.

Henceforth,
‘a‘:20;+ Za;+2a;<
i€F i¢ FUG, i€G,

|Flbh—D4+G—1—| G, |=

k=G, [+2n—D —| G, [<G*k+2)(n—1),
establishing the expected upper bound. It remains
to prove the equivalence of (a) and (b) when
n=2.

(a)=(b): Assume that a,., (S/I{")=(k+
2) (n —1). Then, we can find some a € Z°
satisfying H4"' (S /I§"),70 and |a| = +2)(n—
1). From the above argument, we can see |G, |=
0, i. e.s G, = (. Furthermore, there exists
some FE A, (1) with dim(F) =*%. And since

H, (A, (I¢))7#0 holds, A, (I{")F#(F). Assume
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F=[k+1] for convenience. Now, E a; =k +

i€[k+1]

1)(n —1) and 2 a; =n — 1. Hence a, =a,="**
(€A

=a,+,=n—1 by Lemma 3. 10. Our task is then
reduced to describing a; when & +1<{j <s.

We claim that there exists precisely one j with
a;>>0 and £ +1<j<(s. If this is not true, we may
assume that a,1ssape; >0 holds. As A, (I§) F#
(F), we may find some facet G of A, (I{”) with
G#F. Since dim(G)<dim(F)=k, either | F\G| =2
or [{k+2,k+3)\G|=|F \G|=1. In both cases,

we have 2 ja, = n —1, which implies G €A, (1)
I
by Lemma 3. 2, a contradiction to the choice of G.

Therefore, we may assume a;+, =n—1 and a, =0
for k+2<h<s. An argument as in the previous
paragraph also shows G & B: = [k + 2] and
dim(G)=*Fk for any G € (A, (I5’)). If the pure

simplicial complex A, (I§”) |5 is not a sphere, then

it is collapsible and consequently H, (A, (I$7)) =
0, contradicting the assumption. Hence A |5 =
A T5Y

(b)=(a): Without loss of generality, we may
assume that B=1[% + 2] holds and A |, is a k-
sa,) € N
where a; =n—1 for 0<{i<<k+2 and a; =0 for £ +2<C
i< s. Then by Lemma 3. 3, we have A |, =
A, (15 and H, (A, (I$7) 0. So Hi'' (S /I§),
70 via Lemma 3. 1, which implies a,; (S/I{ )=
(b+2)(n—1). Since a1 (S/I)H)<(k+2)(n—
1) holds in general, the proof is completed.

s is indeed a sphere.

dimensional sphere. Take a = (a;, ***
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