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A robust joint modeling approach for longitudinal data
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Abstract: A robust method is proposed for analyzing longitudinal continuous responses with

potential outliers by using the multivariate ¢ distribution. Unlike the existing approaches which

mainly focus on the inference of regression mean, our approach aims to reveal the dynamics in the

location function, marginal scale function and association by joint parsimoniously modeling the

location and dependence structure.

An ECME-based algorithm is applied to speed up the

computation associated with the EM algorithm for maximum likelihood estimation. The resulting

estimators are shown to be consistent and asymptotic normality. Numerical studies demonstrate

the effectiveness of the proposed approach.
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0 Introduction

A typical characteristic of longitudinal studies

is that study subjects are measured over repeated
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time intervals. Thus, observations for the same

subject are intrinsically correlated. It is

fundamentally important to account for within-

subject correlation in analyzing such data.
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Regression models on the mean and variance
functions for understanding longitudinal data have
been extensively studied in the literature. Ref.[1]
gave an excellent overview of various approaches in
this filed. To understand the dynamics in the mean
function and covariance structure, a class of mean-
variance-correlation modeling framework has been
explored; see Refs. [2-9]. These methods perform
well under certain assumptions, but are not
resistant to outliers. In this paper, one proposes a
joint modeling method of ¢ distribution with
missing data.

methods for

Compared with the robust

regression mean, the study on robust approaches

for jointly  parsimoniously modeling with
longitudinal data received limited attention
although valuable. Ref. [ 10 ] considered

robustification on the mean and covariance where
they set up estimating equations for both the mean
and the dispersion parameter. The constraint of
their approach is that they assumed an inflexible

structure  determined by  two

Refs. [ 11-12 ] developed

estimation for the mean and covariance jointly for

covariance
parameters. robust
the regression model of longitudinal data within

the  framework of generalized estimating

equationst*,

As an alternative, the ¢-distribution
is widely used for longitudinal complete data. Ref.
[14 ] discussed the robust statistical modeling
using the z-distribution in a general framework.
Ref. [15] proposed a multivariate regression model
with its mean and scale covariance modeled jointly
based on modified Cholesky decomposition for the
analysis of longitudinal data. Ref. [ 16 ] obtained
robust estimation of the correlation matrix of
longitudinal data based on alternative Cholesky
decomposition. Ref. [17] used ¢-distribution to
carry out Bayesian inference in longitudinal data.
These results show that the ¢-distribution perform
well to obtain robust estimation.

Our reasons for revisiting this topic are
threefold. Firstly, the existing literature in joint

modeling the regression mean and covariance

structure frequently assume normality, while such
assumption is routinely made for mathematical
convenience., However, such assumption is not
always realistic because of the presence of atypical
modeling

observations and the existing joint

approaches are sensitive to outliers,
contamination, or heavy-tailed distributions. To
remedy this weakness, we considered the use of
the multivariate ¢ distribution for robust
estimation of regression models, since inference
based on parsimonious modeling under ¢-
distribution combines conceptual simplicity with
generality. The degree of freedom parameter of the
t-distribution provides a convenient dimension for
achieving robust statistical inference. Secondly,
the existing robust joint modeling approaches can
be viewed as indirectly robust modeling the
variances and covariances of the longitudinal
measurements. More specifically, due to the
modified Cholesky decomposition, the resulting
variance  functions of the aforementioned
approaches cannot be directly interpreted as those
of the repeated measurements. Moreover, the
same interpretation issue also arises for the
covariance and correlation structures when these
approaches are applied. Therefore, for practical
applications, additional effort and extra care are
necessary for interpreting the resulting variance
and covariance functions. We therefore propose to
directly model the regression mean, and the
dependence structure simultaneously. Thirdly, the
parameter estimates under standard maximum
likelihood procedure can be of little practical
interest by themselves because they can critically
influence the behavior of iterative numerical
optimization algorithm especially for small or
unknown degrees of freedom. We apply an ECME
method"® to speed up the Monte Carlo
implementation of the EM algorithm.

The rest of the paper is organized as follows.
In Section 1 we give some general notations for the
t-distribution and introduce the joint modeling

approach for the mean and covariance structure. In
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Section 2, we introduce the likelihood and ECME-

based algorithm. In Section 3, we carry out
numerical studies to investigate the finite sample
properties and demonstrate the effectiveness of the
proposed method. We conclude this paper by
summarizing the main findings and outlining future

research in Section 4.

1 Models

Let vy, Cyns s i, )" be the m,

longitudinal measurements for the ith subject,
where the response y,; is observed at time ¢;;. Let
ti=Ct; s st,, )", and we denote z; € R” as the
covariate for the jth measurement of subject i. To
atypical

accommodate the presence of

observations, we assume that 1y, follows a

multivariate ¢ distribution, denoted by ¢, (.0, ,
v), with density
FCv+mH/2) |, |7V

S 0) = o Gy )

(yi _ ;')TNQTl(yi . i) —(vtm;)/2
<1+ /l /1 ) R y,' 6 Rm’
v
(D
where the location parameter p; = (i s *ot s g1 )T

and scale matrix Q; is an m; X m; positive definite
matrix. The degree of freedom v, which controls
the thickness of the tails of the distribution, is
directly related to the degree of robustness of
inference, and smaller v yields higher robustness.
The following lemma shows that a multivariate ¢

distribution 7,, (£ ,v) can be seen as the mixture

of m-variate normal and Gamma distribution
variables.
Lemma 1.1 Let = ~N, (0,2), ct~ y(v/2,

v/2) be independent, then z/J© +p~ t, (u,Q,
v), where the density function of 7 (a, f3) is
B texp{—pr}/v(a) with £2>0,a>0,8>>0.
Proof  This well-known representation of
multivariate ¢ distribution can be easily found in

Refs. [18-20] etc.

For v>1, the mean vector of y, is defined to

0;.

be p;; for v>>2, the covariance matrix y; is
v

—2

We believe that inference based on a parametric
model such as model (1) combines conceptual
simplicity with generality, since it can be applied
in a wide range of settings. A detailed discussion
of mathematical properties and estimation methods
for this distribution with complete data can be
found in Ref. [20].

With the parametric model (1), it is well-
known that modeling covariance (and correlation)
matrix is a challenging problem due to the large
dimensionality and positive-definiteness constraint.
Therefore, with so many parameters in the scale
matrix {Q,;} (i =1, <+, n) associated with the
data, we
decompose 2; as 2, = D,R;D;, where D; is a

diagonal matrix whose diagonal elements (5, , ",

heteroscedasticity in  longitudinal

o ) are the square root of the diagonal element of
0, and can be seen as the marginal scale. R; is a
correlation matrix of mixture component 2, which
is also the correlation matrix of y,; if it exists.
unconstrained and

Clearly, In (o, )" s are

parameterized via regression techniques. To
parsimoniously model the dynamics in R;, we
follow the idea of Ref. [9] to parameterize them via
hyperspherical co-ordinates by the decomposition

R,=T,T!, where T, is a lower triangular matrix

given by
1 0 0 0
Cizl Siz1 0 0
T,=]¢n Ci328i21 Sis2Sis1 T 0

m}*l
H[—l Sim,1
(2)
sin ( ¢y ) being

Cim;1 Cim2Sim;1
with ¢y = cos (¢ ) and sy =
trigonometric functions of angles ¢;. In other
words, the non-zero entries in the lower diagonal
matrix T, are given by T,,,=1,T,;,=cos(¢,,) for

j:23"',lni, and
COS(?Sijk)Hf;llSin((ﬁ,jz)v 2 <k <j<m,
Hf:,“‘in(?sijz)’ E=j.j =1, ,m,

(3
Here the total number of angles ¢y (1<t <<
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j<=m,) in expressions (2) and (3) is m; (m; —1)/2,
which is the same as that of the free parameters in
an unconstrained correlation matrix. As pointed in
Ref. [9], such decomposition automatically leads
to positive definite correlation matrices, and the
parameters in it are related to well-founded
statistical concepts.

Motivated by the above considerations, we
propose a joint regression model for the location,
the marginal scale and the correlations as

g (i) IﬁﬂL
In(o;) ==
P ik :’w}k}’

) is a known link function, which is

4

where g (¢
usually taken as an identity function as in linear
models, also 8,7 and A are unknown parameters
for parameterizing the location, the marginal scale
and the correlation. x; .2, and wy, are p X1,¢ X1
and d X 1 vectors of covariates available, and z;
intercept for identifiability

does not include

concern, In practice, natural candidates for wy
include (¢, ,¢,)" and its higher order terms, or
more simply a polynomial of the time lag (7, —¢;)
such that the resulting correlation is stationary.
Further discussion of these covariates can be found
in Refs. [6,9]. Remarkably, the angle ¢y, can also
be transformed by arctan to ensure that it falls in

[0,70).

nonparametric  and

The model (4) can be generalized easily to
semiparametric  models,
although the focus of the paper is on parametric

models as in model(4).

2 Likelihood and estimation

2.1 Maximum likelihood estimation

Under the sample y,,+*,y, and model (4),

the log-likelihood function of the multivariate ¢-
distribution (1) ignoring constant is given by

- +

Z(Bs’y?/\ 9U) — ZI:IHF(

i=1

- mm%) -

“+m Inw+ o, 1]

1 v
?ln | 2, \Jr?lnu—

5

where 8, =0Q,7"* (y, — ;). The score equations

for Ba
log-likelihood function (5), namely

7=(",2A")" and v can be derived from the

Z": vtm,  oul

Up = ~ Q7' (y, —p) =0
R e P I R
(6
l 1 <honl
D NAAL LA
v+ m; 20!
; i M P T M =0
or e 17 2 TVec((y )y —p) ]
D)
1< +m;
U(U):?ZD/:(U 2” >—¢<%)+1n<u)+1—
i=1
v+m;
1 )= s =0
n(w+ 18 I ST TS, HZ] €))
where ¢ (x) = dInl’ (x)/dx is the digamma

function. The derivative of a matrix A with
respect to vector u = Cuy, >+ uy )" is defined as
oA oA

——= (vec( JRNRID ( A ))
W veely, ) rraveely ).

,2 k
E{1+ ’ } =

v

W/2+kF—1)(/2)
(w+m)/2+kF—1)((v+m;)/2)

and conditioning on || &; | =r, &, is uniformly

9

distributed on the sphere || 8; || =r, therefore the
block elements of expected Hessian matrix J, with

respect to 0= (8", AT, ¥", v)T can be obtained as

follows:
Jn ()= Z l% 85;0,1 2;;@ (10)
Fo 0 = D 2 R ROZ
mz?lﬂz,} an
J () = Z[ i+7n+2(Z,TR71) @ el aaljf -
m 1aR vee(R7D ] (12)
J"“w):iz:’ (U+m,+i)(/x T2
(13)
J o () =
S e g gyt R ORD S
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1 a—RTlvec(RTl JveeT (R-1) 8713,] regularity C(.)nditionhs 17.3 , Let 0,1. =@ AT, 0"
2w —+m; +2) 0y oY be the maximum likelihood estimator of the true
14 parameter value 0, in Eq. (5). then (a) 0, is
J s () = strongly consistent for the true value 0,. and (b)
_ i 2 %VGC(RA M 9, is asymptotically normally distributed, that is
= wtm, +2D(p+m) or” ' ~ _
«/;(6,, *0o> ~ NI:O,I l(ﬁo)]
(15 C .
in distribution.
J7144 0) = .
Proof We only need to verify the regular
N1 v 1 1 v+m; .. . o . .
Z [I('bl (?) + TOE Z%( > ) — conditions for maximum likelihood estimation. Let
ot v [;=In f;(y;s0), (G=1,+,n). Then ignoring the
1 2
me vt 1 ae 1 _
2o -+m;))  2v-+m; +2) constant ?m,-ln(rc) , we obtain that
here ZT=( ). the derivative o +
= 19" s Zim . t v m;
where Z; 2 Zim, e derivative 5y, can I, —1InI'( : y — lnl"(%) Jr%lnu -
be easily obtained by Ref. [9]. e, =(1,0,++,0)7 . 4
i v+ m;
is the first canonical basis of R”., And A - B ?ln | Q: |— 2 InCw + [ o, .

denotes the Hadamard product of matrix A and B,

A ® B is the Kronecker product of A and B.
Finally, ¢, (x)=d¢(x)/dx.

The maximum likelihood estimators é,i\, );,z}\
can be shown to be consistent and asymptotic
normal distributed. Assuming the following
regularity conditions:

Condition 2.1 The dimensions p, ¢ and d of
covariates x,; » z;; and wy, are fixed; max,<,<,m, is
bounded.

Condition 2.2 The parameter space @ of =
(BT, AT, ", v)" is a bounded compact set in
ReTe X R*Y, and the true value 0, = (B8, ",2,7,
Y0000 is in the interior of ©.

Condition 2., 3
negative expected Hessian matrix converges to a

1

positive definite matrix I (6,), i.e., lim,.. —J,
n

As n — oo, the average

@) =100,).

Condition 2. 1 is routinely made for
longitudinal data from the practical perspective.
Condition 2. 2 is a conventional assumption for
theoretical analysis of the maximum likelihood
approach. Condition 2. 3 is a natural requirement
for the regression analysis in unbalanced
longitudinal data modeling.

Theorem 2.1 Under the distribution (1) and

Notice that In(vo =+ [| &; | H)<<Ilnv+ || &; || /v
and boundedness of E, || & %, therefore by
Kolmogorov’ s strong law of large numbers we

have that

1y 1 <
;; ll_;; E(J(ZI)—>O’ a.s. .

where the expectation E, is taken under the

distribution of y, with true parameters 6,. It can

1 n
be shown that — > E,(/,(8)) is equicontinuous in

ni=1
@, then following the proof of Theorem 2. 1 in
Ref. [21], it is easy to show the consistency of 0.
The proof of asymptotic normality of <9A,, is
essentially the same as that of Theorem 2. 2 in
Ref.[21].

Since 6 is consistent estimator for #,, the

Fisher information matrix I (6, ) can be
1 ~

consistently estimated by a matrix — J, (0,).
n

From Theorem 2.1, E is  asymptotically

independent of 7, A and v. This is not surprising
for statistical inferences of elliptical distributed
data, because [gconcerns the location function, and
7, A and v are the estimators for parameters of the
scale matrix. Therefore, the optimal efficiency of
estimating ( is assured whenever 0., s or the

models for ¢ and ¢, are correctly specified. If the
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model for 2, is misspecified, E is still consistent
and asymptotically normal by a result in Ref. [13],
although the asymptotic variance of ﬁwould take a
sandwich form. On the other hand, the two
covariation parameters y and A are not
asymptotically independent in general.

When the probability model (1) 1is not
correctly specified, let population parameter vector
0.=% .71 ,A1)T be the unique minimizer of the
Kullback-Leibler divergence KL (f | f,) =
E, logf,// between a true model with continuous
density £, and a working model f defined by (1),
and denote by K = lim%EEmU(ﬁ)U(ﬁ)T with U

i=1

O=W"(R, U (), U ()T given in Eqgs. (6)-
(8). Then we have the following result.

Corollary 2. 1  Under regularity conditions 2. 1
and 2. 2 and existence of Flogf, (y;) with 8,

replaced by 0., as n > oo, we have that the

likelihood

consistent for @, ; If additionally condition 2. 3

maximum estimator @ is strongly

holds, the matrix K (6. ) and its inverse are

nonsingular, then ﬁ(é,, —0,)~>N[0,] '(0.))K
@.H17'0.H].

Proof
Theorem 2.2 and 3. 2 of Ref. [22].
2.2 ECME algorithm

The maximum

The corollary follows directly from

likelihood

parameters could be found by directly solving the

estimates  of

score functions (6)-(8) using various optimization
algorithms, however, care must be used with the
standard maximum likelihood method under ¢
distribution with unknown degree of freedom.
Since the score functions U ($) and U (3) are
bounded while U (v) is unbounded when | &, ||
goes to infinity, it can be inferred that areas of
likelihood unboundedness are most likely to occur
as v—=>0)_ That is to say, the likelihood function
can be arbitrary large with reasonable parameter
values when the degree of freedom is small or

Therefore,

under standard maximum likelihood procedure can

unknown. the parameter estimates

be of little practical interest by themselves even

though they are formally local or even global
maxima because they can critically influence the

algorithms
[18]

behavior of iterative simulation
designed to summarize the likelihood function
ECME algorithm

developed by Ref. [ 18] to find the maximum

Therefore, we applied the

likelihood estimates.

Following LLemma 1. 1, the multivariate ¢
distribution (1) can be seen as the mixture of m;-
variate Normal and Gamma distribution variable.
Therefore we can use EM type algorithm, which is
maximum

commonly used to calculate the

likelihood estimates™. Let 0= (8",AT,¥™)T and
the complete-data log-likelihood function of the i th
subject be
Lian(O,0) =Inf(y,,z; | O,0) =

Inf(z; |v)+1Infly;, | ;.0 an

=L (W) + Lo (0) (18)

In the E-step, we calculate the expectation of

complete-data log-likelihood given the observed

data and current values of the parameters. Thus,

the E-step for the ith subject at the (z + 1) st
iteration based on Eq. (17) is

Q. 0w |0,,v)=E[l;:w(@,0) | y,,0,.v,]=

Elliw@ | y:is0, 50, ] +Ellnwm(® | y:50,,v,]

a9

=Qaw |v)+Q:W1]0) 20D

where the expectation E is taken under the

given y; and

conditional distribution of <z,

parameters 0, , v,. Direct computation leads to

E[Zzl-[ull(u) ‘ ym@, ,U,]:E[lnf(‘[, | v,0) | yzvﬁrvUr]:

v v v
?hl?_'_?E[(h’lf, *T{) ‘ Vi 7(91 9U,:| -

1ny<%>—E[1m,. |40, ] 21)

EI:ZEZ-qu(g) ‘ y,'s@mw]:
Ellogf(y; | 7;:0) | v;40,,v, 1=

Mo — Ln g, |+
ant 2r1 ;

m; P ~
7@(/) (y1 _/lf) 0 (y, _/lf)wf(,) =

E[h,(@ey,) ‘ y;,elvU,] (22)
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where
m; 1
h,(69y,):_ 11"127(—*11’1|.Q, ‘+
2 2
m; T ,
7 In 7 ,*?(y, —u)' Q7 (v, —p) (23D

G =Ednz; | yis0,000) :¢<%> +

v, + (y; 7/1[(/)>/'Qi(1>71(y1 7//‘1'(1))
n

I . (24)
and
wiy =E(z, | y,.0,.0,) =
b —m; (25)

v, -+ (y, — Mo )/mel(yi 7/11’(1))
In the M-step, 0“"" and v“"" are chosen to

maximize the Q-function

Q. | 0,,v)=>.Q . |0 .,v) (26
i=1

(t+1

Especially, v can be obtained by finding the

solution to the equation:
— 9/ +1n0w/2) + D Inw —ww ]+ 1+
i=1

1< v, +m; v, +m;

R DR Gl S YGRS S Y

e {g!}( 5 ) — In( 5 )} 0 27)
where

- v, +m1
Wi — - .
' v, + (y,- — Mi )/‘Qi(r) l(yi _,Ui(r))

Because the last term on the left side of
equation (27) is non-positive and —¢ (v/2) +1In(v/2)
is decreasing in (0,22). A one-dimensional search,
such as Half-interval method can be used to solve
equation (27).

Since the convergence of the EM algorithm
with unknown v can be very slow, Ref. [ 25 ]
proposed a multi-cycle version of ECM, called the
MCECM algorithm, to estimate parameters for
multivariate ¢ distribution. Moreover, Ref. [ 18]
proposed an ECME algorithm, and the ECME
converges substantially faster than EM, ECM or
MCECM. The ECME algorithm is as follows:

(1) E-step: Calculate the expected complete-
data log likelihood given current estimates of
parameters (f8,,7,,4,,v,). The E-step of ECME is
the same as EM;

(Il ) CM-stepl: Fix v=v,, and calculate 8, ., =
B 75 AR using Eq. (22) with v replaced
by v, s

() CM-step2: Given 0,., = (B, v5i,

AL )T, and calculate v, ., to maximise Eq. (28)

—¢(/2) + &1Inv/2) +;2[1n w, —w, ]+ 1+

13 v+ m; v+ m; }
— — =0 28
. ;{m ;) — InC—=5 (28)

where @, = (+m)/+ 18,00, | .
(IV) Repeat ( I )~ (Il until a pre-specified

convergence criterion is met.

3 Numerical studies

3.1 Simulations
In this section the finite sample performance

of the proposed approach is investigated through
simulations. The continuous longitudinal
responses y; are generated from (1) under the
following model:;

i =R0) +z5;B1} erijzﬁ’z]

In(o;;) =214, + 24242 // (29)

Pik =Yo T Wiy V1 T Wi V>

(=1, yn35 =1,, m;) J

The covariate (x; ,1,,2)/ is generated from a

multivariate normal distribution with mean 0,
marginal variance 1 and correlation 0. 5. We take
(zij1s2i2) = (xyjis X2 ) s and wyjp = (L — 14 )
Wi = (t; —ty)?. The parameters are set to be
(Bosf1sB:)=(1,—0.5,0.5), (¥70,7:-7:)=1(0.3,
—0.2,0.3), (A,,4,) =10(0.5, —0. 3). The
measurement times 7, is generated uniformity.
The degree of freedom, v, for the multivariate ¢
distribution is 3 as existing studies have shown
that the z-distribution with 3 degrees of freedom
has sufficiently long tails and almost covers all

L4281 Finally, we generate 500

extreme outliers
data sets and consider sample sizes for n =50, 100
and 400 with m; =5. The proposed approach under
t-distribution and maximum likelihood estimation
under normal distribution are used to estimate the

parameters respectively.
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Tab.1 Simulation results when the data sets are generated under ¢-distribution
n 50 100 400
Model Par Bias SE CP Bias SE CP Bias SE CP
—0.0010 0.0071 93% 0.0005  0.0042 94 % 0.0004  0.0019 94 %
B —0.0004 0.0027 95% 0.0002  0.0017 97 % 0.0001  0.0007 94 %
0.0003  0.0018 95%  —0.0001 0.0011 97%  — 0.0001 0.0005 93%
C 0.0037 0.0092  97% —0.0016 0.0061  93%  —0.0010 0.0032  94%
t Y 0.0010  0.0160 95% 0.0007  0.0088 95% 0.0011  0.0055 95%
—0.0020 0.0171 95%  —0.0012 0.0094 93%  — 0.0013 0.0060 94 %
""""""""" —0.0001 0.0008  96%  0.0001 0.0005  94%  0.0000 0.0002  92%
: 0.0001  0.0009 96%  —0.0001 0.0006 92% 0.0000  0.0003 96 %
v —0.1438 0.5971 93%  —0.0166 0.5088 93% 0.0418  0.2957 95%
00016 0.0223  99%  0.0013 0.0061  95% —0.0015 0.0043  96%
B 0.0009  0.0099 99% 0.0005  0.0023 92%  —0.0028 0.0044 97 %
—0.0005 0.0072 99%  —0.0003 0.0014 94 % 0.0019  0.0007 95%
"""""""""" 0.0423  0.0389  87%  0.0486 0.0272  87%  0.0412 0.0150  89%
normal
¥ —0.0395 0.0895 97%  —0.0328 0.0282 81%  —0.0359 0.0256 99%
0.0530 0.1108 97 % 0.0474  0.0312 96 % 0.0541  0.0190 97 %
C —0.0004 0.0037  98%  0.0002 0.0012  94% —0.0048 0.0042  99%
: 0.0004  0.0043 99%  —0.0002 0.0014 99% 0.0038  0.0017 98 %
When the data sets are generated from percentage of 95% confidence interval which is
multivariate ¢ distribution, Tab. 1 reports the quite close to the nominal level, especially for large

accuracy of the estimated parameters by the ECME
algorithm in terms of their mean biases (Bias),
standard errors (SE) and the coverage percentage
(CP),

model denotes the model distribution and Par

for the 95% confidence interval where

denotes the parameters. It clearly indicates that
the proposed method works reasonably well for

data with potential outliers. All the biases are

small especially when =n is large under ¢
distribution.  Additionally, to evaluate the
inference procedure, we report the coverage

This demonstrates the validity of Theorem 2. 1.
When the data y; ~ N"', (i 50,;) under model

(29), we generate 500 data sets with sample sizes

n.

n=50, 100 and 400. In this case, the multivariate
t distribution is misspecified while the normal
model is correctly specified. Tab. 2 shows that the

proposed approach under ¢ distribution performs

almost as well as normal distribution. The
estimated degree of freedom v = 3328. 34, 3497.
25, 5911. 89 for different sample sizes

respectively, indicating the essential normality.
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Tab.2 Simulation results when the data sets are generated under normal distribution

n 50 100 400
Model Par Bias SE CP Bias SE CP Bias SE CP
—0.0010 0.0062 93%  —0.0001 0.0020 93%  —0.0001 0.0019 94 %
B —0.0003 0.0025 92%  —0.0001 0.0015 93%  —0.0001 0.0007 93%
0.0002  0.0016 93% 0.0001  0.0010 96 % 0.0000  0.0004 94%
C 0.0024 0.0067  93%  —0.0020 0.0047  92%  —0.0006 0.0020  95%
normal
y 0.0012  0.0141 93% 0.0017  0.0107 94 % 0.0004  0.0047 93%
—0.0021 0.0147 95%  —0.0026 0.0107 96%  —0.0005 0.0043 92%
© —0.0004 0.0008  98%  0.0000 0.0005  98%  0.0000 0.0003  98%
: 0.0000  0.0007 94 % 0.0000  0.0005 97% 0.0000  0.0003 96 %
""""""""""""""""""""" —0.0010 0.0062  93%  —0.0001 0.0042  93% —0.0001 0.0019  94%
B —0.0003 0.0025 92%  —0.0001 0.0016 96%  —0.0001 0.0007 92%
—0.0002 0.0016 93% 0.0001  0.0010 95% 0.0000  0.0004 93%
© —0.0030 0.0067  92% —0.0024 0.0050  90%  —0.0007 0.0021  92%
' y 0.0017  0.0143 94 % 0.0020  0.0108 94 % 0.0004  0.0048 94 %
—0.0027 0.0149 95%  —0.0031 0.0109 95%  —0.0006 0.0044 95%
"""""""""" 0.0000 0.0008  98%  0.0000 0.0004  98%  0.0000 0.0003  96%
! 0.0000  0.0007 94 % 0.0000  0.0004 97 % 0.0000  0.0003 94 %

To study the robustness of proposed method,

the

normal distribution
yi~A—=moN, (u;.Q2) +n N, (p:.0.0,),

where 0 <Xt <{ 1 corresponds to the percent of

we  consider following  contaminated

contamination, and 8, > 1 is a parameter that
determines the deviation of the wider component.
Since the multivariate ¢ distribution and normal
distribution are both misspecified, we compare
them via the following relative error measurements

- 1y -
err(,u):;z e =g 1/ s I

i=1

~ 1< .
err(ﬂ):;z 1o, —a. l/lal.

i=1

We generate 500 data sets for different sample
sizes n = 50, 100 and 400 with m, = 5. Tab. 3
reports these two error measurements for different

The

corresponding estimates of degree of freedom in all

sample sizes and &, = 4, 16 respectively.
the cases range from 2. 79 to 7. 54, which indicate
a long tail of population distribution. Obviously,
the proposed approach is more robust than the
likelihood normal

maximum estimation under

distribution.

Tab.3 Simulation results when the data sets are generated under contaminated normal distribution with 1=5%

S.—4 5. =16
Model n
50 100 400 50 100 400
err(p) X 10° 0.61 0.52 0.12 0.62 0.56 0.12
normal R
err(Q) X 10? 1.34 0. 87 0.23 1.43 0. 89 0. 24
err() X 102 0.09 0.05 0.02 0.11 0.08 0.06
t
err(2) X 10° 0.07 0.06 0.02 0. 09 0.06 0.05
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3.2 Analysis of CD4 cell data

We apply the proposed robust joint modelling
approach to an unbalanced longitudinal data set,
previously studied by Refs. [ 6, 89, 27 ]. HIV
destroys T-lymphocytes called CD4 cells, which
play a vital role in immune function. Disease
progression can be assessed by measuring the
number or percentage of CD4 cells. which on
average decrease throughout the disease incubation
period. The CD4 cell count of 369 people infected
with human immunodeficiency virus with a total of
2 376 values were collected for this study, covering
a period of approximately 8.5 years. The data set
is observational and these counts were measured at
different times for each individual. The number of
measurements for each individual varies from 1 to
12 and the time points are not equally spaced. As
in Ref. [26], square roots of CD4 cell counts are
used. compared to the models in Ref. [9], we use
their optimal polynomials for the mean, logarithm
of marginal variance and the angles in the
correlation matrix. That is,

i =B +tyf HthB 1, B+

In(e;) =t;4,5 G=1,ym3j =1,,m,;)

i =Yoo+ Uy — a1
where n =369, y,; is the square roots of the CD4
cell numbers. To address the potential outliers in
the data set, we assume ¢; ~ tn (0.0, ,v).

By the proposed approach in section 2. 2, the
parameter estimates are 8, =29. 181(0. 284), B, =
—3.908(0. 252), B, = —1.184(0. 238), B, =0. 974
(0. 134), 8, = 0. 208 (0. 066), B, = — 0. 153
(0.028), Bs=—0.005(0.004), B;=0.009(0.002)
and Bz =—0.001(0.000); 7,=1.066(0.0161) and
7, =0. 062 (0. 008); A, = 0. 046 (0. 008) with
standard error being given in the parenthesis. The
estimated degree of freedom, v=9.865(1. 446),
indicates  possible  violation of  normality
assumption.

Fig. 1(a) shows the fitted curves of the mean
( red

distribution (blue dotted line). They coincide with

with normal distribution line) and ¢

each other except near the boundary. The curve

fitted by normal likelihood decreases slightly faster
when time goes by than that by multivariate ¢
likelihood,
normality. And Fig. 1 (b) and (¢) report the angle

indicating the non-robustness of
in the correlation matrix and log-variance. It is
clear that the log-variance under normal likelihood
is over-estimated at the beginning and under-
estimated at the end of the study. The estimated
angle parameters under two methods coincide with
indicating the correlation

each other, same

structure. Therefore, it is useful to assume
approximate normality for the distribution of
square root of the CD4 cell numbers to study the
relationship in the mean, one should be cautious

when studying dynamics in the variance.

504 ; ' —— normal distribution
==--- t distribution
+#:.. confidence bands

CD4 cell numbers
W
(=)
1

-2
4.5+
3
S404 -
20—
ig) 3.5 ‘/,/"
3.0 T T T T T T T T T
2 0 2 4 1 23 456
time lag
(b ©

Fig. 1 CD4 cell data: fitted curves of (a) the mean against
time, (b) the log-variances against time ., (c) the angles
against the time lag under normal (red line) and ¢
likelihood (blue dotted line) respectively. The dotted lines

are asymptotic 95% confidence intervals by ¢ likelihood

4 Conclusion

We have proposed a robust parsimoniously
joint location-scale modeling approach using ¢-
distribution as an alternative to the classical
normality-based approaches in order to provide
protection against outliers in the data, and
understand the dynamics in the location function,
marginal scale function and association. An
ECME-based algorithm is applied to speed up the
computation associated with the EM algorithm for
examples and

parameter  estimation. Data
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simulations demonstrate the effectiveness of the
proposed approach.

We formulate the problem wunder the ¢
distribution mainly because of its familiarity and

Other

distributions can also be used to yield robust

computational simplicity. robust
estimates, such as the contaminated normal
distribution or the exponential power family.
Studies comparing these alternative models might
be useful, particularly in multivariate settings
where previous work appears limited. Another
possible extension of the proposed framework
would be to longitudinal data with missing

response and covariates as well as informative

missing.
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