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(praeees posee) .
@ If 9, > 0, then do* has a conical singularity

Let ¥ be a Riemann surface and D = at p, with cone angle 270, > 0. That is, in a

0 Introduction

2 (0, — 1) p. a R -divisor on 3 such that 0 < 0, # neighborhood U of p; ., do? =e* | dz |*, wherez is a

i=1
1, where {p;};2; C X is a closed discrete subset.
We denote by M(Z) the set of C™ conformal

metrics of constant curvature — 1 on a Riemann

complex coordinate of U with 2(p;) =0 and u —
(6: — DIn | = | extends to a continuous function inU .

@ 1f 0, =0, then do’ has a cusp singularity at
pi;. That is, in a neighborhood V of p,;, do* =

surface ¥ . We call do* a (singular) conformal
hyperbolic metric representing D if and only if e | dz |*, where = is a complex coordinate of V

@ de* € M S\supp D), where supp D = withz(p,) =0andu +In| 2z [+ In(—1In | = )
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extends to a continuous function inV .
There have been some studies on the local

behavior of a conformal hyperbolic metric near an

Nitschet?, Heins™', Chou

and Wan""" proved that an isolated singularity of a

isolated singularity.

conformal hyperbolic metric must be either a
conical singularity or a cusp one. They all obtained
the result by studying the behaviour of the
solutions of the Liouville equation
Au =e™

near isolated singularities. Yamada”’ considered
the same problem from the perspective of complex
analysis. However, all of them only gave an
asymptotic model for a hyperbolic metric near an
isolated singularity. We want to seek for an
explicit local model.

For this purpose, some explorations were
done. Firstly, in Ref. [6], by using PDEs the
authors proved the following lemma.

Lemma 0. 1 Let do* be a conformal
hyperbolic metric on a Riemann surface X, and

suppose do” represents a divisor D = 2 0, —Dp,:,

i=1
0<C 0, # 1. Suppose that F:3S\supp D = D is a
developing map of de?. Then the Schwarzian
E”( 3 ” P
(2) (F (z)) of

derivative {F,z} = —

F'(2) 2 \F'(2)
F equals
1*9,'2 d,'
{F,Z}: 2 + +¢,(Z)
2z z

in a neighborhood U; of p; with complex coordinate
z and 2 (p;) =0, where d; are constants and ¢, are
holomorphic functions in U,, depending on the
complex coordinate z .

Based on Lemma 0. 1, we obtained the local
expressions of developing maps near isolated
singularities of hyperbolic metrics (see Ref. [7,
Lemma 2. 4]). In this process, we solved a
Fuchsian equation of second order. Using these
expressions, we finally got the local model of a
singular conformal hyperbolic metric. Therefore,
this proof process has some twists and turns.

After reading Ref. [5], we speculated that there

should be a direct proof using complex analysis
only, which motivated this manuscript. In this
note, we complete this modest project.
Below we present the main result of this note.
Theorem 0, 117 heorem 1.2] Let do* be a
conformal hyperbolic metric on the punctured disk
D" ={w & C|0<]w]|<1}. Then 0 is either a
conical singularity or a cusp singularity of de?. If
do? has a conical singularity at w =0 with the angle
2ma > 0, then there exists a complex coordinate %
onA, ={w € C|| w |<e} for somee > 0 with
2(0) =0 such that
4o’ | 2 |*F

A—]=z[|*)?*

do’ |A5 - :

| dz

Moreover, z is unique up to replacement by Az
where | A |=1. If do® has a cusp singularity at w =
0, then there exists a complex coordinate z on A, =
{w € C|| w|<e} for somee > 0 with 2(0) =0
such that
do? [, =] =z [ *Un[=[) 7 [d=z [°

Moreover, z is unique up to replacement by Az
where | A |=1.

From the proof of Theorem 0. 1, we can
directly obtain the local expressions of developing
maps near isolated singularities of the metrics.

Theorem 0. 2 Let F:S\supp D — D be a
developing map of the singular conformal
hyperbolic metric do” representing D . If p is a
conical singularity of do®, then there exists a
neighborhood U of p with complex coordinate z and
& PSU(1,1) such that 2 (p) =0and G =%° F has
the form G(z) =z . If ¢ is a cusp singularity of
do?, we assume F :3\supp D — H for convenience,
where H is the upper half-plane model of the
hyperbolic plane, then there exists a neighborhood

V of ¢ with complex coordinate ¥ and ¥ €&

PSL(2,R ), such that 2 (¢) =0 and G = ¥ - F has

the form G(z) =—./— 1logz .

Moreover, the proof process of Theorem 0. 1
provides a possible approach to studying the
codimension-one singularities of complex
hyperbolic metrics in higher dimension. We shall

investigate the following problem in the near
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future.
Problem 0. 1
behavior of a

DX e+ XD\{2,2,°2, =0} forn =29

What is the asymptotic

complex hyperbolic metric on

n

We organize the left part of the manuscript as
follows. In Section 1, we at first give some
knowledge of hyperbolic geometry that we need to
use. Then we state the definition and properties of
developing maps. Section 2 is the proofs for

Theorem 0.1 and Theorem 0. 2.

1 Preliminaries

1.1 Conformal isometries of the hyperbolic plane
We will work with both the Poincaré disk

model

4] dz |*
(1—| =z |
and the upper half-plane model
‘ | dz |*
_ 2
(H=(z € Cilm= >0}, daH—(Imz)2>
of the hyperbolic plane at convenience. We denote
b
PSULLD == =22 i pec,
bz +a
la |*=[b|*=1}
and
az +0b
PSL(Z,R)*{Z"’CZ+d:aa ba(adeRa
ad —bc =1}

the group of all orientation-preserving isometries
of Dand H , respectively.

Definition 1, 1'% If ¥, % € I(D) and ¥ is
not the identity map of D, then ¥ has a fixed
point in D, where I(D) is the isometry group of
D. The transformation Zis said to be

@ elliptic if fixes a point of D ;

@ parabolic if Yfixes no point of D and fixes a
unique point of oD ;

@ hyperbolic if ¥fixes no point of D and fixes
two points of 9D .

Lemma 1, 1"
D, if ¥ &€ PSU(1,1) is elliptic, then there exists
4 € PSU(1,1) such that # o Yo 4 ' (2) =e"% for

some real number @ . In the upper half-plane model

In the Poincaré disk model

H ., if ¥ & PSL(2, R) is parabolic, then there
exists A € PSL(2,R ) such that Ao o 4! (2) =2+
t for some real number ¢ . In the upper half-plane
model H , if ¥ € PSL(2, R) is hyperbolic, then
there exists & &€ PSL(2, R) such that % o ¥ -
A ' (2) =Az for some positive real number A .
Lemma 1, 20 Theoren 160 ot £ H — H be
holomorphic. If f is a homeomorphism, then f &
PSL(2,R) . If f is not a homeomorphism, then
dug (f(z),f(2,)) < dy (z,,z,) for all distinct
21,2, € H, where dy denotes the hyperbolic
distance of H.
Lemma 1. 3" For any isometry ¢ let m be
the infimum of dy (z,%) taken with respect to
z € H. Then %is hyperbolic if and only if m > 0;
if m =0, then Zis elliptic when m is attained and
parabolic when m is not attained.
1.2 Developing map
A multi-valued locally univalent meromorphic
function ' on a Riemann surface 3 is said to be
projective if any two function elements 7, , %, of F
near a point p € X are related by a fractional linear
transformation ¥ € PGL(2,C), 1. e., F, =% F,.
Definition 1. 2 Let do* be a conformal
hyperbolic metric on a Riemann surface ¥, not
necessarily compact, representing the divisor D .
We call a projective function F:3\supp D — D a
developing map of the metric do® if do* =F * do}, ,
| dz |?

on the unit discD. And F can also be viewed as a

where do}, = is the hyperbolic metric

locally schlicht holomorphic function from > to D

where 3 is the universal cover of 3\supp D .
Lemma 1, 4-7 bemma2 tandLemma 2,21 ] ot dg? be a
conformal hyperbolic metric on a Riemann surface
>, representing the divisor D . Then there exists a
developing map F from 3\supp D to the unit disc D
such that the
PSU(1,1) and

monodromy of F belongs to

dGZZF%dO']%) ’
| dz |?
(1—] =z |*)*

on D. Moreover, any two developing maps F, , F,

where do}, = is the hyperbolic metric
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of the metric do” are related by a fractional linear
transformation ¥ € PSU(1,1),i.e., F, =% F,.
Remark 1.1

above lemma on the upper half-plane model H .

There exists an analogue of the

2  Proofs for Theorem (.1 and Theorem
0.2

Let do* € M(D *) and H be the upper half-
plane. Consider the universal covering from H to
D", 2 — e*, whose covering group I' is generated
by (2) =2 +2x . Since (¢*) " do* € M(H ), there
exists a locally schlicht holomorphic function f
from H to Dsuch that (e®) * de®* =f " dop by Lemma
1. 4. Moreover, we obtain the
homomorphism 4. I"—>PSU(1,1) . So we have f °
T =(z) ° [, set L= M(T) .

Lemma 2, 15°-lemma7l

monodromy

4 is not a hyperbolic
transformation.
Proof By LLemma 1.2,
dp (f(2),Z° f(2)) =
dp (f(2),f(z+21)) <dg (2,2 +27).

Letz =iy, y(t) =t +iy, 0t < 2x . Then
the length of ¥ () equals
2 ] 2
l(y(z)):J —de ===,
0 y y
Sodg (242 +27) > 0as y >+ oo, Hence m =

inf dp (2, %° 2)=0, %is not hyperbolic by Lemma
1. 3.

Lemma 2, 2 The following expressions hold
near the origin.

@ If Yis parabolic, then

do® |5, =l & [ 2n | &) 7 | d& |7,

where A, ={w € C || w |<e} for somee > 0.
Moreover, £ is unique up to replacement by A&
where | A |=1.

@ If Yis elliptic, then
o |, :4(/e +a)? \/S \7”“2” :

. (1—] & |2F)e

where 0 <« < 1, k is a nonnegative integer and
A.={w € C || w |< e} for some ¢ > 0.
Moreover, & is unique up to replacement by A&
where | A |=1.

@ If Zis the identity, then

| dg |7,

4}32 ‘ 5 |2/:72
(1_| 5 ‘2&)2

where £ is a positive integer and A, = {w € C |

| dg|”s

do* ‘AE =

| w |<<e} for somee > 0. Moreover, £ is unique
up to replacement by A& where | A |=1.

Proof (DLemma 1.1 and Lemma 1. 4 imply
that there exists a locally schlicht function f: H —
H such that (e*)*ds” = f* dok and f(z + 2n) =
f(z) 4+t for all = € H, wheret # 0 is a real
number.

() Ifz <0, then

2r
~ —t : 2r
= — °f:*7f
"o
is also a developing map by Lemma 1. 4. We have
Fz+2n)=F(2)—2r. Letg(z)=Ff(2)+=, then
g(z+2r) =g(2). And g(2) is a simply periodic
function with period 27 . Let w = ¢, then there
exists a unique holomorphic function G in D "=
{w ] 0<|w|<<1l}) such that g(2) = G(w).
Thus by Ref. [ 11 ] we have the
Fourier development

g(z) = 2 a,e’”.

n= —

complex

So f(z) = E a,e —z,andIm f >0, i.e.

n=

)
Im >, a,w" —1In——>0for 0<| w |<1
w

n= —co ‘ ‘

(D

We know that G(w) = Z a,w" is a holomorphic

n= —o

function inD ~ .
If 0 is a removable singularity of G(w), it
contradicts the above inequality as w tends to 0.
Suppose that 0 is a pole of order m for G (w) .
Then by (1) we have

Im 2 a,w" =Im w "h(w) >0

n= —°

for 0 <<| w |<< 1, where h(w) is a holomorphic
function in D. Contradiction!
Suppose that 0 is an essential singularity of

G(w) . Then it contradicts (1) by the Great
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Picard Theorem.

Therefore, we have excluded case t < 0.

(i) If £ > 0, then

27
~ ﬁ . 2m
7= f ="
s
2
is also a developing map by Lemma 1. 4. We have
F(z+2n)=F(2)+2r. Letg(z)=/(2)—=z, then
g(z+2x) =g(2). And g(2) is a simply periodic
function with period 27 . Let w = e”, then there
exists a unique holomorphic function G in D "=
{w | 0<|w|<1l}) such that g(2) = G(w).
Thus we have the complex Fourier development

g(z) = 2 a,e".

n= —oco

Sof(z)= D) a,e™ +z,andIm J >0, i. .

n= —

1

| w |

>0 for 0 <<| w |<1

Im 2 a,w" + In

n= —o

(2)

We know that G(w) = Za,,w” is a

n= —co

By (2) we have

M@ — | ¢ VT GG | > w | for 0 <| w |< 1.
o VT GG VT Gw)
is a holomorphic

holomorphic function on D ™ .

(§

So > 1 and

w

By the Great Picard Theorem, 0
e*«/:(}(w)
is not an essential singularity of

function inD * .

If G(w) has an essential singularity at O,
& C. By Casorati-

2, Theorem 3. ¢
theorem’l_ Theorem 3. 3] s

sequence 2, — 0 such that G(2,) = +/— 1logc . So
exp(—+/—1G(z,)) —>c.

non-zero ¢, exp(— »/—1G(w)) must have an
— V=1 G(w)
does too.

consider any non-zero c

Weierstrass there is a

Since this is true for all

essential singularity at 0, then
w

Contradiction!
Suppose that 0 is a pole of order m for
G(w) . Then
h )
TG G =)

m
w

where h (w) is holomorhic on Dand does not vanish
near the origin. Let h (0) =re¥ ', » > 0. Consider

the sequence

~exp(/—160/m)
e

then — /—1G(z,) = h(z)exp(— /—1Dk" .
Since h(z,) — re¥ ', exp( — /—1G(z,))

converges to 1+ o,

Zp

If we consider

exp(/— 1 +0)/m)
a k

Wy ’

then we have exp(— +/— 1G(w,)) converge to 0.

So exp(—+/—1G (w)) have an essential singularity
at 0, contradiction]!
G(w)
holomorphically.

Hence extends to w = 0

So f(z) = 2 a,e"™ + z, where # = 0. And

n==k

7(’w) =—./— 1llogw+ 2 a,w" can be viewed as a

n=*k

developing map from D * to H. So we can choose
another complex coordinate & near 0 with £(0) =0
such that

E=w exp(«/— 1 2 a,,w”) ,

n=~k

then

do? |o, =T doki=l €| *An &) *|de|?,
where A, ={w € C || w |<e} for somee > 0.

Here we show the uniqueness of the complex

coordinate & . Let & and & be coordinates such that

conditions of the lemma are satisfied, then

F(& =—./—T1logé, (&) =—./—1logé
are all developing maps of do?. By Remark 1. 1,

there exists ¥ € PSL(2.R) such that F = ¥+ F,

~ aF +5b . o
thenF—CF_'_d , ad —bc=1. Since £(0) =£(0) =
0, F(0) = F(0) = o, we have ¢ = 0 by a

~ F—+b
calculation. ThusF:a d+

—/—1logé=—a’/—1logé +ab,

% :Suz . eﬁul)

=a*F + ab, then

So there exists an open disk V which is near 0 and
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does not contain 0 such thata” =1, logé = logé +
ab/—1 . Therefore we have & = A& on V with
| A |=1. Since €, £ and w are coordinates near 0, =

and & are holomorphic functions of w, then & =&,
| A |=1 holds in a neighborhood of 0.

@ As in case (D there exists a holomorphic
function f:H— Dsuch that (e*)* ds?=f"do} and
that f(z+27) =" f(2), 0<la <1. Letg(z)=
[+ exp (—iaz), then g(2 + 27) = g(2) . And
g (2) is a simply periodic function with period 27 .
Let w =e”, then there exists a unique holomorphic
functionG inD "= {w | 0 <<| w |<C 1} such that
g(z) = G(w).
Fourier development

g(z) = 2 a,e".

n= —co

Thus we have the complex

We know that G(w) = Z a,w" is a holomorphic

We have | G(w) |+| w |* <<1 by

the range of f, then we have that w = 0 is a

function in D * .

removable singularity of G(w) by | G(w) |<
| w | ™ and 0 <<a < 1. So

f(w) =w" za,,w” .
n—k

where £ (= 0) is an integer anda, # 0. And f(w)
can be viewed as a developing map from D “ toD.
So we can choose another complex coordinate &
near 0 with £(0) = 0 such that &<

w* E a,w", then

n=k

d? | Ak ta)? | &P
o AT (17| € ‘2k+2a)2

where A, ={w € C|| w |<e} for somee > 0.

We show the uniqueness of the complex

| dg |7,

coordinate & . Let & and & be coordinates such that

conditions of the lemma are satisfied, then F (&) =

g, F(&) =& are all developing maps of ds”. By

Lemma 1.4, there exists ¥ & PSU(1,1) such that
aF +b

F=%-F, then F== —, |a|*—]b|*=1. Since
bF +a

£(0) =£(0) =0, F(0)=F(0) =0, we have b =0 by

a calculation. Thus F—=2F =pF, | ¢ |=1, then
a

there exists an open disk V which is near 0 and does
not contain 0 such that & = p&° . Therefore we
have £ =A& onV with | A |=1. Since &, & and w are
coordinates near 0, & and & are holomorphic

functions of w., then € =&, | A |=1 holds in a
neighborhood of 0.

@ Since Yis the identity, f(z 4+ 27) = f(2),
then f(2) is a simply periodic function with period
2r . Let w = €%, then there exists a unique
holomorphic function F inD " ={w | 0 <| w | <1}
such that f(2) = F(w).

complex Fourier development

Thus we have the

f(z) = 2 a,e"™.

n= —

We know that F(w) = Z a,w" is a holomorphic

n= —o

function inD "and | F |=|] f |<1, sow =01is a
removable singularity and F (w) extends to w =0
holomorphically. Let

F(w) = Za,,w” )

n=k

where £ (Z=0) is an integer anda, # 0. And F (w)

can be viewed as a developing map from D " toD.

F +1i
Since & +i is also a developing, wherea, b € C
bF +a
and | « |* —| b |* =1, so we can set F(0) =0

without loss of generality. Then we can choose
another complex coordinate & near 0 with £(0) =0

such that € = Za,,w” , then

n=k

N 4/32 ‘s |2k72
(1—| & [*)?
where £ is a positive integer, A, ={w € C || w | <<

do* ‘AE

| dg [,

e} for somee > 0.

The uniqueness of the coordinate & is similar
to the above.

The proof is completed.

We have thus obtained Theorem 0. 1. Note that
in the proof of Lemma 2. 2, we actually obtain the
local expressions of do? near the origin by choosing a
special developing map under a suitable complex
coordinate. From the proof of the above lemma and

Lemma 1.4, we can get the Theorem 0. 2.
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