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Abstract: As more and more enterprises and individuals choose to outsource their encrypted private data
to the cloud, Searchable Encryption (SE), which solves the issue of keyword-searching over encrypted
data, is becoming much more important. To overcome typos and semantic diversity existing in query
requests, fuzzy search is introduced to achieve a misspelling-tolerate search-supported encryption
scheme. However, current schemes of fuzzy search over encrypted data not only bring in high computing
and communication overhead in multi-user scenarios but also are unable to cover all kinds of error types
under the premise of an effective accuracy. In this paper, we thus propose a multi-user multi-keyword
fuzzy searchable encryption scheme. Specifically, we introduce the permuterm index to support multi-
keyword wildcard search which can solve more kinds of misspelling with a higher degree of correctness.
Moreover, by letting the cloud server re-encrypt indexes user encrypt, our scheme supports unshared-key
multi-user fuzzy search, reducing users ' computing overhead effectively and improving the level of
privacy-preserving. The results of experiments demonstrate that, compared with existing schemes, our
scheme not only has a better accuracy rate, but also supports more varieties of misspelling keyword
search with acceptable computational overhead.
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1　 Introduction
With the advent of the era of cloud computing, more
and more enterprises and individuals choose to outsource
the storage and management of their data to reduce their
local management costs. However, private data must be
encrypted before uploaded to avoid data leakage and
abuse[1,2] . Meanwhile, essential data management
including efficient keyword searching is necessary. In
such a computing environment where the encrypted data
have no semantics and no logic, it would be challenging
to do content-related searches. A simple solution is to
download all files and decrypt them locally,
transforming the search over encrypted files to plaintext
searching. However, such a solution makes outsourcing
data to the cloud pointless and brings huge overhead.
Therefore, we expect a solution to do searching directly
over ciphertext possible.

Searchable Encryption ( SE) is such a solution
proposed to do a content-related query over ciphertext,

which usually has three steps: index generation,
encryption, and matching of encrypted index and query.
Once a data user sends an encrypted query, the cloud
server should be able to return the corresponding files,
of which the encrypted index exactly match the
encrypted query, without knowing any information.
During the process, cloud service should be able to
provide search services with the same level of querying
quality, usability, and flexibility as plaintext search,
and at the same time it should also guarantee the privacy
protection for users’ uploaded sensitive data.

However, errors in the keywords are unavoidable
in the real world, which may make SE not return correct
results. Thus fuzzy search[3,4] is proposed to achieve
search tasks with misspelled or partially spelled query
keywords. In fuzzy search, keywords are decomposed
into several substrings through keyword transformation,
and will be stored in bloom filters. Finally, the cloud
server calculates the Euclidean distance between bloom
filters of indexes’ substrings and queries’ substrings.



And the files, of which the indexes have the least
Euclidean distance will be returned.

Although many schemes have been proposed in
terms of fuzzy searchable encryption[3-6], they still have
many problems. Firstly, different methods of keyword
transformation greatly affect the correctness and
efficiency of the searching. Due to deficiencies in the
methods to transform keywords, the accuracy rate of
existing schemes is still low. Secondly, many schemes
adopt locality-sensitive hashing (LSH) functions from
the same hash family to generate the bloom filter.
Benefiting from the feature of LSH functions that similar
substrings (Euclidean distance between them is within a
threshold) are mapped to the same positions of bloom
filter with a high probability, these schemes can achieve
matching of error keywords. However, once the error
degree of keywords is higher than the threshold set by
LSH, the accuracy rate of the fuzzy search will
significantly decrease, which makes it difficult to
support the multi-keyword fuzzy search scenario.
Besides, the methods of keyword transform in existing
schemes cannot support wildcard, which causes they
cannot achieve the fuzzy search with more kinds of
misspellings. Therefore, a more effective misspelling-
tolerate method of keyword transformation is needed.

Moreover, to make fuzzy search schemes more
practical, they should be efficient and effective in a
multi-user scenario, where data users can query multiple
repositories owned by different owners, meanwhile, a
repository can be searched for multiple users. Some
searchable encryption schemes in multi-user scenarios
have already been proposed[7-9] . But unfortunately, as
far as we know, there are no schemes that can support
fuzzy search efficiently. Secure k-nearest neighbor
(secure KNN), homomorphic encryption and attributed
based encryption (ABE) are widely used in the multi-
user searchable encryption. The schemes based on the
first two algorithms often bring huge computational
overhead, since when users make queries in different
repositories, he / she must encrypt his / her query several
times with the corresponding secret key of each data
owner. Although the ABE-based schemes can decrease
the times of encryption, it can not support fuzzy search.
Thus, straightforwardly applying these schemes to the
fuzzy search scenario is unfeasible and we need to
explore a new solution to achieve multi-user fuzzy
searchable encryption considering both searchable
encryption and keyword transformation method.

Motivated by these observations, we propose an
efficient multi-user multi-keyword fuzzy search scheme
over encrypted cloud storage. Specifically, we develop
a novel method of keyword transformation by
introducing permuterm index, which can tolerate a
higher degree of misspelling and support wildcard

query. Meanwhile, in order to avoid the sharp decrease
of accuracy rate caused by the increase of fuzzy
keywords, our scheme stores the substrings in bloom
filter directly and distinguishes substrings by using
keyword length as a mark. And we apply an improved
secure KNN where the index / query will be encrypted by
users and re-encrypted by the cloud server in our
scheme. Users can encrypt original indexes or queries
with their keys for only one time, which greatly reduces
the computing overhead. The main contributions of our
work are summarized as follows:

(Ⅰ) We propose an efficient fuzzy search scheme
over encrypted cloud storage in multi-user multi-
keyword scenario. By applying an improved secure
KNN where cloud server will re-encrypt owners’ data
and users ’ queries, our scheme largely reduce the
computational overhead of users in multi-user scenario.

(Ⅱ) We also design a novel data transformation
method by introducing permuterm index to make our
scheme have a high degree of error tolerance and
support wildcard query. Besides, in order to avoid the
sharp decrease of accuracy caused by the increase in the
number of fuzzy keywords in multi-keyword scenario,
our scheme stores the substrings to bloom filter directly
and distinguishes substrings by using keyword length as
a mark.

(Ⅲ) We analyze the security strenth of our
scheme, and evaluate the performance by conducting
experiments, which shows that our scheme has higher
accuracy, higher error tolerance, and less computational
overhead while ensuring confidentiality,
indistinguishability of query and privacy preservation.

The remainder of this paper is organized as
follows. In Section 2, we introduce the system model,
security assumption and design goals of our work.
Preliminaries including bloom filter, permuterm index
and secure KNN are introduced in Section 3. And the
details of our multi-user multi-keyword fuzzy searchable
encryption scheme are shown in Section 4. Then, we
present the security analysis and performance evaluation
in Sections 5 and 6 respectively. Then, the related work
is given in the Section 7. Finally, we conclude our
work in Section 8.

2　 Problem statement
2. 1　 System model
Our system model consists of four main entities, namely
trusted authority (TA), data owner (DO), data user
(DU), and cloud service provider (CSP) . Figure 1
illustrates the construction of our system.

(Ⅰ) TA is responsible for generating, distributing
and managing system parameters, and it is trusted by all
entities in the system. During the system initialization,
TA generates pairs of secret key and switch key
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Figure 1. System Model

according to users’ privileges, then distributes them to
users and the cloud server respectively.

(Ⅱ) DO has a collection of files, and prefers to
upload them to the cloud server sharing with other
users. Before uploading the files, DO needs to build an
encrypted index based on a set of keywords, which will
also be uploaded to the cloud sever.

(Ⅲ) DUs make requests to the CSP by sending
encrypted query, expecting the data files which match
the keywords in his / hey query.

(Ⅳ) CSP provides the services of data storing,
querying, and computing for DO and DU. Upon
receiving the query from DU, CSP conducts keyword
search and returns the matched files according to the
keywords in the query.
2. 2　 Security assumption
Following References [7,8], we assume the CSP is
“honest-but-curious”’ . In this model, the CSP would
fulfill its duties as a service provider by following the
designated protocols and procedures honestly. At the
same time, the CSP is curious and it may collect and
analyze the data uploaded by users to obtain some
additional information. In this paper, we consider two
threat models Known Ciphertext Model and Known
Background Model. They have been introduced in other
related works[3,4] .

(Ⅰ) Known ciphertext model. In this model, the
CSP or adversaries has the full access rights to encrypted
files, encrypted indexes, and encrypted queries
uploaded by data users and data owners. Besides, the
CSP or adversaries will record the results of each search
request in an attempt to get useful information from
them[10] .

(Ⅱ) Known background model. The CSP or
adversaries in this model can get additional background
information, such as the similarities or differences
between two given queries. Combined with background
information, the CSP or adversaries can analyze the
similarity between the target index and the known

index, even can determine whether a certain keyword is
in the index with a high probability. Specially, the CSP
or adversaries cannot obtain the plaintext- ciphertext pair
available for query as users ’ secret key are not
available.
2. 3　 Design goals
In this paper, our scheme intends to achieve efficient
fuzzy search in multi-user multi-keyword scenario.
Therefore, our design has the following security and
performance goals.

(Ⅰ) Multi-keyword fuzzy search with wildcard
enable. Our multi-keyword fuzzy search scheme should
support not only common misspelling but also wildcard
search that tolerates more types of spelling errors. For
example, the file which have a index information,
secure should be returned for a wildcard query with
keywords “se∗re, informa∗” .

(Ⅱ) No predefined dictionary. No predefined
dictionary is a standard requirement of existing schemes,
so our scheme should also not have a predefined
dictionary.

(Ⅲ) High result accuracy. Our scheme is to
provide users with keyword search function over
ciphertext, so it is necessary to ensure high accuracy.

(Ⅳ) Less computational overhead in multi-user
scenario. The computing overhead of users in our
scheme should be significantly reduced, which means
data user should encrypt an index for only one time
when searching multiple repositories.

(Ⅴ) Privacy guarantee. The CSP or external
adversary should be prevented from obtaining any
additional information from encrypted indexes,
encrypted queries or search results. Besides, the query
information of different users should also be confidential
to other users.

3　 Preliminaries
3. 1　 Bloom filter
Bloom filter is proposed by Bloom in 1970[11], which is
widely used to determine whether an element belongs to
a collection. Bloom filter is initialized as a m-bit bit
array A of with all bits set as 0. Given a set S={a1,a2,
…,an} , bloom filter inserts each element ai∈S into the
bit array. It uses l independent hash function: H={hj |hi:
S→[1, m], 1≤j≤l} to set the hj(ai)-th bit in the
array to 1. Testing whether a set S has the element q, q
will be mapped to l positions by calculating hj(q), 1≤
j≤ l. If any of bit value corresponding to these l
positions equals 0, it means q∉S; otherwise, it means
either q∈S or q produces a false positive. Figure 2 is a
simple example, where “ x” and “ y = b” can both be
considered as an element in the set where “a”, “ b”
belong to, but actually “x” is not such an element. For
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Figure 2. An example of bloom filter.

more details, References[12,13] are good references.
Following the analysis of Reference[11], the false

positive probability f is
f = (1 - {e-

ln
m ) l (1)

where n is the number of elements expected to be stored
in the bloom filter, l is the number of hash functions
used to implement the bloom filter, and m is the length
of the bloom filter. Based on the excepted number of
elements and false positive probability, we can choose
the length of bloom filter m and number of hash
functions l as Equation1.
3. 2　 Permuterm index
Permuterm index is a common index structure used to
deal with wildcard query, such as the query with
keywords “∗ earch”, “ se∗ rch”, “ searc∗” . Here
“∗” represents characters of any length. To generate
the corresponding permuterm index for a keyword, a
character “ $ ” are added to the end of the keyword to
present the ending. Then the keyword will be rotated bit
by bit. For the keyword with a wildcard character “∗”
in it, the permuterm index will be the string, of which
the end is “∗” . For the keyword without a wildcard
character, the index will be the set of all the possible
string generated by rotation. Now we use two specific
examples to explain the establishment of permuterm
index. Keyword “ model ” will be transformed into
“model $ ”, “odel $ m”, “del $ mo”, “ el $ mod”,
“l $ mode ”, and keyword “ mod ∗ l ” will be
transformed into “l $ mod∗” .
3. 3　 Secure KNN
Secure KNN was proposed by Wong et al[14] solving the
problem of KNN computation on an encrypted database.
KNN algorithm is mainly used to search in a point set to
find out k nearest points to a given point q. As the
distance between two points can be computated as the
product of their coordinate vector, secure KNN set the
encryption secret key as a matrix and the decryption key
as the inverse of the matrix, can be offset in distance
comparison. Here is a brief introduction to the process

of the secure KNN.
(Ⅰ) Key generation(n)→κ. The key generation

algorithm takes the length of the coordinate vector n as
the input and returns a invertible matrix Mn×n as the
secret key κ.

(Ⅱ) Coordinate vector encryption(κ, P)→Eκ(P) .
Given the coordinate vector of a point P = pn×1 and the
secret key κ, the encrypted point Encκ(P)= MT·p will
be returned.

(Ⅲ) Query encryption(κ, Q)→Encκ(Q) . This
algorithm takes a query point Q = qn×1, which is also a
n-dimensional vector, and the secret key κ as inputs.
Then it outputs the encrypted point Eκ(Q)= M-1·q.

(Ⅳ) Distance comparison ( Eκ ( P1 ), Eκ ( P2 ),
Eκ(Q))→Ture or False. Given encrypted points and
query point Eκ(P1), Eκ(P2) and Eκ(Q), the system
calculate whether (Eκ(P1) -Eκ(P2))T·Eκ(Q) >0 to
determine whether P1 is nearer to the query Q than P2 .

3. 4　 Proxy re-encryption
Proxy re-encryption is an encryption technology that can
transform a ciphertext encrypted by Alice to the
ciphertext under Bob’ s key without decrypting. It was
proposed by Blaze et al[15] and formally defined by
Ateniese et al[16] . In a general proxy re-encryption
scheme, there are five polynomial time algorithms
KenGen, ReKey, Encrypt, ReEncrypt, Decrypt, here
is a brief introduction to the process of the Proxy re-
encryption.

(Ⅰ) KeyGen(1k)→(pki,ski) . Given the security
parameter 1k, the KeyGen algorithm takes a key pair
(pki,ski) as the output.

(Ⅱ) ReKey ( pkA, skA, pkB, skB ) → rkA→B } . The
ReKey algorithm takes two key pairs ( pkA, skA, pkB,
skB) as the input, and a re-encryption key rkA→B will be
returned.

(Ⅲ) Encrypt(pki,m)→ci . This algorithm takes
user’s public key pki, and a message m∈M as inputs.
Then it outputs the ciphertext ci .

(Ⅳ) ReEncrypt ( cA, rkA→B ) → cB . Given a
ciphertext cA and corresponding re-encryption key
rkA→B, the ReEncrypt algorithm will return cB as output.

(Ⅴ) Decrypt ( ski,ci )→m. Given user’ s secret
key ski and ciphertext ci, the Decrypt algorithm outputs
the message m or a error symbol ⊥ indicated that the
ciphertext ci is illegal.

4　 Basic construction of our scheme
4. 1　 Overview
In our scheme, to achieve fuzzy search, all the
keywords in both queries and indexes need to be
transformed into permuterm indexes. The system starts
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with system intialization. Before DOs upload their files,
they first generate corresponding index for each file,
which consists of multiple keywords. After keyword
transformation, DOs directly store the permuterm
indexes to bloom filter, which can increase the accuracy
rate in multi-keyword scenario. Then they encrypt and
upload corresponding bloom filter together with files
they own to CSP. In order to efficiently support the
multi-user scenario, upon receiving the uploaded files
and indexes, CSP will re-encrypt the bloom filters, and
then store them to wait for querying. Similarly, when
DUs want to access some files, they first generate
related keywords, and then transform them into
permuterm indexes, which are stored in a bloom filter.
After DUs send encrypted bloom filter as query, CSP
will re-encrypt this bloom filter, and return the files of
which have the matching encrypted bloom filter.

We will introduce the details of our whole
construction in the following subsections, which
includes system initialization, keyword transformation,
index generation, index encryption, index conversion,
query generation and search.
4. 2　 System initialization
Assuming that each index and each query are both an m-
dimension vector, TA first generates the secret key SK=
M,M-1 randomly. Here M∈ZZ 2m∗2m

h is an invertible
matrix, where h is an integer that defines the range of
data values and m is the length of bloom filter we used
as indexes / queries. Based on SK, TA splits M,M-1,
generates the secret key and switch key for DO / DU.
Specifically, for each DO, TA generates secret key
skO = MOθ

and corresponding switch key M′Oθ
,

satisfying M = MOθ
×M′Oθ

. Similarly, TA generates
secret key skU = MUθ

and corresponding switch key
M′Uθ

, where M-1 =MUθ
×M′Uθ

for each DU. In the
end, TA sends all the switch keys to CSP, and sends
secret keys to corresponding DOs / DUs.

4. 3　 Keyword transformation
For a file set F = { f1, f2,…, fn } , DO first extracts
keywords from each file. Then he / she transforms
keywords into permuterm indexes. The strings in these
indexes are finally split into the corresponding
substrings, which will represent the index of each file
by combining with the length of the original keywords.
The details of the process is shown in line 2 - 11 of
Algorithm 4. 1. The rotate ( s, i ) in the algorithm
represents the function to rotate string s for i bit.

Algorithm 4. 1 　 Keyword transformation and
index / query generation
Input: The set of keywords for a file K; l independent hash

function hi(x) l
i=1; A m-bit bit array B with all positions

set as 0;

Output: The index / query for a file B;
1 for each word in K do
2 　 L= len(word);
3 　 if ‘∗’ in word then
4 　 　 word= replace( ‘∗’, ‘’);
5 　 　 out=‘ $ ’+word+‘’+‘ $ ’;
6 　 　 gram=out. split();
7 　 else
8 　 　 s=word+‘ $ ’+L +‘’+‘ $ ’;
9 　 　 for i in range( len(s)-5, 0, -1) do
10 　 　 　 out= rotate(s, i) + L;
11 　 　 　 gram=out. split();
12 　 for each element in gram do
13 　 　 for i=1 to l do
14 　 　 　 seat=hl(element);
15 　 　 　 B[seat] =1;
16 Return B.

As an example, the permuterm index for “fuzzy” is
“fuzzy $ ”, “ uzzy $ f ”, “ zzy $ fu ”, “ zy $ fuz ”,
“y $ fuzz”. Then, the final representation is {“fuzzy $5”,
“uzzy $5”, “ $ f5”, “zzy $5”, “ $ fu5”, “zy $5”,
“ $ fuz5”, “ y $5”, “ $ fuzz5”}. In such a way, a
wildcard keyword like “tur∗” or a misspelled keyword
like “ fuzsy” can still be represented in a unified way
with an accurate keyword and matched with “ ture” and
“fuzzy”, as shown in Figure 3.
4. 4　 Index generation
As keywords of an index are transformed into a
substring-based set, we use l independent hash
functions, H={hi | hi: S→[1, m], 1≤i≤l}, to hash
each substring s in the set with the length L of the
original keyword together. For each keyword, we will
have l positions hi(s |L) and set corresponding positions
in the m-bit bloom filter to 1, which is shown in line 12
-15 of Algorithm 1. In this way, each file has an bloom
filter as the index, which is shown at the bottom of
Figure 3.
4. 5　 Index encryption
The entire encryption process in our scheme can be
divided into two parts, i. e. , the encryption of index at
owner side and the re-encryption at CSP side. The
process enables the indexes encrypted different keys to
converted into indexes encrypted by the same key, i.
e. , SK, as shown in Figure 4. Users first use their own
keys to encrypt indexes as the process of encrypt in
Figure 4, then CSP convert the ciphertext under user’s
key to the ciphertext under the unified key as the process
of re-encrypt in Figure 4.

After generating the m-bit index based on the
keywords of a file, which can be seen as a m-dimension

vector I = { i1, i2,…, im }, DO extends I to (2m)-
dimensional vector Ii

→ as

Ii
→ = i1,i2,…,im, - 1

2 ∑
m

j = 1
i2j , α1,α2,…,αm-1{ }

(2)
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Figure 3. Keyword transformation and index / query generation.

Figure 4. Encryption of Index.

where α1,α2,…,αm-1∈ZZ h .
Then, DO encrypts the index using Equation (3),

and outsources the encrypted index and encrypted file to
CSP. The method to encrypt files is not in the scope of
our paper.

EMO
(Ii
→
) = Γ·Ii + εi

→) ×MO (3)

Here, Γ∈ZZ l, l≥poly(2m)≫h≫2≤ |max≤(εi
→) |,

εi
→∈ZZ 2m

l , is an integer error vector randomly selected
from some probability distributions χ∈ZZ l .
4. 6　 Index conversion
After obtaining encrypted EMO

, CSP re-encrypts it using
Equation(4), making it encryted by M. Then CSP
store it.

EM = (Ii
→
) = EMO

(Ii
→
) ×M′O (4)

4. 7　 Query generation
When DU wants to make a query, DU first generates
the keywords of the files he / she expects. Then he / she

generates the query vector Q={q1,q2,…,qm} according
to the Algorithm 4. 1. After that, DU conducts query

encryption. Specifically, DU extends Q to ( 2m )-
dimensional vector Q

→
as

Q
→ = {γq1,γq2,…,γqm,γ,β1,β2,…,βm-1} (5)

where β1,β2,…,βm-1 ∈ZZ h, and γ∈ZZ p is a positive
integer.

Subsequently, DU encrypts the query vector Q
→

using Equation(6), and submits TQU
to CSP.

TQU
= MU × Γ·Q

→T + εq
→T( ) (6)

where εq
→T ∈ Z2m

l is a random integer error vector
generated for each Q

→T, and Q
→T is the column vector of

Q
→
.

4. 8　 Search
Upon receiving the search query TQU

from DU, CSP first
conducts query conversion. Specifically, it converts TQU

to be encrypted under M-1 by re-encrypting it with the
corresponding switch key MU′ shown as

TQ = M′U × TQU
(7)

　 　 CSP sorts files based on the similarity between TQ

and each index { EM }(Ii)
→. Here we use euclidean

distance to measure the similarity. Finally, the list
including top-k ranked files will be returned.

Correctness Guarantee: Provided two different
encrypted queries, we can compare the similarity
between these two indexes and the given query. Since
we use the same bloom filter mechanism to generate
these query and indexes, the same keyword information
will be stored in the same set of each bloom filter. So
the repetition of the keyword sets directly affects the
distance between the bloom filters and the distance
between two bloom filters, that is, the distance between
two vectors, is commonly defined as Euclidean
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distance. So the correctness guarantee for searching
holds as follow:

The Euclidean distance comparison is shown as
Equation(8), where EM(Ia)

→), EM(Ib)
→) are the two

different encrypted indexes used to do a comparison
with the given query TQ . The random numbers added
when generating indexes and queries will be eliminated

during the calculation and the coefficient γ
2

in the result

is positive number. So when the result is greater than 0,

we can say that (Ib)has a higher matching degree. And
the fact that

Compab
EM(Ia)

→) × TQ

Γ2
é

ë
ê
ê

ù

û
ú
ú

EM(Ib)
→ × TQ

Γ2
é

ë
ê
ê

ù

û
ú
ú =

∑
m

j =1
γ(qj·iaj -

1
2
iaj2) +∑

m-1

j =1
αajβj -

∑
m

j =1
γ(qj·iaj -

1
2
ibj2) -∑

m-1

j =1
αbjβj + t

= - γ
2

Dis{Q,Ia -∑
m

j =1
q2
j( ) +

γ
2

Dis Q,Ib{ } -∑
m

j =1
q2
j( ) + μ + t ≈

γ
2
(Dis{Q,Ib -Dis{Q,Ia}) (8)

where μ = ∑
m-1

j=1
( αaj - αbj ) βj can be ignored, and t =

( ε→a-ε
→

b)×ε
→T

q

Γ2 + (ε→a-ε
→

b)×Q
→T

q +(I
→

a-I
→

b)×ε
→T

q

Γ
can also be

ignored because of the fact that Γ≫2≤|max(ε→i) | and
Γ≫2≤|max(ε→q) | [17] .

5　 Security analysis
Inspired by Fu’s work, we will analyze the security of
our scheme and give a security proof in detail for known
ciphertext model and known background model. Before
the proof, we give some notations here.

(Ⅰ) History, H = ( F, I, Q) . An interaction
between the users and CSP can be defined as history. A
history can be regarded as an instantiation of such an
interaction, including a file set to be searched,
searchable indexes and a set of words that DU wants to
search for.

(Ⅱ) View, V(H)= (Enc(F), Enc(I), Enc(I)) .
Then during a query, what CSP or adversaries can
actually obtain we call as the history’ s view. view is
generated by encrypting a history with users’ secret
key. Additionally, CSP or adversaries can obtain some
common information, such as the number of files stored
in CSP.

(Ⅲ) Trace of a history, Tr(H)= Tr(q1), …, Tr

(qk) . A trace of the history H is the set of the trace of
queries Tr(H) = Tr ( q1 ), …, Tr ( qk ) consisting the
sensitive information. Specifically, Tr ( qi ) =
{(δj,sj) qi⊂δj

,1≤j≤≤| F | } , where sj is the similarity
score between the query qi and the file δj .
5. 1　 In known ciphertext model
As introduced above, an index / query is a m-bit bloom
filter and is extended to a (2m)-dimensional vector.
Considering index an Ii

→, it is encrypted by Equation(3)
and converted by Equation(4) . Both of EMO( I

→
i) and

EM( Ii
→) can be obtained by CSP or adversaries in

known ciphertext model. In known ciphertext model,
CSP or adversaries can obtain encrypted files, encrypted
indexes, and encrypted queries uploaded by DUs and
DOs. CSP or adversaries may analyze which of histories
are generated by similar keyword sets. If CSP or
adversaries can not distinguish indexes / queries through
the methods aforementioned, we can say that our
scheme is secure in the known ciphertext model.

Theorem 5. 1 　 Our scheme is secure under the
known ciphertext model.

Proof 　 Firstly, we need to prove the
confidentiality of index / query under the known
ciphertext model.

Considering an index Ii
→, it is encrypted by

Equation(3) and converted by Equation(4) . Both of
EMO

( I
→

i ) and EM ( Ii
→) can be obtained by CSP or

adversaries in known ciphertext model. Therefore the
confidentiality of indexes depends on whether CSP or
adversaries can obtain effective information from EMO

(I
→

i) and EM(Ii
→
) .

As shown in Equation ( 9 ), the generation of
{EMO

(I
→

i) and EM( Ii
→) can both be simplified as the

multiplication of a (2m)-dimensional vector and a (2m
∗2m)-matrix. Thus the result of encryption is also a
( 2m )-dimensional vector, and there are countless
possibilities for it to be decomposed as the product of a
vector and a matrix. So as long as CSP or adversaries
can not get the secret key, it is difficult for them to
deduce the semantic content of the encrypted index.

EM(Ii
→
) = EMO

(Ii
→
)) ×M′O =

(Γ·Ii
→ + εi

→) ×MO ×M′O =
(Γ·{Ii

→ + εi
→) ×M (9)

　 　 In addition, we need to proof the indistinguishability
of index / query under the known ciphertext model. The
indistinguishability of index lies in the encryption
algorithm we use and the random number we introduce
in the encryption processes. Here we first prove the
indistinguishability of index, of which the prerequisite is
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known ciphertext attack resistance. As shown in
Equation (9), the encryption of Ii

→ can be interpreted as
the secure KNN encryption of (Γ·Ii

→ +εi
→
). Thus the

known ciphertext attack on (Γ·Ii
→+εi

→) can be resisted,
which has already been proved in Reference [ 14 ] .
Furthermore, based on the random integer vector εi

→

introduced for each Ii
→, we cannot distinguish

(Γ·I1
→+ε1

→) and ( {Γ·I2
→+ε2

→) whether are generated
from different Ii

→. So, the indistinguishability of index
Ii
→ can be guaranteed.
5. 2　 In known background model
Under the known background model, CSP or adversaries
are able to gain a certain number of index and query
pairs. They will infer the indexes stored in CSP by
matching the known indexes, or analyze the difference
of search result by operating multiple queries on the
same index. Meanwhile, CSP or adversaries will obtain
selected background information such as a certain
amount of the keyword and query pairs and try to
recover the encrypted indexes through linear analysis.
Intuitively, CSP or adversaries cannot distinguish
simulator’ s view from the view he owns. So if a
simulator can generate an indistinguishable view, we
can say that our scheme is secure under the known
background model.

Theorem 5. 2 　 Our scheme is secure under the
known background model.

Proof　 First of all, Yao et al[18] found that if the
adversary gets enough ciphertext and corresponding
plaintext, he can obtain some information through linear
analysing. However, the adversary in our scheme
cannot obtain plaintext-ciphertext pair in the known
background model. In our scheme, after transforming
keywords to vector, it will be extracted with extraction
parameters. And these parameters are kept as secret by
users. Therefore, even the adversary can obtain some
keyword sets, he still cannot get any information
through linear analysing under the known background
model.

In addition, in order to prove our scheme is secure
under the known background model, we denote S as a
simulator that can simulate a view V′ which is
indistinguishable from CSP’s view . Then we construct
the simulator as follows:

(Ⅰ) we generate F′, S select a δi′∈{0,1} | δi | ,δi∈
F,1≤i≤≤|F | randomly, and outputs F′={δi′,1≤i≤
|F′ | } .

(Ⅱ) S selects a random invertible matrices M′∈
ZZ 2m∗2m

h , setting SK′={M′,M′-1} .
(Ⅲ) S generates query vector Q′i that number of 1s

in q′i is the same as the number of 1s in Qi and extends

the q′i by inserting random numbers. Then encrypt it
using M′-1 and obtain EncM′-1(Q′) .

(Ⅳ) S generates I(F′) as follow: S first generates
a m-bit null vector for δi′∈F′,1≤ i≤≤ | F′ | as the
index, denoted as I′δi′. Insert keywords and extend to a
2m-bit vector. Then, S generates I(F′) as EncM′( Iδ′j,
1≤i≤≤| F′ | ) . Finally, S outputs the view V′= (F′,
EncM′(I(F′)), EncM′-1}(Q′)) .

The construction is correct since the search result
on I(F′) with the query EncM′-1(Q′) is same as the
trace which CSP has. Because the hash functions in
bloom filter are indistinguishable, the adversary cannot
distinguish the output of the linear analysis from a
random string. We claim that no probabilistic
polynomial-time (P. P. T. ) adversary can distinguish
the view V′ from V(H) .
5. 3　 Privacy preservation in multi-user scenario
In multi-user scenario, different DUs will make queries
in the same repository at the same time. These DUs
should not be able to know the corresponding queries of
other DUs, which can not be guaranteed in some
schemes[3,4] .

In our scheme, the queries from different DUs for
the same repository are encrypted under their own keys
MOθ

as Equation(6) . So, even if a DU obtains other
DUs’ TQUθ

, he / she is still not able to decrypt these
queries. After receiving DUs’ TQUθ

, CSP will convert
TQUθ

to TQ as Equation (7) which is encrypted under

SK=M-1 . And nobody has SK to decrypt TQ except
TA.

Therefore, our scheme can achieve privacy
preservation in multi-user scenario.

6　 Performance evaluation
In this section, we evaluate the performance of our
scheme by implementing our system in PYTHON on a
Windows 10 server. We use RFC ( Request For
Comments) database (RFC) [19] as our data set. We
choose approximately 1000 files as our experimental
data. In the experiments, we set the false positive
probability f to 0. 01 for the bloom filter. Then, the 20
most frequently occurring words are set as the keywords
of files. Meanwhile, the top 10 files will be returned as
the final result. Next, we conduct a detailed analysis
through our experimental data.
6. 1　 Comparison
In this subsection, we summarize and compare the
existing fuzzy search schemes, of which the results are
shown in Table 1. We can see that schemes in
References [3,4] use secure KNN to encrypt the index
including all the keywords for each file. However,
schemes in References [5,6] choose to encrypt letters
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Table 1. Comparison with other fuzzy search schemes.

schemes encrypted object encryption algorithm multi-keyword wildcard query multi-user set

Wang[3] index of a file secure KNN yes no no

Fu[4] index of a file secure KNN yes no no

Kim[5] letter of a keyword homomorphic encryption no yes no

Yang[6] substring of a keyword homomorphic encryption no yes no

Our scheme index of a file multi-user set secure KNN yes yes yes

Table 2. Comparison of the Computational Overhead for One Time Search.

schemes
DO

Index
generation

index
encryption

DU

query
generation

query
encryption

CSP

index
conversion

query
conversion search

Wang[3] rl∗H 2m∗Dm rl∗H 2nm∗Dm - - 2n∗Dm

Fu[4] rl∗H 2m∗Dm rl∗H 2nm∗Dm - - 2n∗Dm

Our scheme rl∗H+L∗RT m∗Dm rl∗H+L∗RT m∗Dm m∗Dm nm∗Dm n∗Dm

or substrings of a keyword by Homomorphic encryption
supporting wildcard query. Encrypting letters or
substrings makes schemes[5,6] to support wildcard
queries, but this also leads to the scheme only
supporting single keyword search. Due to the encryption
based on keywords in References [3,4], these schemes
can be applied in multi-keyword scenario, but they are
unable to support wildcard query. It is noted that all the
existing fuzzy search schemes cannot support the multi-
user scenario.
　 　 The encryption in our scheme is also based on all
the keywords in indexes, we introduce a new keyword
transformation method to make our scheme able to
support both of wildcard query and keyword
misspelling. In particular, we apply an improved secure
KNN so that our scheme can support multi-user
scenario. In summary, only our scheme can support
multi-keyword scenario, wildcard query, multi-user
scenario simultaneously.
6. 2　 Efficiency
(Ⅰ) Computational overhead analysis. Here, we
compare the computational complexity of our scheme
with exiting works[3,4] in the multi-user scenario, which
also use the secure KNN to conduct encryption. First of
all, we represent the hash operation and rotation
operation as H and RT respectively. And we use Dm to
denote an m-dimensional dot product operation in the
rest parts of this paper for expression simplicity.
Specifically, given two m-dimensional vectors I

→ = { i1,
i2,…,im} and Q

→ ={q1,q2,…,qm} , a Dm operation on

them is I
→ × Q

→ = ∑
m

j = 1
i jqj . Then the multiplication of a

m-dimensional vector and a (m∗m)-matrix can be

expressed as m∗ Dm, and the multiplication of two
(m∗m)-matrixes can be expressed as m2∗Dm .

Now we assume that a DU makes a query for each
of the n DOs, where each index / query has r keywords,
the average length of all the keywords is L, and the
number of hash functions used in bloom filter is l. The
computational overhead of index / query generation is rl
∗H in Wang’s and Fu’s schemes. But in our scheme,
since we introduce the permuterm index, DO/ DO needs
to conduct extra L times rotation operations during
index / query generation. Since the secure KNN we
apply is more efficient than that adopted in Wang’s and
Fu’s schemes, the index encryption only has m∗Dm .
But in multi-user scenario, DU in Wang’ s and Fu’ s
scheme needs to conduct n times encryption on the
query for different DOs, therefore the overhead of query
encryption is much larger than that in ours scheme,
which is 2nm∗Dm . In our scheme, to achieve efficient
fuzzy search in multi-user scenario, CSP needs to
conduct index and query conversion uponding receiving
corresponding ciphertext, of the overhead is m∗Dm,
nm∗Dm respectively. But the compared schemes do not
have these steps. For the search step, Wang’s and Fu’
s schemes have the same computational overhead, which
is 2n∗Dm . And the computational overhead for the
search step in our scheme is n∗Dm . We list the detailed
analysis results of the computational overhead in Table
2.

(Ⅱ) Experimental results of computational
overhead. Figure 5 shows running time of the keyword
transformation, index generation, index encryption,
index convertion and search.

Because the index structure in our scheme is a per
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Figure 5. The computational overhead of our scheme.

file-based index, each file needs to generate an index
and the generation time increased linearly with respect to
the number of files. And the running time of index
encryption and index convertion are also linear in the
number of files. From Figure 6 (a), we can see that
when the number of files is 1000, the running time of
keyword transformation and the index generation are
1. 71 seconds and 2. 73 seconds, respectively. The key
transformation includes word frequency statistics and the
generation of substring set. And the running time of
search is mainly affected by the number of files. When
the number of files is 1000, the search time is
approximately 4. 3 seconds. Figure 6 ( b) shows the
running time of index encryption and index convertion
are also linear in the number of files which are only one-
time efforts.
6. 3　 Result accuracy
In this subsection, We measure result accuracy, which

is defined as
tp

tp+fp
. Here tp represents the true positive,

Figure 6. The performance matrices of accuracy with respect
to the number of query keywords.

and fp represents the false positive. The main factors
affecting the precision of our scheme are the number of
query keywords, the number of fuzzy keywords, and
the form of fuzzy keywords. Therefore, our experiment
revolves around these three factors.

(Ⅰ) The affection of the number of query
keywords. Figure 6 shows the trend of accuracy rate
with respect to the number of query keywords when
there is one fuzzy keyword in each keyword set.

From Figure 6, it’s not hard to see that the search
accuracy rates of our scheme are higher than those of the
other two schemes when the number of keywords larger
than 2, which is always above 95%. The reason for the
accuracy improving in our scheme is mainly the use of
the new method for index generation.

(Ⅱ) The affection of the number of fuzzy
keywords. In order to observe the relationship between
the number of fuzzy keywords and the search accuracy,
we considered two cases with 5 and 10 query keywords
respectively, of which the results are shown in Figure 7
and Figure 8. In Figure 7, due to the number of query
keywords is small, the overall accuracy rate shows a
downward trend. But our scheme ’ s accuracy rate
decreases much more slowly than Wang’ s and Fu’ s
schemes. And the accuracy rate of our scheme is still
acceptable when other two schemes could not return the
correct result. In the case with 10 query keywords, the
accuracy rate of our scheme appears a turning point
when the number of fuzzy keywords reaches 7, which is
shown in Figure 8. Then, the accuracy rate of our
scheme is gradually reduced and reaches the minimum
value of 70% when all keywords are fuzzy keywords.
While the accuracy rate of other two schemes is
decreased from 100% to 10% sharply as the number of
fuzzy keywords is increased from 6 to 10.

(Ⅲ) The affection of the type of fuzzy keywords:
We first compare our scheme with schemes[3-6] in terms
of the capabilities of dealing with all possible types of
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Table 3. Different Types of Fuzzy Keyword.

query keyword index keyword Our scheme Wang[3] Fu[4] Kim[5] Yang[6]

im∗vement

improv∗

∗provement

imprvoement

imprdvement

imprment

improvnmement

improvement

yes no no yes yes

yes no no yes yes

yes no no yes yes

yes yes yes no no

yes yes yes no no

no yes yes no no

no yes yes no no

thing night no yes no no no


Figure 7. The accuracy rates with respect to the number of
fuzzy keywords in the case of 5 query keywords.

Figure 8. The accuracy rates with respect to the number of
fuzzy keywords in the case of 10 query keywords.

fuzzy keywords, which is illustrated by Table 3.
“yes” means that the index keyword and the query
keyword can be matched, and “ no” means that they
can not be matched. We can see that wildcard query

keyword like “ im∗vement, improv∗, ∗provement”
can be solved in our scheme, Kim’ s scheme, and
Yang ’ s scheme. General spelling error like
“ imprvoement, imprdvement” can be solved in our
scheme, Wang’ s scheme, and Fu’ s scheme. And
keywords composed of the same letters in different
order like “ thing, night” can be distinguished in our
scheme and Fu’s scheme. In summary, other schemes
are only able to deal with a subset of keywords while
our scheme is able to deal with all types of fuzzy
keywords.

Then, we measure the accuracy rates when
keywords are displayed in different forms, including
replacing letters (RL), wildcard query (WQ), and
reversing the order of two letters (ROTL) . The results
are shown in Figure 9. In this part, we set at least 4
fuzzy keywords in a query. In the case of ROTL, we
randomly select two keywords and exchange the two
letters in each keyword, e. g. , from “ program” to
“ prgoram” . The accuracy rates grow from 75% to
90% as the number of query keywords is increased
from 4 to 6, and then it stays at 95% . And in order to
simulate RL, we randomly choose several letters and
replace them with other letters for each keyword. The
general trend of RL is the same as that of ROTL.
There is a growth period as the number of keywords is
increased from 4 to 6, and a stable period from 6 to
10. Meanwhile, RL performs better than ROTL when
the fuzzy keywords account for a large proportion.
When the number of accurate keywords are more than
that of fuzzy keywords, the accuracy of ROTL is
higher. As for the case of WQ, we randomly replace
several letters with wildcard character “∗” . Different
from RL and ROTL, the accuracy rate of WQ always
stay above 90% as the number of keywords is
increased from 4 to 10. Obviously, the accuracy rate
of WQ is not affected by the proportion of fuzzy
keywords, and it always maintains high accuracy.

The reason for such results is that keyword
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Figure 9. The accuracy rates with respect to the types of
fuzzy keywords.

transformation in our scheme is the permuterm index
which is aimed at wildcard query. From these three
kinds of fuzzy search, we note that the correct results
can be returned when the proportion of fuzzy keywords
is more than 50% . And our scheme is the most
suitable for the wildcard query.

According to the above experiments, we can draw
a conclusion that our scheme is able to maintain high
precision in various cases.

7　 Relate work
7. 1　 Searchable encryption
The first construction of searchable encryption[20] was
proposed by Song et al. in 2000. On this basis, a lot
of work is committed to designing an effective
searchable encryption scheme. Cash et al[21] proposed a
scalable symmetric searchable encryption ( SSE )
scheme to support boolean query. To improve the
search experience, the multi-keyword rank searchable
encryption ( MRSE ) mechanism is proposed[22-25]

where CSP can return the top-k results according the
similarity of keyword sets. At present, the research
direction of searchable encryption can be roughly
divided into the functional improvement of public key
encryption with keyword search ( PEKS ) and the
dynamic security of symmetric searchable encryption
(SSE) [26-29] . Existing schemes of PEKS mainly focus
on multi-keyword search[7,30] and authorized keyword
search[31-35] .
7. 2　 Fuzzy search over encrypted data
Noteworthy, the above schemes only support accurate
keyword searches. Thus many attentions have been
drawn to fuzzy keyword search over encrypted data.
Concretely, the first work[36] focusing on fuzzy search
over encrypted data exploited edit distance to quantify
keywords similarity between the predefined extend

keyword set and the fuzzy keyword. But it only
supports the single keyword fuzzy search and needs to
predefine extend keyword set. Reference [3] proposed
a multi-keyword fuzzy searchable encryption scheme
without a predefined fuzzy set. In their work, a
keyword is first transformed into a substring set
containing the bi-grams of the keyword and evaluate
keywords similarity according to the Euclidean
distance. For example, the substring set of “ fuzzy” is
{“ fu”, “ uz”, “ zz”, “ zy”} . The problem of this
approach is that it’ s only able to solve the mistakes
with only one letter misspelled. To improve the
tolerance of misspelling, Fu et al[4] designed a new
method of keyword transformation. Differently, the
keyword “ fuzzy” is represented as {“ f1 ”, “ u1 ”,
“z1”, “z2”, “y1”} . And schemes in References [5,
6] introduce wildcard to represent any character in
order to tolerate more complicated keyword
misspelling. In their work, they choose to split up the
keyword and encrypt the substrings of each keyword by
homomorphic encryption. Obviously, the
computational overhead of these two schemes is
extremely high and their work can only solve wildcard
query. Therefore, how to improve the fault tolerance
and accuracy while bringing less computational
overhead is the main problem in fuzzy search over
encrypted data.
7. 3 　 Searchable encryption considering multi-user

set
In cloud storage scenario, multiple users upload and
download files, the access permission between data
owners and data users is a many-to-many relationship.
For the calculation between query and index, data users
must encrypt their queries under the corresponding key
of the data owner. The data owner has to share his / her
secret key with data users to support keyword
searching, which may lead to privacy disclosure.
Meanwhile, it is necessary for data users to encrypt the
same query index multiple times for different files from
different data owners, which greatly increases the
overhead of communication and computation.

Regarding the above challenges in the multi-user
setting, many efforts have been made on the searchable
encryption by applying a new encryption
algorithm[7-9] . Yang et al applied a new homomorphic
encryption scheme in a traditional keyword searchable
encryption scheme[7], where the calculation result of
data encrypted by different keys can be decrypted by
the sum of two keys. Considering image retrieval in the
multi-user scenario, the scheme in Reference [ 8 ]
applies an improved encryption algorithm to encrypt
images. As for Reference [9], Cheng et al solved the
problem of multi-key searchable encryption in
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database. Based on homomorphic encryption, they
introduced two cloud to conduct collaborate
computing, ensuring the computability and privacy of
data. However, these schemes cannot efficiently or
effectively be applied to fuzzy search.

8　 Conclusion
In this paper, we proposed a multi-user multi-keyword
fuzzy search scheme over encrypted cloud storage. We
utilized permuterm index to design a new keyword
transformation method, which enables our scheme to
achieve wildcard query, making the scheme able to
deal with more varieties of misspellings in keywords.
By replacing the LSH used in the bloom filter to
standard hash function, our scheme improves the
accuracy rate when there are multiple fuzzy keywords.
Moreover, our scheme adopts a new efficient key
conversion protocol where encrypted indexes and
queries are re-encrypted by CSP. In such way, our
scheme can achieve efficient fuzzy search in the multi-
user scenario. Through comprehensive security analysis
and the experiments on real data set, we demonstrated
that our scheme is efficient, effective, and feasible in
the area of searchable encryption.
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摘要: 随着云计算平台的普及与推广,越来越多的企业和个人选择将数据外包到云以降低本地的维护成本,因
此用于解决加密数据上关键字搜索问题的可搜索加密技术(searchable encryption,SE)变得越来越重要. 模糊搜

索概念的引入主要是为了解决查询关键词出现错误的情况. 然而,现有的支持模糊搜索的可搜索加密方案不仅

在多用户场景中具有很高的计算和通信开销,而且不能在保证有效准确率的前提下解决各种关键词错误类型.
为此提出了一种多用户场景下支持多关键字模糊搜索的可搜索加密方案. 具体来说,我们引入轮排索引来支持

多关键字通配符搜索,可以以更高的正确率支持更多类型的模糊关键词. 此外,通过让云服务器对索引信息进

行重加密,本方案支持多用户场景非密钥共享的模糊搜索,有效降低了用户的计算开销并提高了隐私保护水

平. 实验结果表明,与现有方案相比,该方案不仅具有较高的准确率,而且能够以可接受的计算开销支持多种拼

写错误的关键字搜索.
关键词: 加密云存储;代理重加密;隐私保护;可搜索加密
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