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Abstract: The data envelopment analysis (DEA) is an important data-driven method for the performance
evaluation and performance improvement of a set of peer decision making units (DMUs), involving
multiple inputs and multiple outputs which are identified as performance indicators. However, some
performance indicators, unlike conventional DEA models with one single value, may have more than one
value because of different definitions or measurement standards referring to multi-valued indicators. In
addition, the performance indicators reflect the current status of DMUs, which ignore the goals of
decision-makers. We first propose two modified slacks-based DEA models to deal with multi-valued
indicators and provide the Pareto-optimal solution in two common decision-making scenarios, namely the
decentralized and centralized decision-making cases. Furthermore, we extend the models by
incorporating with the goals of decision-makers to help the DMUs improve their performance and get
close to the goals of decision-makers as much as possible. The slacks-based approaches and integration of
goals enhance the discriminability of the models to DMUs and provide more practical improvement for
some indicators. A case study of 22 cities in the Yangtze River delta region in China is used to illustrate
the effectiveness and practicality of our proposed models.
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1　 Introduction
The data envelopment analysis (DEA), first proposed
by Charnes et al[1], is a well-known non-parametric
data-driven tool for building a composite index (e. g. ,
performance, benchmarking) of a set of homogeneous
DMUs consuming multiple inputs to produce multiple
outputs[2,3] . As one of the most important evaluation
tools, DEA has been developed rapidly in both theory
and application over the past four decades[4,5] . People
now pay more and more attention to the environment.
The DEA is a widely used method on energy and
environment, where it usually involves the undesirable
outputs in the researches[6], such as air pollutants. The
decision-makers usually prefer to a smaller amount of
undesirable outputs and the ways to deal with the
undesirable outputs are widely studied in existing
literatures[7,8] .

In DEA modeling and applications, the selection of
performance indicators (inputs / outputs) is crucial to the
robustness of the evaluation results since the evaluation

results may change with the selection of input and
output indicators[9] . Therefore, some studies on the
selection of performance indicators have been developed
in DEA literatures and have been employed in different
ways, such as the principal component analysis[10] and
the aggregation method[11] . Usually, two considerations
occur in the selection of performance indicators. One is
that the data of some performance indicators may be
missing. The other is that the traditional DEA methods
assume that the inputs / outputs are respectively
independent corresponding to one value. However,
some input / output indicators may have more than one
single value in practice because of various measurement
standards or definitions; such indicators are identified as
multi-valued indicators[12] . For example, both PM 10
and PM 2. 5 are selected to measure the concentration of
the particulate matter in the air. Accordingly, one
challenge in the application of DEA is to select an
appropriate value for multi-valued inputs / outputs. To
date, only a few research efforts, such as Toloo and
Hančlová[12], have proposed selecting methods based



on the directional distance function (DDF) to solve the
problem of multi-valued indicators.

Furthermore, the decision-makers’ goals, which
reflect their preferences for performance evaluation and
improvement direction, also play a decisive role in the
selection of performance indicators. The performance
indicators are directly related with the results of
performance evaluation in DEA methods. The multi-
valued indicators under different standards refer to
different decision-makers ’ goals. In other words,
selecting an appropriate value for a multi-valued
indicator is inevitably influenced by decision-makers’
goals, which further affects the results of performance
evaluation and improvements. Sales targets, target yield
for corporations, and air pollutant concentration limits
are common examples of decision-makers’ goals, seen
as the expected level. Such goals significantly impact
performance evaluation in real-world situations.
However, traditional DEA methods focus on
comparisons among peer DMUs to provide evaluation
and benchmarks without considering the goals of
decision-makers. To fill this gap, indirect and direct
DEA based approaches taking into account the goals of
decision-makers have been proposed[13-15] . The former
approaches replace the decision-makers ’ goals with
other values such as utility. Lozano et al[ 16] propose a
bargaining based DEA approach considering the utility
instead of goals to improve the performance of
inefficient DMUs, while the complicated calculation
process limits its utilization. The latter approaches
handle the decision-makers’ goals in a direct way. For
example, Stewart[17] proposes a new DEA model which
constructs new reference points with the goals of top
managers as benchmarks. Azadi et al[18] apply a goal-
directed benchmarking method for supplier selection.
Ruiz and Sirvent[19] introduce a DEA method to
generate strongly efficient targets which satisfy the
requirement of minimum distance to the goals and to the
current performance. Besides, the goals are often
established to plan the improvement. However, there
are some goals that cannot be achieved at current
production situation, referring to overly high goals, and
there are also some goals that are unambitious, which
cannot effectively guide the improvement, referring to
overly low goals[20] . The DEA targets provide the best
practices[19] . Accordingly, we further incorporate the
decision-makers’ goals into our approaches to handle
the problem of multi-valued indicators.

Based on the above analysis, we build on the
following works in our current study. Following the
work of Toloo and Hančlová[12],we first tackle the
problem of multi-valued indicators by proposing
modified slacks-based models, which allows different
proportional improvement for all inputs and outputs to

obtain one suitable single value for each multi-valued
indicators. Furthermore, we incorporate the decision-
makers’ goals into the proposed models. The new
models guide the DMUs to reach points on the best
practice frontier, which are close to the goals. Our
approaches employ the absolute distance to measure the
gaps between projection points and the goals due to the
overly high / low goals in practice. To be more
practical, this work takes the realities of decentralized
and centralized decision-making cases into consideration
to expand the scope of application.

The rest of the paper is organized as follows. In
the next section, we provide preliminaries. Section 3
introduces our proposed models to deal with the problem
of multi-valued indicators and the extended models
considering the goals of decision-makers in decentralized
and centralized decision-making cases. In Section 4, we
apply our models to evaluate the environmental
performance of the cities in the Yangtze River delta
region in China. Finally, we conclude the paper and
discuss further extensions.

2　 Preliminaries
In this section, we introduce notations and the
preliminaries of multi-valued indicators, the slacks-
based model, and the DDF method of Toloo and
Hančlová[12] . We first list the related notations shown
in the following Table 1, which mainly involves the
single-valued indicators and multi-valued indicators.
The notations in Table 1 help better understand our
methods.

We note the following relationship: IS ∪ IM = I,
IS ∩ IM = ⌀RS ∪ RM = R, RS ∩ RM = ⌀FS ∪ FM = F,
and FS ∩FM = ⌀In addition,we have IMp ⊆ IM, RM

q ⊆RM,
and FM

u ⊆ FM , and respectively use the binary
variables δxi , δyr , and δbf to denote the selected
situation for ith multi-valued input, rth multi-valued
desirable output, and fth multi-valued undesirable
output, which are defined as follows:

δxi =
1, if ithmulti-valued input is selected
0, otherwise{

δyr =
1, if rthmulti-valued desirable output is selected
0,otherwise{

δbf =
1, if fthmulti-valued undesirable output is selected
0,otherwise{

(1)
　 　 We usethe following three vectors x ∈ Rm, y ∈
Rs and b ∈ Rl to represent inputs, desirable outputs,
and undesirable outputs. Constructed by the inputs and
outputs of all DMUs, the production technology T is
defined as follows:

T = {(x,y,b) | x can produce y and b} (2)
　 　 Denoted matricesX, Y and B as X = [xij] = [x11,
…,xmn] ∈ Rm×n, Y = [yrj] = [y11,…,ysn] ∈ Rs×n
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Table 1. Illustration of the notations.

Constants

n number of DMUs

m number of inputs

s number of desirable outputs

l number of undesirable outputs

P number of multi-valued inputs

Q number of multi-valued desirable outputs

U number of multi-valued undesirable outputs

IMp number of values for the pth(p = 1,…,P) multi-valued input

RM
q number of values for the qth(q = 1,…,Q) multi-valued desirable output

FM
u number of values for the uth(u = 1,…,U) multi-valued undesirable output

SI number of single-valued inputs

SR number of single-valued desirable outputs

SF number of single-valued undesirable outputs

DEA variables


xij ith( i = 1,…,m) input of DMUj( j = 1,…,n)


yrj rth( r = 1,…,s) desirable output of DMUj( j = 1,…,n)

bfj
fth( f = 1,…,l) undesirable output of DMUj( j = 1,…,n)

Sets


I input set IS single-valued input set IM multi-valued input set


R desirable output set RS single-valued desirable output
set RM multi-valued desirable output

set
F undesirable output set FS single-valued undesirable

output set FM multi-valued undesirable output
set

IMp set of all available values for the pth(p = 1,…,P) multi-valued input

RM
q set of all available values for the qth(q = 1,…,Q) multi-valued desirable output

FM
u set of all available values for the uth(u = 1,…,U) multi-valued undesirable output

and B = [bfj] = [b11,…,xln] ∈ Rl×n . The technology
set under variable returns to scale (VRS) is given as:
T(x) = {(y,b) | x≥ λX,y≤ λY,b≥ λB,≥0,λTe =
1} , where an vector representing intensity variable.
The VRS assumption is a broader scenario in reality
since the full proportionality assumption under CRS
assumption is not often satisfied[21] . We deal with
undesirable outputs following the strong disposability
assumption[22] . The reason is that the implicit
assumption of the weak disposability is that all DMUs
use the same abatement factor, which is inconsistent
with the practice of focusing emission reduction efforts
on DMUs with less emission reduction costs[23]; some
outputs are also inappropriate for weak disposability
assumption like SO2 emissions[24] .

2. 1　 Modified slack-based model
According to the slacks-based measure (SBM), which
is first proposed by Tone[25] and later extended to the
situation with undesirable outputs. We use the
following modified slacks-based model to measure the
inefficiency of a specific DMUo .

maxρo =
1

m + s + l
(∑m

i = 1

s -io
xio

+ ∑ s

r = 1

s +ro
yro

+ ∑ l

f = 1

s -fo
bfo

),

s. t. xio = ∑
j∈J

λ jxij + s -io,i ∈ I (3. 1)

yro = ∑
j∈J

λ jyrj - s +ro,r ∈ R (3. 2)

bfo = ∑
j∈J

λ jbfj + s -fo,f ∈ F (3. 3)

∑
j∈J

λ j = 1,
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λj,s
-
io,s

+
ro,s

-
fo ≥0,j ∈ J,i ∈ I,r ∈ R,f ∈ F (3.4)

(3)
　 　 The objective function is different from the model
proposed by Tone[25], which is also widely used in
practice[26,27] and avoid the non-linear problem of the
SBM model. We see that model (3) meets the null-
joint assumption in dealing with undesirable outputs,
which means that there can be no desirable outputs if
there are no undesirable outputs. In model (3), s -i ,
s +r , and s -f are respectively the slacks of the ith input,
rth desirable output, and fth undesirable output, which
are first defined by Charnes et al[28] . The ρo satisfies the
properties of unit invariance and monotonicity, which is
consistent with the classic slacks-based measure[25] .
Denote ρ∗

o (s
-∗
i ,s +∗r ,s -∗f ,λ∗

j ),i ∈ I,r ∈ R,f ∈ F,j ∈
J as the optimal objective function value of model (3) .
With this notation, (0m,0s,0l,eo) is one feasible
solution of model (3), where e∈ Rn represents the oth
component is 1 and the rest are 0. Then we have ρ∗

o ≥0
since this is a maximization problem. Obviously, DMUo

is efficient if ρ∗
o = 0, otherwise it is inefficient, which

means that ρo measures the inefficiency score of DMUo .
DMUo is Pareto-Koopmans efficient when ρ∗

o = 0.
Following the definition proposed by Scheel[29], if
DMUo(xo,yo,bo) is Pareto-Koopmans efficient, there is
no DMUa(xa,ya,ba) in technolody set such that xa ≤
xo, ya ≥ yo , and ba ≤ bo with at least one strict
inequality. In model (3), ρ∗

o = 0 means s+∗ro = s-∗io =
s -∗fo = 0,i ∈ I,r ∈ R,f ∈ F , which indicates DMUo is
located on the efficient frontier. If a point (xa,ya,ba)
exists which satisfies xa < xo or ya > yo or ba < bo or
any combinations of these three strict inequalities, then
(xa,ya,ba) is not in the technology set and the slacks
will be negative. The negative slacks contradict
(xa,ya,ba) ∈T and s -io ≥0, s +ro ≥0, s -fo ≥0. There is
no strict inequalities, which implies DMUo(xo,yo,bo) is
Pareto-Koopmans efficient when the ρo = 0.
2. 2　 Multi-valued measures selection based on DDF
Toloo and Hančlová[12] propose the DDF model to
select suitable value for the multi-valued indicators,
presented as

maxβ
s. t. ∑

j∈J
λjxij ≤ xio,i ∈ IS (4. 1)

∑
j∈J

λjxij ≤ xio + M(1 - δxio),i ∈ IMp ,p = 1,…P

(4. 2)

∑
j∈J

λjyrj ≥ (1 + β)yro,r ∈ RS (4. 3)

∑
j∈J

λjyrj ≥ (1 + β)yro - M(1 - δyro),

r ∈ RM
q ,q = 1,…Q (4. 4)

∑
j∈J

λjbfj = (1 - β)bfo,f ∈ FS (4. 5)

∑
j∈J

λjbfj ≤ (1 - β)bfo + M(1 - δbfo),

f ∈ FM
u ,u = 1,…U (4. 6)

∑
j∈J

λjbfj ≥ (1 - β)bfo - M(1 - δbfo),

f ∈ FM
u ,u = 1,…U (4. 7)

∑
i∈IMp

δxio = 1,p = 1,…P (4. 8)

∑
r∈RMq

δyro = 1,q = 1,…Q (4. 9)

∑
f∈FMu

δbfo = 1,u = 1,…U,

δxio,δyro,δbfo ∈ {0,1},i ∈ IM,r ∈ RM,f ∈ FM

(4. 10)
λj ≥0,j ∈ J,i ∈ I,r ∈ R,f ∈ F (4. 11)

(4)
where M is a large positive number. Denote the β∗ as
the optimal objective function value, where β∗ ≥ 0.
Constraint (4. 5) ensures β∗ ≤ 1. Model (4) ignores
the slacks, which may not guarantee the Pareto optimal
solution. Besides, it does not consider the inefficiency
of inputs, thus over estimating the performance.

3　 Methodology
In this section, we introduce two modified slacks-based
models to handle the problems of multi-valued input /
output indicators. Then we incorporate the decision-
makers’ goals to extend the models. Our models
consider decentralized decision-making cases and
centralized decision-making cases.
3. 1 　 Modified slacks-based models without goals in

the presence of multi-valued indicators
3.1.1　 Decentralized decision-making case without goals
In the decentralized decision-making case, DMUs make
decisions independently of each other. Therefore, each
DMU is evaluated by using its own preferred standards
referring to specific value of multi-valued performance
indicators. Here, we define ρMo for a specific DMUo as
follows:

ρM0 =
(∑

i∈IS

s -i
xi0

+ ∑
P

p = 1
∑
i∈IMp

s -i δxi
xio

+ ∑
r∈RS

s +r
yr0

+ ∑
Q

q = 1
∑
r∈RMq

s +r δyr
yro

+ ∑
f∈FS

s -f
bf0

+ ∑
U

u = 1
∑
f∈FMu

s -f δbf
bfo

)

SI + P + SR + Q + SF + U
,
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which measure the inefficiency of the DMUo through the
ratio of slacks and the original value of input / output
indicators, and ρM0 ≥ 0. The following model (5) is
applied to yield the maximum improvements for DMUo ,
given the ρM0 .

maxρMo 　 　 　 　 　 　 　 　 　 　 　
s. t.∑

j∈J
λjxij = xio - s -io,i ∈ IS (5. 1)

∑
j∈J

λjxij ≤ xio - s -io + M(1 - δxio),

i ∈ IMp ,p = 1,…P (5. 2)
∑
j∈J

λjxij ≥ xio - s -io - M(1 - δxio),

i ∈ IMp ,p = 1,…P (5. 3)
∑
j∈J

λjyrj = yro + s +ro,r ∈ RS (5. 4)

∑
j∈J

λjyrj ≤ yro + s +ro + M(1 - δyro),

r ∈ RM
q ,q = 1,…Q (5. 5)

∑
j∈J

λjyrj ≥ yro + s +ro - M(1 - δyro),

r ∈ RM
q ,q = 1,…Q (5. 6)

∑
j∈J

λjbfj = bfo - s -fo,f ∈ FS (5. 7)

∑
j∈J

λjbfj ≤ bfo - s -fo + M(1 - δbfo),

f ∈ FM
u ,u = 1,…U (5. 8)

∑
j∈J

λjbfj ≥ bfo - s -fo - M(1 - δbfo),

f ∈ FM
u ,u = 1,…U (5. 9)

∑
i∈IMp

δxio = 1,p = 1,…P (5. 10)

∑
r∈RMq

δyro = 1,q = 1,…Q (5. 11)

∑
f∈FMu

δbfo = 1,u = 1,…U (5. 12)

δxio,δyro,δbfo ∈ {0,1},i ∈ IM,
r ∈ RM,f ∈ FM (5. 13)
∑
j∈J

λj = 1,

λj,s
-
io,s

+
ro,s

-
fo ≥0,j ∈ J,i ∈ I,r ∈ R,f ∈ F

(5. 14)
(5)

where M is a large positive number. (In our application,
M is set equal to 106) . In model (5), the inequalities
ensure that the appropriate value of multi-valued input /
output indicators can be selected for DMUo . To be
specific, for the multi -valued inputs, δxio = 1 means
∑
j∈J

λjxij ≤ xi0 - s -io , and∑
j∈J

λjxij ≥ xio - s -io, so that the

constraints ∑
j∈J

λjtxij = xi0 - s -i are always satisfied for

DMUo , that is, the ith input indicator is selected.
Otherwise, δxio = 0 implies that the ith input indicator is
abandoned. Analogous meanings are applied to multi-

valued desirable outputs and multi -valued undesirable
outputs.

Let
ρ(5)∗(s -∗i∈IS∪IMp ,s

+∗
r∈RS∪RMq ,s

-∗
f∈FS∪FMu ,δ

x∗
i∈IMp ,δ

y∗
r∈RMq ,δ

b∗
f∈FMu ,

∗)
denote the optimal objective function value of model
(5) . DMUo is identified as efficient if ρ(5)∗ = 0;
otherwise, it is inefficient. Also, we respectively obtain
the selected values for multi-valued inputs, multi-valued
desirable outputs, and multi-valued undesirable outputs
when δx∗i∈IMp

= 1, δy∗r∈RMq
= 1, and δb∗f∈FMu

= 1.
Additionally, for any inefficient DMUo , the targets of
inputs, undesirable outputs, and undesirable outputs can
be expressed as follows.

x∗
io = xio - s -∗io ,i ∈ IS

x∗
io = xio - s -∗io ∗δx∗io ,i ∈ IMp ,p = 1,…P
y∗
ro = yro + s +∗ro ,r ∈ RS

y∗
ro = yro + s +∗ro ∗δy∗ro ,r ∈ RM

q ,q = 1,…Q
b∗
fo = bfo - s -∗fo ,f ∈ FS

b∗
fo = bfo - s -∗fo ∗δb∗fo ,f ∈ FM

u ,u = 1,…U

ü

þ

ý

ï
ï
ï
ï

ï
ï
ïï

(6)

　 　 Then, in order to demonstrate the advantages of
our model, we also use the model (3) to deal with the
multi-valued indicators. We can see that our proposed
model (5) deals with multi-valued indicators problem
to obtain the inefficiency score of the evaluated DMU
with one time calculation. Accordingly, model (3 )
must be solved K times to find the optimal combination
of multi - valued performance indicators to ensure the
maximum improvement for each DMU, where K =

∏
P

p = 1
IMp ∗∏

Q

q = 1
RM

q ∗∏
U

u = 1
FM

u ; that is, K is the

number of combinations of multi-valued indicators with
each such indicators taking one of the respective value.

Specifically, model (3 ) can be converted into
model(7) to obtain the inefficiency score of DMUo by
solving the kth(k = 1,…,K) ∈  combination of multi
-valued performance indicators.

maxρko =
1

m + s + l
(∑m

i = 1

s -i0
xi0

+

　 　 　 　 ∑ s

r = 1

s +r0
yr0

+ ∑ l

f = 1

s +f0
bf0

)

s. t. xio = ∑
j∈J

λjxij + s -io,i ∈ IS ∪ IMk

yro = ∑
j∈J

λjyrj - s +ro,r ∈ RS ∪ RMk

bfo = ∑
j∈J

λjbfj + s -fo,f ∈ FS ∪ FMk

∑
j∈J

λj = 1,

λj ≥0,s -io ≥0,s +ro ≥0,s -fo ≥0,j ∈ J

ü

þ

ý

ï
ï
ï
ï
ï
ï
ïï

ï
ï
ï
ï
ï
ï
ïï

(7)

　 　 In model (7), IMk, RMk , and FMkrespectively
represent the set containing the selected multi -valued
input / desirable output / undesirable output indicators in
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the kth(k = 1,…,K) combination. In addition, m =
SI + P, s = SR + Q , and l = SF + U denote the number
of inputs, the number of desirable outputs, and the
number of undesirable outputs, respectively. By
calculating model (7) K times, we obtain the optimal
objective function value ρ∗

ko(k = 1,…,K) for each
combination. Assume ρco(s

-∗
i ,s +∗r ,s -∗f ,λ∗) = max

k = 1,. . ,K

ρ∗
ko ; that is, the cth(c = 1,…,K) combination is

selected. DMUo is identified as efficient if ρco = 0.
Theorem 3. 1 　 Denote the optimal objective

function value of model (5) and the optimal objective
function value of model ( 7 ) with multi-valued
performance indicators in kth(k = 1,…,K) combination
as ρ(5)∗ and ρ(7)∗

k respectively, then it satisfies ρ(5)∗ =
max{ρ(7)∗

k ,k ∈  } .
Proof　 We assume the optimal objective function

value of model (5) is
ρ(5)∗(s -∗i∈IS∪IMp ,s

+∗
r∈RS∪RMq ,s

-∗
f∈FS∪FMu ,δ

x∗
i∈IMp ,δ

y∗
r∈RMq ,δ

b∗
f∈FMu ,

∗) .
Let the optimal solution of model (7) be the dth,d∈ 
combination of the multi - valued indicators, that is
ρ(7)∗
d = max{ρ(7)∗

k ,k ∈  } . The optimal solution of
model (5) with δ′x∗i = 1,i ∈ IMd, δ′y∗r = 1,r ∈
RMdand δ′b∗f = 1, f ∈ FMd referring to the selected
multi-valued indicators is also a feasible solution to
model (7) . We get the ρ(5)∗ ≤ ρ(7)∗

d since model (7)
is a maximization problem.

Then we assume the IMc, RMc , and FMc

respectively indicate the set of selected multi - valued
inputs, multi-valued desirable outputs, and multi-valued
undesirable outputs in the cth,c ∈  combination.
Assume the maximum optimal objective function value
of model (7) is ρ(7)∗

c (s -∗i ,s +∗r ,s -∗f ,λ∗
j ) with ρ(7)∗

c =
max{ρ(7)∗

k ,k ∈  } . The solution of model ( 7 )
incorporating with δ′x∗i = 1,i∈ IMc, δ′y∗r = 1,r∈ RMc,
and δ′b∗f = 1, f∈ FMc is also feasible solution to model
(5) . We get ρ(5)∗ ≥ ρ(7)∗

c = max{ρ(7)∗
k ,k∈ K} since

model (5) is maximization problem.
If the optimal objective function value of model(7)

is zero in all combinations of selected multi - valued
indicators, the optimal objective function value of the
model (5) is zero, according to Theorem 3. 1, ρ(5)∗ =
max{ρ(7)∗

k ,k ∈  } . In addition, when the optimal
objective function value of the model (5) is equal to
zero, the DMU is Pareto-Koopmans efficient. Through
model (5), we get the selected value of multi-valued
inputs / outputs with binary variables equal to one. Then
the combination of selected multi-valued input / output is
feasible solution to model ( 7 ), and we have the
maximum optimal objective function value of model
(7) since ρ(5)∗ = max{ρ(7)∗

k ,k ∈  } . When the
objective function value of model (5 ) is zero, the
objective function value of model (7) is zero under all

the different combinations of selected multi - valued
indicators. According to the discussion in Preliminaries,
ρ(7)∗ = 0 is a Pareto-optimal solution, that is the DMU
achieve Pareto-Koopmans efficient when ρ(5)∗ = 0. To
sum up, our proposed model (5) is easier to calculate
the performance of DMUs through one time calculation
in the presence of multi-valued indicators.

However, model (5) is a nonlinear programming
problem. Model (5) can be converted into a linear
programming model following the way of Cook et al[3];
The detailed transformation process is shown in
Appendix A.
3. 1. 2　 Centralized decision-making case without goals
In the centralized decision-making case,all DMUs are
controlled by central decision-makers. The central
decision-makers make decisions from an overall
perspective rather than any individual DMU’ s point of
view. In other words, all DMUs are assessed by using
one consistent standard on performance indicators,
which is selected by the central decision-makers.

In the case of centralized decision-making, we
want to achieve the overall maximum improvements
with one consistent set of input / output indicators for all
DMUs. The model (8) is introduced and is shown as

max∑
n

t = 1
ρMt 　 　 　 　 　 　 　 　 　 　 　 　

s. t. ∑
j∈J

λjtxij = xit - s -it ,t ∈ J,i ∈ IS (8. 1)

∑
j∈J

λjtxij ≤ xit - s -it + M(1 - δxi ),

t ∈ J,i ∈ IMp ,p = 1,…P (8. 2)
∑
j∈J

λjtxij ≥ xit - s -it - M(1 - δxi ),

t ∈ J,i ∈ IMP ,P = 1,…P (8. 3)
∑
j∈J

λjtyrj = yrt + s +rt ,t ∈ J,r ∈ RS (8. 4)

∑
j∈J

λjtyrj ≤ yrt + s +rt + M(1 - δyr ),

t ∈ J,r ∈ RM
q ,q = 1,…Q (8. 5)

∑
j∈J

λjtyrj ≥ yrt + s +rt - M(1 - δyr ),

t ∈ J,r ∈ RM
q ,q = 1,…Q (8. 6)

∑
j∈J

λjtbfj = bft - s -ft ,t ∈ J,f ∈ FS (8. 7)

∑
j∈J

λjtbfj ≤ bft - s -ft + M(1 - δbf ),

t ∈ J,f ∈ FM
u ,u = 1,…U (8. 8)

∑
j∈J

λjtbfj ≥ bft - s -ft - M(1 - δbf ),

t ∈ J,f ∈ FM
u ,u = 1,…U (8. 9)

∑
i∈IMp

δxi = 1,p = 1,…P (8. 10)

∑
r∈RMq

δyr = 1,q = 1,…Q (8. 11)

∑
f∈FMu

δbf = 1,u = 1,…U (8. 12)

δxi ,δyr ,δbf ∈ {0,1},i ∈ IM,
r ∈ RM,f ∈ FM (8. 13)
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∑
j∈J

λjt = 1,t ∈ J, λjt,s
-
it ,s

+
rt ,s

-
ft ≥0,t,j ∈ J,i ∈ I,r ∈ R,f ∈ F

(8. 14)
(8)

where

ρMt =
(∑

i∈IS

s -it
xit

+ ∑
P

p = 1
∑
i∈IMp

s -it δxi
xit

+ ∑
r∈RS

s +rt
yrt

+ ∑
Q

q = 1
∑
r∈RMq

s +rt δyr
yrt

+ ∑
f∈FS

s -ft
bft

+ ∑
f∈FMu

s -ft δbf
bft

)

SI + P + SR + Q + SF + U
,t ∈ J (9)

measures the inefficiency of each DMU and ρMt ≥0,t∈
J . A DMU belongs to the reference set if λjt > 0,
where λjt,t,j ∈ J are the intensity vectors. In addition,
all the DMUs have the same value on the binary
variables δx∗i∈IMp , δy∗r∈RMq and δb∗f∈FMu referringto one
consistent standard.

Note that each evaluated DMU selects its preferred
input / output indicators in model (5), whereas model
(8 ) uses the same performance indicators for all
assessed DMUs. The different selected standards lead to
different performance evaluation results for the DMUs.
Here, we discuss the relationship between models (5)
and (8) .

Theorem 3. 2 　 The optimal objective function
value of model (8) denoted as ρM′(8)∗ is no greater than
the sum of optimal objective function values of model
(5) for each DMU denoted as ρM(5)∗

t ,t ∈ J , that is

ρM′(8)∗ ≤∑
n

t = 1
ρM(5)∗
t .

Proof　 Assume that the optimal objective function
value of model ( 5 ) is ρM(5)∗

c for DMUc , and the
optimal objective function value of model (8) is ρM′(8)∗

. Then, the solution for DMUc with ρM′(8)∗
c obtained

from model (8) is a feasible solution of model (5) .
Since the maximization problem of model (5), we have
ρM(5)∗
c ≥ ρM′(8)∗

c . Therefore, considering all DMUs, it

is plain that ∑
n

t = 1
ρM(5)∗
t ≥∑

n

t = 1
ρM″(8)
t = ρM″(8)∗ .

The model (8) has an advantage in computation
faced with multi-valued indicators, which selects
suitable value for multi-valued indicators in one time
calculation for all DMUs. Besides,model (8) can be
similarly transformed into a linear programming model;
Appendix B gives the details.

In conclusion, comparing with the method of
Toloo and Hančlová[12], we propose the slacks-based
models to deal with multi-valued indicators, which
consider the inefficiency of all inputs and outputs and
can obtain Pareto solution. Besides, we consider the
performance improvement and guide the adjustment of

inputs and outputs.
3. 2　 Modified slacks-based models with goals in the

presence of multi-valued indicators
In real-world practice, the selection of inputs / outputs
may depend on the decision-makers’ preferences[30] .
Goals such as the five-year economic development plan
in China, the expected sales in a company, and the
concentration limit on PM 10 represent the preferences
of decision-makers. Goals are often set in organizational
planning, which should not be ignored in performance
evaluation and improvement[7, 31,32] . As a result, the
goals may affect the selection of the multi-valued
indicators and thus influence the performance evaluation
results. Therefore, the goals of decision-makers should
be considered. However, the goals set by the decision-
makers may be unachievable or unambitious in
practice[19] . Besides, the established goals may not be
on best practice frontier. The DEA method provides the
best practice frontier, which can be seen as the
benchmark for the inefficient DMUs[17] . Accordingly,
the DEA method can be used to guide the target setting.
Therefore, we extend the above proposed slacks-based
models by incorporating decision-makers’ goals. To be
specific, our proposed models consider the best practice
benchmark and decision-makers ’ goals at the same
time, which aim to find targets on best practice frontier
as close as possible to decision-makers ’ goals for
DMUs. In this section, we unfold from two cases,
including decentralized decision-making and centralized
decision-making, to illustrate the effect of decision-
makers’ goals.
3. 2. 1　 Decentralized decision-making case with goals
We first take into account the goals from the perspective
of decentralized decision-making. Based on model (5),
we provide model (11) to help DMU0 move towards the
best practice frontier and closer to decision-makers’
goal simultaneously. In this work, the objective
function related to goal ρgo is as follows:

ρgo =
(∑

i∈IS

sg-i
xio

+ ∑
P

p = 1
∑
i∈IMp

sg-i δxi
xio

+ ∑
r∈RS

sg+r
yro

+ ∑
Q

q = 1
∑
r∈RMq

sg+r δyr
yro

+ ∑
f∈FS

sg-f
bfo

+ ∑
U

u = 1
∑
f∈FMu

sg-f δbf
bfo

)

SI + P + SR + Q + SF + U
(10)
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which measures the inefficiency about the goals for
DMUo , representing the gaps between the targets
(projection points) and the goals, and ρgo ≥ 0. The
sg-io , sg+ro and sg-fo in ρgo respectively represent the

deviations between input targets and goals, desirable
output targets and goals, undesirable output targets and
goals, where the targets refer to the projection points on
the effective practice frontier and the goals refer to the
decision-makers’ goals.

We want to achieve maximum improvement,
which maximize ρMo defined in Section 3. 1. 1 and get
closer to the goals, which need to minimize ρgo . Then
the model incorporating with the goals is as follows:
maxρMo 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　
minρgo 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　

s. t. (5. 1 - 5. 9)
∑
j∈J

λjxij = gx
io - sg-io ,i ∈ IS (11. 1)

∑
j∈J

λjxij ≤ gx
io - sg-io + M(1 - δxio),i ∈ IMp ,p = 1,…P

(11. 2)
∑
j∈J

λjxij ≥ gx
io - sg-io - M(1 - δxio),i ∈ IMp ,p = 1,…P

(11. 3)
∑
j∈J

λjyrj = gy
ro + sg+r ,r ∈ RS (11. 4)

∑
j∈J

λjyrj ≤ gy
ro + sg+ro + M(1 - δyro),r ∈ RM

q ,q = 1,…Q

(11. 5)
∑
j∈J

λjxij ≥ gy
ro + sg+ro - M(1 - δyro),r ∈ RM

q ,q = 1,…Q

(11. 6)
∑
j∈J

λjbfj = gb
fo - sg-fo ,f ∈ FS (11. 7)

∑
j∈J

λjbfj ≤ gb
fo - sg-fo + M(1 - δbfo),f ∈ FM

u ,u = 1,…U

(11. 8)
∑
j∈J

λjbfj ≥ gb
fo - sg-fo - M(1 - δbfo),f ∈ FM

u ,u = 1,…U

(11. 9)
∑
j∈J

λj = 1,

λj ≥0,s -io ≥0,s +ro ≥0,s -fo ≥0,
j ∈ J,i ∈ I,r ∈ R,f ∈ F,

sg-io ,sg+ro ,sg
-

fo free,i ∈ I,r ∈ R,f ∈ F (11. 10)
(11)

　 　 The model involves two objective function. It can
be written as max(ρMo - ρgo) when the model is
calculated. The ρMo in model (11) is the same as that in

model (5) due to the same aim, and gx
io,i∈ I, gy

ro,r∈
R and gb

fo,f ∈ F are the goals of inputs, desirable
outputs, and undesirable outputs, respectively. The
goals for each indicator can be determined by the
decision -makers depending on administrative policies
and the local situation. We can change the values of
gx
i , gy

r and gb
f for different DMUs to set corresponding

goals. We can also set the same goals for DMUs with
the same values of gx

i , gy
r , and gb

f for all the DMUs
based on the need of reality. When we consider the two
objective functions, the inefficiency scores for DMUo

should represent these two aspects, which is defined as
ρODo = ρMo + ρgo . Function ρgo aims at minimizing the
distance from the targets to the decision-makers’ goals,
which is expressed by absolute distance. In other
words, model ( 11 ) simultaneously generates the
maximum improvement to the efficient frontier for the
inefficient DMUs and helps DMUs to get closer to the
goals. The projected point of DMUo obtained from
model (11) is as follows:
x∗
io = ∑

j∈J
λjxij = xio - s -∗io = gx

io - sg-∗io ,i ∈ IS

x∗
io = ∑

j∈J
λjxij = xio - s -∗io ∗δx∗io = gx

io - sg-∗io ∗δx∗io ,

　 　 　 　 　 　 　 　 　 　 　 　 　 i ∈ IMp ,p = 1,. . P
y∗
ro = ∑

j∈J
λjyrj = yro + s +∗ro = gy

ro + sg+∗ro ,r ∈ RS

y∗
ro = ∑

j∈J
λjyrj = yro + s +ro∗δy∗ro = gy

ro + sg+∗ro ∗δy∗ro ,

　 　 　 　 　 　 　 　 　 　 　 　 　 r ∈ RM
q ,q = 1,…Q

b∗
fo = ∑

j∈J
λjbfj = bfo - s -∗fo = gb

fo - sg-∗fo ,f ∈ FS

b∗
fo = ∑

j∈J
λjbfj = bfo - s -∗fo ∗δb∗fo = gb

fo - sg-∗fo ∗δb∗fo ,

　 　 　 　 　 　 　 　 　 　 　 　 　 f ∈ RM
u ,u = 1,…U

ü

þ

ý

ï
ï
ï
ï
ï
ï
ï
ïï

ï
ï
ï
ï
ï
ï
ï
ïï

(12)
　 　 In addition to improving the input / output, the
results also guide the targets setting.

Note that model (11) is a nonlinear programming
model. We transform model ( 11 ) into a linear
programming model based on the way of Cook et al[3];
details are in Appendix C.
3. 2. 2　 Centralized decision-making case with goals
We now put forward our model for the centralized
decision-making case. We define the ρgt for each DMU
as follows:

ρgt =
(∑

i∈IS

sg-it
xit

+ ∑
P

p = 1
∑
i∈IMp

sg-it δxi
xit

+ ∑
r∈RS

sg+rt
yrt

+ ∑
Q

q = 1
∑
r∈RMq

sg+rt δyr
yrt

+ ∑
f∈FS

sg-ft
bft

+ ∑
U

u = 1
∑
f∈FMu

sg-ft δbf
bft

)

(SI + P + SR + Q + SF + U)
(13)
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　 　 It implies the gaps between the targets (projection
points) and the goals for DMUt,t ∈ J .

Based on model (8), we propose the following
model (14), which encompasses the decision-makers’
goals, given the ρgt and the ρMt defined in Section 3.1.2.

max∑
n

t = 1
ρMt 　 　 　 　 　 　 　 　 　 　 　

min∑
n

t = 1
ρgt 　 　 　 　 　 　 　 　 　 　 　

s. t. (8. 1 - 8. 9)
∑
j∈J

λjtxij = gx
i - sg-it ,t ∈ J,i ∈ IS (14. 1)

∑
j∈J

λjtxij ≤ gx
i - sg-it + M(1 - δxi ),

t ∈ J,i ∈ IMp ,p = 1,…P (14. 2)
∑
j∈J

λjtxij ≥ gx
i - sg-it - M(1 - δxi ),

t ∈ J,i ∈ IMp ,p = 1,…P (14. 3)
∑
j∈J

λjtyrj = gy
r + sg+rt ,t ∈ J,r ∈ RS (14. 4)

∑
j∈J

λjtyrj ≤ gy
r + sg+rt + M(1 - δyr ),

t ∈ J,r ∈ RM
q ,q = 1,…Q (14. 5)

∑
j∈J

λjtyrj ≥ gy
r + sg+rt - M(1 - δyr ),

t ∈ J,r ∈ RM
q ,q = 1,…Q (14. 6)

∑
j∈J

λjtbfj = gb
f - sg-ft ,t ∈ J,f ∈ FS (14. 7)

∑
j∈J

λjtbfj ≤ gb
f - sg-ft + M(1 - δbf ),

t ∈ J,f ∈ FM
u ,u = 1,…U (14. 8)

∑
j∈J

λjtbfj ≥ gb
f - sg-ft - M(1 - δbf ),

t ∈ J,f ∈ FM
u ,u = 1,…U (14. 9)

(8. 10 - 8. 13)
∑
j∈J

λjt = 1,t ∈ J

λjt ≥0,s -it ≥0,s +rt ≥0,s -ft ≥0,t,
j ∈ J,i ∈ I,r ∈ R,f ∈ F,

sg-it ,sg
+

rt ,sg
-

ft free,t ∈ J,i ∈ I,r ∈ R,f ∈ F (14.10)
(14)

　 　 We use the similar way in Section 3. 2. 1 to
represent the objective functions of model (14) . The

objective function can be represented as max(∑
n

t = 1
ρMt -

∑
n

t = 1
ρgt ) in the calculation process. We define the overall

inefficiency score for each DMU as ρOCt = ρMt + ρgt ,t ∈
J The model provides a consistent standard for all the
DMUs, as required by centralized decision-making
case. By solving model (14), the optimal objective
function value is obtained as

ρ(20)∗(s -∗j,i∈IS∪IM,s
+∗
j,r∈RS∪RM,s

-∗
j,f∈FS∪FM,sg

-∗
j,i∈IS∪IM,

sg+∗j,r∈RS∪RM,sg
-∗

j,f∈FS∪FM,δx∗j,i∈IMp ,δ
y∗
j,r∈RMq ,δ

b∗
j,f∈FMu ,

∗
j ),

where j ∈ J, The binary variables (δx∗j,i∈IMp , δy∗j,r∈RMq ,
δb∗j,f∈FMu ), j∈ J have same values for all DMUs. The
relationship of the performance between the
decentralized and centralized decision-making cases, as
Theorem 3. 2 stated, is changed after considering goals,
which indicates that the goals impact the performance
measurement and improvements.

We use similar way to transform this nonlinear
programming model to a linear programming model for
the ease of calculation, giving details in Appendix D.

In conclusion, comparing the method of Toloo and
Hančlová[12], we further propose the slack-based
models with the integration of goals in presence of
multi-valued indicators. The models get Pareto solution.
Besides, we consider the adjustment of inputs and
outputs, and the guidance of targets setting according to
the solution of our models.

4　 Application to cities in the Yangtze
River delta (YRD) region

The Yangtze River delta (YRD) region, locating at the
strategic hub of China’ s “Belt and Road” plan, plays
an important role in China’s economic development[33] .
The strategic concept of “ Yangtze River delta
Integration” was first proposed in 1982 and becomes a
national strategy. The cities in the YRD region carry out
extensive cooperation and use the same rules and
regulations for management in some field. Increasing
attention is paid to energy conservation and
environmental protection in China, and the cities in the
YRD region are significant for China to convert to a
green economy. Therefore, in this section, our
proposed models are used on the environmental
performance evaluation and improvement for the cities
in the Yangtze River delta (YRD) region of China in
2017.
4. 1　 Dataset
Referring to prior studies[34,35], we select capital, labor,
and energy consumption as three inputs. GDP (Gross
Domestic Product) and GVA (Gross value added) are
two commonly used desirable outputs to assess economic
development[36,37] . We define the multi-valued desirable
output as economic development, including GDP (y1)
and GVA (y2) , which are also used by Toloo and
Hančlová[12] . For the undesirable outputs, we chose
SO2 emissions and NO2 emissions[38,40] . Furthermore, we
consider the particulate matter since the serious air
pollution situation exists in China. There are two
standards for particulate matter in the atmosphere
reflecting air quality: PM 10 and PM 2. 5, which are
line with the aforementioned definition of multi-valued
indicators. Primary and secondary concentration limits
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Table 2. Input / output indicators

Input / output Variables Units

Inputs

Energy consumption: Total electricity consumption x1 Single-valued 100 million kwh

Capital: Total investment in fixed assets x2 Single-valued 100 million RMB

Labor: Number of employed persons at each year’s end x3 Single-valued 10 thousand people

Desirable outputs
Economic development: GDP y1 Multi-valued 100 million RMB

Economic development: GVA y2 100 million RMB



Undesirable outputs

Particulate matter: PM10 b1 Multi-valued / μm3

Particulate matter: PM2. 5 b2 / μm3

NO2 emissions b3 Single-valued / μm3

SO2 emissions b4 Single-valued / μm3



Table 3. Cities in Yangtze River delta.

Provinces / municipalities Cities

Jiangsu Nanjing, Zhenjiang, Yangzhou, Changzhou, Suzhou, Wuxi, Nantong

Zhejiang Hangzhou, Huzhou, Shaoxing,Ningbo, Jinhua, Taizhou

Shanghai Shanghai

Anhui Hefei, Wuhu, Chuzhou, Maanshan, Tongling, Chizhou, Anqing, Xuancheng

Table 4. Descriptive statistics of the data.

Energy consumption Capital Labor GDP GVA PM 10 PM 2. 5 NO2 SO2

Mean 432. 38 3589. 85 377. 36 6808. 42 6594. 50 73. 65 46. 69 40. 45 14. 82

Median 303. 30 3228. 95 312. 90 4736. 15 4509. 89 76. 00 45. 00 40. 00 14. 50

Min 61. 21 714. 59 76. 49 624. 35 621. 42 54. 00 32. 00 22. 00 7. 00

Max 1526. 77 7246. 60 1372. 65 30632. 99 30122. 98 93. 00 60. 00 52. 00 27. 00

S. D. 395. 45 1859. 34 276. 62 6751. 48 6579. 56 10. 85 7. 41 7. 18 4. 30

for PM10 and PM2. 5 are set in China’ s Ambient air
quality standard GB3095-2012. Our example uses a
multi-valued undesirable output measure for particulate
matter, including PM10 (b1) and PM2. 5 (b2) [41,42] .
Table 2 summarizes the input / output indicators.

The data is collected from the China Statistical
Yearbook, Urban-level Statistical Yearbook, and Urban
Environment Bulletin. Based on the YRD urban
agglomeration development plan released in 2016, 26
cities are included in the YRD region. Because of data
availability, Yancheng, Taizhou, Jiaxing, and
Zhoushan are excluded. Table 3 presents the provinces /
municipalities and their constituents. The data statistics
description is reported in Table 4. There are gaps among
the cities shown in the line “S. D. ” of Table 4.
4. 2　 Results and analysis
We set the same goals for 22 cities in both decentralized
and centralized decision-making cases for easily

calculation and comparison. In order to illustrate the
effect of decision-makers’ goals, the values of goals are
obtained following the way of Ruiz et al[43] . The goals
of inputs, the goals of desirable outputs, and the goals
of undesirable outputs are respectively set as xav

ij -(xav
ij -

xmin
ij ) / 2, yav

rj +(ymax
rj -yav

rj ) / 2, and bav
fj -(bav

fj -bmin
fj ) / 2,

where xav
ij , yav

ij , and bav
ij respectively denote the average

value of the ith inputs, average value of the rth desirable
outputs, and average value of the fth undesirable
outputs; ymax

rj , xmin
ij , and bmin

ij respectively denote the
maximum value of the rth desirable output, minimum
values of the ith input and minimum values of the fth

undesirable output. The initial values of the decision-
makers’ goals are listed in column 2 of Table 10.

On the one hand, under the decentralized decision-
making case, the frequency of selected multi-valued
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Table 5. Frequency of selected multi-valued
indicators in decentralized case.

Without goals

y1 y2 b1 b2

With goals

y1 y2 b1 b2

9 13 11 11 11 11 16 6

Table 6. Frequency of selected combinations of
multi-valued indicators in decentralized case.

Without goals

{y1,b1} {y1,b2} {y2,b1} {y2,b2}

With goals

{y1,b1} {y1,b2} {y2,b1} {y2,b2}

3 6 8 5 8 3 8 3

indicators and the change of the selected combinations
of multi-valued indicators, obtained from models (5)
and (11), are respectively shown in Tables 5 and 6.
We can identify the indicators that need improvements
through the frequency of selection. The higher the
frequency of being selected, the poorer performance of
most cities on this indicator. For instance, the most
frequently selected indicators is PM 10 ( b1) (16 times)
if considering the goals, which means most cities need
pay more attention to the PM 10 ( b1) in view of the
current level and targets setting. On the other hand, in
the centralized decision-making situation, all cities are
evaluated with the same standards, i. e. , they have the
same selected combination of the multi-valued
indicators, that is, {y2,b1} and {y2,b2} obtained from
model (8) and model (14), respectively.

By solving models (5), (8), (11) and (14), the
inefficiency scores of 22 cities are obtained and reported
in Table 7. Considering the situation without the goals,
we draw the following conclusions. Firstly, less than
60% of the cities are efficient, whose inefficiency score
equal to zero. It means that some cities are still
environmentally inefficient, which calls for more efforts
and management strategies in environmental
improvement in the YRD region. Secondly, some cities
such as Changzhou, whose inefficiency score under the
centralized decision-making case (0. 2043) is lower than
that under the decentralized decision-making case
(0. 2146 ) . Besides, it is clear that the average
environmental performance in the centralized decision-
making case is lower than that in the decentralized
decision-making case, as seen in the last row of Table
7; this result is consistent with Theorem 3. 2, and
implies that characteristics of some cities may be ignored
in the centralized decision-making case. Thirdly, under
the same decision-making case, there are inter-city gaps
in the environmental performance in the YRD region,
which is consistent with the initial judgment in our

Table 7. Inefficiency scores of the cities.

Cities
Without goals

Decentralized Centralized

With goals

Decentralized Centralized

Nanjing 0. 0000 0. 0000 0. 4261 0. 4288

Zhenjiang 0. 0000 0. 0000 0. 6336 0. 6336

Yangzhou 0. 0000 0. 0000 0. 5975 0. 6152

Changzhou 0. 2146 0. 2043 0. 5439 0. 5723

Suzhou 0. 0000 0. 0000 0. 3970 0. 4095

Wuxi 0. 1716 0. 1466 0. 4758 0. 4480

Nantong 0. 1063 0. 1063 0. 5194 0. 5194

Hangzhou 0. 1681 0. 1659 0. 4420 0. 4222

Huzhou 0. 0000 0. 0000 1. 0450 1. 0537

Shaoxing 0. 1903 0. 1775 0. 5703 0. 5764

Ningbo 0. 1439 0. 1388 0. 4509 0. 4842

Jinhua 0. 0000 0. 0000 0. 8879 0. 8879

Taizhou 0. 0000 0. 0000 0. 7428 0. 7651

Shanghai 0. 0000 0. 0000 0. 4507 0. 4509

Hefei 0. 0000 0. 0000 0. 5388 0. 5558

Wuhu 0. 1133 0. 1019 0. 9809 0. 9814

Chuzhou 0. 1404 0. 1397 1. 7634 1. 8052

Maanshan 0. 2187 0. 1807 1. 7275 1. 7468

Tongling 0. 0000 0. 0000 2. 9084 3. 0638

Chizhou 0. 0000 0. 0000 5. 0454 5. 0542

Anqing 0. 0000 0. 0000 1. 9454 1. 9770

Xuancheng 0. 0000 0. 0000 2. 4571 2. 4933

Average 0. 0667 0. 0619 1. 1614 1. 1793

descriptive analysis in Table 4. Take the decentralized
decision-making situation as an example, where the
largest inefficiency score is 0. 2187 (Ma’ anshan) and
the lowest inefficiency score is 0 (such as Nanjing) in
Table 7.

Considering the situation with goals, the
environmental performance results obtained from models
(11) and (14) are shown in columns 4-5 of Table 7.
We conclude the following results to illustrate the effects
of goals. Firstly, compared with the case without goals,
the higher inefficiency scores mean worse environmental
performance due to the additional constraints of the
goals. However, using goals avoids the problem that the
performance evaluation under the centralized decision-
making case is always higher than that under the
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Figure 1. Inefficiency scores for cities under centralized
decision-making case.

decentralized decision-making case without goals, e. g. ,
Nanjing, Changzhou. Secondly, considering goals
enhances the discriminability of the models on DMUs.
For example, under the centralized decision-making
situation, there are more obvious differences among
cities, where the gap between the maximum and
minimum inefficiency scores is 4. 6447 and 0. 2043
respectively, seen in Table 7. The environmental
performance gaps among cities are better distinguished,
seen in Figure 1. Cities with more advanced economies
often have a better environmental performance, as
exemplified by Nanjing, Suzhou, and Shanghai.
Besides, some DMUs such as Hefei that are classified as
efficient when there are no goals can be distinguished
after considering the goals. Besides, Suzhou have the
best environmental performance with the lowest
inefficiency score, which may be attributed to
impressive economic development, and its economic
level ranks among the top in China. However,
Chizhou, as a less developed city, has the worst
environmental performance with the maximum
inefficiency score, i. e. , 5. 0454 and 5. 0542 respectively
under decentralized and centralized decision-making
cases. The developed cities often pay more attention to
the environment, which accords with the reality of China.

We then discuss the differences across provinces
according to the regional division in Table 3. First,
under decentralized decision-making case, provincial
capitals such as Nanjing and Hefei ( excepting
Hangzhou) are environmentally efficient. The reason
for the low environmental performance of Hangzhou
may be that more human activities increase pollution
( undesirable outputs ) . In addition, the capital of
provinces often has a better environmental performance.
Hefei, the capital of Anhui, has abetter environmental
performance compared with some cities in other
provinces, such as inefficiency score 0 . 5558 versus

Table 8. Average inefficiency scores of 4 provinces / municipalities.

Provinces
Without goals

Decentralized Centralized

With goals

Decentralized Centralized

Jiangsu 0. 3170 0. 3149 0. 5820 0. 5709

Zhejiang 0. 4216 0. 4195 0. 7655 0. 7314

Shanghai 0. 0000 0. 0000 0. 4507 0. 4726

Anhui 0. 5080 0. 5075 2. 2531 2. 2673

Yangzhou’s 0. 6152, as seen in column 5 in Table 7.
Second, unbalanced environmental performance exists in
YRD region according the average inefficiency scores
for different provinces, shown in Table 8. Taking the
centralized decision-making case as an example,
Shanghai has the best environmental performance, and
Anhui has the worst environmental performance. The
results are more direct, seen in Figure 1. The cities in
the right part of the graph with large fluctuations belong
to Anhui province. Compared with other provinces or
municipalities in YRD region, the reason behind the
situation may be less-advanced economy in Anhui, and
the government pays more attention to economic
development rather than the environment. This result is
not find in the case without goals, which implies the
important role of goals. Besides, there are gaps among
internal cities in Anhui province. Therefore, Anhui
province needs to improve its environmental
performance and it is necessary to adopt environmental
policies tailored to local conditions for different cities.

The environmental inefficiency scores indicate
these cities have the potential to enhance the
environmental performance by adjusting their input /
output. We consider the situation with goals and the
adjustments of input / output can be obtained from
models (11) and model (14) . Taking Ma’anshan as
an example, the adjustments of input / output indicators
are listed in Table 9. There are some differences in the
selected indicators, which affects the degree of
improvement of input / output indicators, such as the
adjustments for PM 10 (b1) with 9. 9 in decentralized
decision-making case, and PM 2. 5 (b2) with 0. 62 in
the centralized decision-making case. It means Ma’
anshan needs to pay more attention to the governance of
PM 10 (b1 ), which reflects the short board of Ma’
anshan in environment. However, from the centralized
decision-making case, the selected PM 2. 5 (b2 ) is
short board for most cities in YRD. In short, for the
purpose of supporting decision-making, it is useful to
comprehensively consider different decision scenarios
and the effect of goals.
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Table 9. Adjustments of input / output indicators for Ma’anshan.

Initial values
With goals

Decentralized Centralized

sx1 455. 03 0 0
sx2 3896. 30 612. 43 379. 93
sx3 281. 70 0 0
sy1 6618. 42 699. 07 /
sy2 6241. 54 / 1176. 56
sb1 73. 00 9. 9 /
sb2 47. 00 / 0. 62
sb3 41. 00 6. 7 0. 49
sb4 17. 00 3. 8 3. 17

[Note] “ / ” means unselected indicators.

Setting suitable goals is a common policy to guide
the environmental governance. Take the cities Nanjing,
Jinhua, Shanghai and Hefei as examples, which are
identified as efficient DMUs under the case without
goals and are respectively located in Jiangsu, Zhejiang,
Shanghai, Anhui, corresponding to the regional division
of Table 3. Unlike the situation without goals,
considering goals distinguishes these DMUs, and it
guides the targets setting for these cities, as shown in
Table 10. For inputs and undesirable outputs, the less is
the better. The negative adjustments show that the goals
are unachievable based on current situation, and it is
more reasonable to set a higher value of goals. The
positive adjustments show that the lower value of goals
are suggested. In light of Table 10, for example, we
take the SO2 emission (b4 ) as an example. The
negative adjustments for Nanjing(-15. 77) means that
the goal of decision-makers on SO2 emission ( b4) is
currently unreachable, and higher value of the goal is
suggested. However, for Jinhua (2. 23), the positive

adjustment means that lower value of goal is suggested.
The analysis results for desirable outputs are contrary
since the more is the better. The negative adjustments
mean the goals are too high to reach currently and lower
value of goals are more appropriate; the positive
adjustments imply that it suggests to set higher value of
goals. For instance, negative adjustments for Nanjing,
Jinhua, Hefei under the centralized decision-making
case indicate that the goals on GVA( y2) need to be set
lower value. However, the goals on GVA ( y2) for
Shanghai with a positive adjustment under the centralized
decision-making case is overly low and higher value of
goal is suggested.

In conclusion, our approach evaluates the environmental
performance and guides the improvement in the presence
of multi-valued indicators, and further provide the
insight in incorporating with decision-makers’ goals.
Given the aforementioned analysis, the environmental
performance of cities has room to improve in the YRD
region; the cities need pay more attention to energy
conservation and environmental protection policies, and
prevent short-sighted goals which ignore the
environmental protection. Besides, the decision-makers
can keep the whole picture of the centralized and
decentralized decision-making cases in mind to support
decisions on the environmental protection. Furthermore,
adjustments in the environmental policies should be in
line with the situation in each city due to gaps among
the YRD cities, and the cities need to learn from
successful practice and strengthen inter-provincial
cooperation to achieve an integrated development strategy
according to the practice. Additionally, apart from the
environmental protection regulations and laws,
appropriate goals should also be correlated with
environmental protection efforts.

Table 10. Adjustments of goals for four cities.

Goals
Nanjing

Decentralized Centralized

Jinhua

Decentralized Centralized

Shanghai

Decentralized Centralized

Hefei

Decentralized Centralized

sgx1 246. 80 -310. 16 -310. 16 -90. 88 -90. 88 -1279. 97 -1279. 97 -49. 29 -49. 29

sgx2 2152. 22 -4062. 98 -4062. 98 -48. 30 -48. 30 -5094. 38 -5094. 38 -4199. 21 -4199. 21

sgx3 226. 93 -230. 67 -230. 67 150. 44 150. 44 -1145. 72 -1145. 72 -311. 17 -311. 17

sgy1 18720. 71 -7005. 61 / / / 11912. 28 / -11717. 66 /

sgy2 18358. 74 / -7004. 97 -14474. 45 -14474. 45 / 11764. 24 / -11551. 03

sgb1 63. 83 / / / / / / -16. 17 /

sgb2 39. 35 -0. 65 -0. 65 -2. 65 -2. 65 0. 35 0. 35 / -16. 65

sgb3 31. 23 -15. 77 -15. 77 2. 23 2. 23 -12. 77 -12. 77 -20. 77 -20. 77

sg4 10. 91 -5. 09 -5. 09 0. 91 0. 91 -1. 09 -1. 09 -1. 09 -1. 09
[Note] “ / ” mean unselected indicator.
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5　 Conclusion
Unlike the traditional DEA methods considering single-
valued performance indicators, in this work, we first
propose two modified slacks-based models to select a
suitable value for the multi-valued indicators. Then we
further incorporate goals into the proposed models.
Aiming for more practicality, our proposed models
consider two cases of the decentralized and centralized
decision-making. Using an empirical example of 22
cities in the Yangtze River delta region in China, we
demonstrate the applicability and practicality of our
models.

To sum up, our models make the following
contributions to the literature on multi-valued indicators
in DEA. First, the new models not only provide insight
into performance measurement, but also guide
adjustments on input / output indicators and targets
setting. Secondly, our models with the goals
demonstrate that the performance evaluation and
improvements are more in line with the expectations of
decision-makers. Third, comparing with the modified
SBM model, our models are easier to deal with multi-
valued indicators through one time calculation. Fourth,
our models are practical considering the goals of
decision-makers in both the decentralized and centralized
decision-making cases, which provide multi-faceted
support for decision-makers.

This study can be extended as follows. First, the
goals in this work are virtual values calculated from the
original inputs / outputs data set. The goals are usually set
by the interaction among decision-makers, considering
many factors such as polices, prior performance in
practice and are usually established before the
performance evaluation. Future research can use the
actual existed goals in specific practices. Besides, our
models guide the targets setting, and the projection
points obtained from our models can be set as new goals
for the next production period according to the practical
need. Second, our models assume that all the DMUs
and all inputs / outputs of each DMU have goals. In
reality, some indicators have no explicit goals; for these
indicators, our models can be modified by removing the
corresponding constraints of these indicators on goals.
Third, besides the environmental performance
evaluation, the models can also be used in other fields
based on the actual need.
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Appendix A
We first propose the Proposition 1, which is useful for converting the model to a linear programming model. The
Proposition 1 is as follows.

Proposition 1　 For each DMUj,j ∈ J , the following inequalities hold
0 ≤ s -fj ≤ bfj,0 ≤ s +rj ≤ max

t∈J
{yrt},0 ≤ s -ij ≤ xij,∀f ∈ F,r ∈ R,i ∈ I (A. 1)

　 　 Proof　 For a specific DMUo under VRS, we have bfo - s -f ≥ 0 because of the constraints ∑
j∈J

λjbfj = bfo - s -fo,

bfo ≥0, s -fo ≥0, and λj ≥0. Similarly, we have xio - s -io ≥0. Besides, it obtains max
t∈J

yrt ≥∑
j∈J

λjyrj = yro + s +ro ≥

0 because of the ∑
j∈J

λj = 1.

The specific process of converting into a linear programming model is as follows. We use the zxio,i ∈ IMp , zyro,
r ∈ RM

q and zbfo,f ∈ FM
u to replace the variables s -ioδxio, s +roδyro , and s -foδbfo , which cause the nonlinear problem. Then

the objective function ρM′
o is rewritten as

(∑
i∈IS

s -io
xi0

+ ∑ P

p = 1∑
i∈IMp

zxio
xio

+ ∑
r∈RS

s +ro
yr0

+ ∑Q

q = 1∑
r∈RMq

zyro
yro

+ ∑
f∈FS

s -fo
bf0

+ ∑
U

u = 1
∑
f∈FMu

zbfo
bfo

)

SI + P + SR + Q + SF + U
.

We get the mixed-integer linear programming problem (MILP) model (A. 2) .
maxρM′

o 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　
s. t. (5. 1 - 5. 14)　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　

0 ≤ zxio ≤ δxioxi0,i ∈ IMp ,p = 1,…P (A. 2. 1)
0 ≤ s -io - zxio ≤ (1 - δxio)xi0,i ∈ IMp ,p = 1,…P (A. 2. 2)
0 ≤ zyro ≤ δyro max

t∈J
{yrt},r ∈ RM

q ,q = 1,…Q (A. 2. 3)

0 ≤ s +ro - zyro ≤ (1 - δyro) max
t∈J

{yrt},r ∈ RM
q ,q = 1,…Q (A. 2. 4)

0 ≤ zbfo ≤ δbfobf0,f ∈ FM
u ,u = 1,…U (A. 2. 5)

0 ≤ s -fo - zbfo ≤ (1 - δbfo)bf0,f ∈ FM
u ,u = 1,…U (A. 2. 6)

λj,s
-
io ≥0,s +ro ≥0,s -fo ≥0,j ∈ J,i ∈ I,r ∈ R,f ∈ F
zxio ≥0,zyro ≥0,zbfo ≥0,i ∈ I,r ∈ R,f ∈ F

(A. 2)
　 　 Proposition 2　 Model (A. 2) is equivalent to model (5) .

Proof　 The single-valued indicators are the same for model (A. 2) and model (5), so we only discuss the
multi-valued indicators. For simplicity, we presume one multi-valued input, one multi-valued desirable output, and
one multi-valued undesirable output, which indicates P = 1, Q = 1, and U = 1. We assume that δxa = 1,a∈ IM1 ; δyc = 1,
c ∈ RM

1 ; and δbd = 1,d ∈ FM
1 , which means that we select the ath value for the multi-valued input, cth value for the

multi-valued desirable output, and dth value for the multi-valued undesirable output, respectively. Then, the objective

function of model (5) is ρM0 =
(∑

i∈IS

s -io
xi0

+ s -ao
xa0

+ ∑
r∈RS

s +ro
yr0

+ s +co
yc0

+ ∑
f∈FS

s -fo
bf0

+ s -do
bd0

)

SI + 1 + SR + 1 + SF + 1
. The corresponding constraints for

multi-valued input are∑
j∈J

λjxaj ≤ xao - s-ao, ∑
j∈J

λjxaj ≥ xao - s-ao, ∑
j∈J

λjxij ≤ xi0 - s-io + M,i≠ a∈ IM1 , and∑
j∈J

λjxij ≥

xio - s -io - M,i ≠ a ∈ IM1 . By Proposition 1, we have 0 ≤ s -io ≤ xio,i ∈ IM1 . The constraints of the multi-valued
desirable output are similar:∑

j∈J
λjycj ≤ yco + s +co, ∑

j∈J
λjycj ≥ yco + s +co ; ∑

j∈J
λjyrj ≤ yro + s +ro + M,r ≠ c ∈ RM

1 ; and

∑
j∈J

λjyrj ≥ yro + s +ro - M,r ≠ c ∈ RM
1 . By Proposition 1, we get 0 ≤ s +ro ≤ max

t∈J
{yrt},r ∈ RM

1 . For multi-valued

undesirable output, we have ∑
j∈J

λjbdj ≤ bdo - s -do, ∑
j∈J

λjbdj ≥ bdo - s -do, ∑
j∈J

λjbfj ≤ bf0 - s -fo + M,f ≠ d ∈ FM
1 , and

∑
j∈J

λjbfj ≥ bfo - s -fo - M,f ≠ d ∈ FM
1 . We get 0 ≤ s -fo ≤ bfo,f ∈ FM

1 from Proposition 1.

In addition, since zxio = s -ioδxio,i∈ IMp ; zyro = s +roδyro,r∈ RM
q ; and zbfo = s -foδbfo,f∈ FM

u , we have zxao = s -ao,a∈ IM1 ;
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zyco = s +co,c ∈ RM
1 ; and zbdo = s -do,d ∈ FM

1 . The objective function of the model (A. 2) is then rewritten as ρM′
0 =

(∑
i∈IS

s -io
xi0

+ s -ao
xi0

+ ∑
r∈RS

s +ro
yr0

+ s +co
yr0

+ ∑
f∈FS

s -fo
bf0

+ s -do
bf0

)

SI + 1 + SR + 1 + SF + 1
, which is equivalent to the ρMo in model (5) .

We first prove the same objective function between model (A. 2) and model (5) . Then we focus on the
constraints of two models. We get the relevant constraints of model (A. 2) . The constraints of the multi-valued inputs
are ∑

j∈J
λjxaj ≤ xao - s-ao,∑

j∈J
λjxaj ≥ xao - s-ao,0≤ s-ao ≤ xao,0≤ xao , and∑

j∈J
λjxij ≤ xio - s-io + M,i≠a∈ IM1 ,∑

j∈J
λjxij ≥

xio - s -io - M,i ≠ a ∈ IM1 ,0 ≤ s -io ≤ xio,i ≠ a ∈ IM1 . For the multi-valued desirable output, the constraints are
∑
j∈J

λjycj ≤ yco + s +co, ∑
j∈J

λjycj ≥ yco + s +co, 0≤ s +co ≤ max
t∈J

{yct}, 0≤ max
t∈J

{yct} , and ∑
j∈J

λjyrj ≤ yro + s +ro + M,r≠ c ∈

RM
1 , ∑

j∈J
λjyrj ≥ yro + s +ro - M,r≠ c∈ RM

q , and 0≤ s +ro ≤ max
t∈J

{yrt},r≠ c∈ RM
q . When it comes to the multi-valued

undesirable output, the constraints are ∑
j∈J

λjbdj ≤ bdo - s -do, ∑
j∈J

λjxdj ≥ bdo - s -do, 0 ≤ s -do ≤ bdo, 0 ≤ bdo ,

and ∑
j∈J

λjbfj ≤ bfo - s -fo + M,f ≠ d ∈ FM
1 , ∑

j∈J
λjbfj ≥ bfo - s -fo - M,f ≠ d ∈ FM

1 , 0 ≤ s -fo ≤ bfo,f ≠ d ∈ FM
1 . These

constraints are also the same between the two models. Therefore, we have Proposition 2. When there are more than
one multi-valued input / output, the analysis is in a similar way.

Appendix B
Similar to the method in Appendix A, we transform the nonlinear programming model (8) to MILP model (B. 1) .
We employ zxit,i ∈ IMp , zyrt,r ∈ RM

q and zbft,f ∈ FM
u to replace the variables s -it δxi , s +rt δyr and s -ft δbf , respectively. We

assume ρM′
t stands for

(∑
i∈IS

s -it
xit

+ ∑ P

p = 1∑
i∈IMp

zxit
xit

+ ∑
r∈RS

s +rt
yrt

+ ∑
Q

q = 1
∑
r∈RMq

zyrt
yrt

+ ∑
f∈FS

s -ft
bft

+ ∑
U

u = 1
∑
f∈FMu

zbft
bft

)

SI + P + SR + Q + SF + U
,t ∈ J . Then the

model (B. 1) is written as

max∑
n

t = 1
ρM′
t

s. t. (8. 1 - 8. 14)
0 ≤ zxit ≤ δxi xit,t ∈ J,i ∈ IMp ,p = 1,…P (B. 1. 1)

0 ≤ s -it - zxit ≤ (1 - δxi )xit,t ∈ J,i ∈ IMp ,p = 1,…P (B. 1. 2)
0 ≤ zyrt ≤ δyr max

t∈J
{yrt},t ∈ J,r ∈ RM

q ,q = 1,…Q (B. 1. 3)
0 ≤ s +rt - zyrt ≤ (1 - δyr ) max

t∈J
{yrt},t ∈ J,r ∈ RM

q ,q = 1,…Q (B. 1. 4)
0 ≤ zbft ≤ δbf bft,t ∈ J,f ∈ FM

u ,u = 1,…U (B. 1. 5)
0 ≤ s -ft - zbft ≤ (1 - δbf )bft,t ∈ J,f ∈ FM

u ,u = 1,…U (B. 1. 6)
λjt,s

-
it ≥0,s +rt ≥0,s -ft ≥0,j,t ∈ J,i ∈ I,r ∈ R,f ∈ F
zxit ≥0,zyrt ≥0,zbft ≥0,i ∈ I,r ∈ R,f ∈ F

(B. 1)
　 　 Proposition 3　 Model (B. 1) is equivalent to model (8) .

Proof　 The proof process is similar to that in Proposition 2.

Appendix C
We first propose the Proposition 4, which can be used in the process of converting into a linear programming model.

Proposition 4　 For any DMUj,j ∈ J , the following constraints hold.
gx
i - max

j∈J
{xij} ≤ sg-i ≤ gx

i - min
j∈J

{xij},i ∈ I
min
j∈J

{yrj} - gy
r ≤ sg+r ≤ max

j∈J
{yrj} - gy

r ,r ∈ R
gb
f - max

j∈J
{bfj} ≤ sg-f ≤ gb

f - min
j∈J

{bfj},f ∈ F
(C. 1)

　 　 Proof　 Under VRS assumption, since∑
j∈J

λjxij = gx
i - sg-i and min

j∈J
{xij} ≤∑

j∈J
λjxij ≤ max

j∈J
{xij},i∈ I , we have
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gx
i - max

j∈J
{xij} ≤ sg-i ≤ gx

i - min
j∈J

{xij},i ∈ I . Analogously, we get min
j∈J

{yrj} - gy
r ≤ sg+r ≤ max

j∈J
{yrj} - gy

r ,r ∈ R

because of∑
j∈J

λjyrj = gy
r + sg+r and min

j∈J
{yrj} ≤∑

j∈J
λjyrj ≤max

j∈J
{yrj},r∈R . We also have gb

f - max
j∈J

{bfj} ≤ sg-f ≤ gb
f -

min
j∈J

{bfj},f ∈ F due to ∑
j∈J

λjbfj = gb
f - sg-f and min

j∈J
{bfj} ≤∑

j∈J
λjbfj ≤ max

j∈J
{bfj},f ∈ F .

Then the detail of converting into a linear programming model is as follows. We make the following conversion
for input / output indicators sg-io = uio + vio, sg-io = uio - vio; sg+ro = uro + vro, sg+ro = uro - vro ; and sg-fo =
ufo + vfo, sg-fo = ufo - vfo , respectively. The ρgo can be rewritten as

ρg′o =
∑
i∈IS

(uio + vio)
xi0

+∑ P

p = 1∑
i∈IMp

(uio + vio)δxio
xi0

+∑
r∈RS

(uro + vro)
yr0

+∑Q

q = 1∑
r∈RMq

(uro + vro)δyro
yr0

+∑
f∈FS

(ufo + vfo)
bf0

+∑
U

u = 1
∑
f∈FMu

(ufo + vfo)δbfo
bfo

SI + P + SR + Q + SF + U
.

Because of (uio + vio)δxio, (uro + vro)δyro , and (ufo + vfo)δbfo , the model is still nonlinear, we utilize the method in
Appendix A. We replace uio∗δxio , vio∗δxio,uro∗δyro,vro∗δyro,ufo∗δbfo and vfo∗δbfo with zxuio , zxvio , zyuro , zyvro, zbufo and zbvfo ,
respectively. Then we rewrite ρg′o as

ρg″o =
∑
i∈IS

(uio + vio)
xi0

+∑ P

p = 1∑
i∈IMp

(zxuio + zxvio )
xi0

+∑
r∈RS

(uro + vro)
yr0

+∑Q

q = 1∑
r∈RMq

(zyuro + zyvro )
yr0

+∑
f∈FS

(ufo + vfo)
bf0

+∑
U

u = 1
∑
f∈FMu

(zbufo + zbvfo )
bf0

SI + P + SR + Q + SF + U
.

　 　 For the sake of simplicity, we employ UBx
io, LBx

io, UBy
ro, LBy

ro, UBb
fo , and LBb

fo to respectively represent the gx
io -

min
j∈J

{xij}, gx
io - max

j∈J
{xij}, max

j∈J
{yrj} - gy

ro, min
j∈J

{yrj} - gy
ro, gb

fo - min
j∈J

{bfj} , and gb
fo - max

j∈J
{bfj} for DMUo according

toProposition 4. Then the constraints are rewritten as
LBx

io ≤ sg-io = uio - vio ≤ UBx
io,i ∈ I

LBy
ro ≤ sg+ro = uro - vro ≤ UBy

ro,r ∈ R
LBb

fo ≤ sg-fo = ufo - vfo ≤ UBb
fo,f ∈ F

ü

þ

ý

ïï

ïï
(C. 2)

　 　 Then we express model(C. 3) utilizing Propositions 2 and 4 as follows, given ρg″o and ρM′
o in model (A. 2) .

maxρM′
o 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　

minρg″o 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　
s. t. (5. 1 - 5. 9)　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　

∑
j∈J

λjxij = gx
io - (uio - vio),i ∈ IS

∑
j∈J

λjxij ≤ gx
io - (uio - vio) + M(1 - δxio),i ∈ IMp ,p = 1,…P

∑
j∈J

λjxij ≥ gx
io - (uio - vio) - M(1 - δxio),i ∈ IMp ,p = 1,…P

∑
j∈J

λjyrj = gy
ro + (uro - vro),r ∈ RS

∑
j∈J

λjyrj ≤ gy
ro + (uro - vro) + M(1 - δyro),r ∈ RM

q ,q = 1,…Q

∑
j∈J

λjxij ≥ gy
ro + (uro - vro) - M(1 - δyro),r ∈ RM

q ,q = 1,…Q

∑
j∈J

λjbfj = gb
fo - (ufo - vfo),f ∈ FS

∑
j∈J

λjbfj ≤ gb
fo - (ufo - vfo) + M(1 - δbfo),f ∈ FM

u ,u = 1,…U

∑
j∈J

λjbfj ≥ gb
fo - (uf - vfo) - M(1 - δbfo),f ∈ FM

u ,u = 1,…U

(5. 10 - 5. 14)　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　
(A. 2. 1 - A. 2. 6)　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　

δxio∗LBx
io ≤ zxuio - zxvio ≤ δxio∗UBx

io,i ∈ IMp ,p = 1,…P
(1 - δxio)LBx

io ≤ (uio - vio) - (zxuio - zxvio ) ≤ (1 - δxio)UBx
io,i ∈ IMp ,p = 1,…P

δyro∗LBy
ro ≤ zyuro - zyvro ≤ δyro∗UBy

ro,r ∈ RM
q ,q = 1,…Q

(1 - δyro)LBy
ro ≤ (uro - vro) - (zyuro - zyvro) ≤ (1 - δyro)UBy

ro,r ∈ RM
q ,q = 1,…Q

δbfo∗LBb
fo ≤ zbufo - zbvfo ≤ δbfo∗UBb

fo,f ∈ FM
u ,u = 1,…U

835 中国科学技术大学学报 第 51 卷



(1 - δbfo)LBb
fo ≤ (ufo - vfo) - (zbufo - zbvfo ) ≤ (1 - δbfo)UBb

fo,f ∈ FM
u ,u = 1,…U

λj ≥0,s -io ≥0,s +ro ≥0,s -fo ≥0,j ∈ J,i ∈ I,r ∈ R,f ∈ F
zxio ≥0,zyro ≥0,zbfo ≥0,i ∈ I,r ∈ R,f ∈ F

zxuio ,zxvio ≥0,zyuro ,zyvro ≥0,zbufo ,zbvfo ≥0,i ∈ I,r ∈ R,f ∈ F
uio ≥0,vio ≥0,uro ≥0,vro ≥0,ufo ≥0,vfo ≥0,i ∈ I,r ∈ R,f ∈ F

(C. 3)
　 　 Proposition 5　 Model (11) is equivalent to model (C. 3) .

Proof　 Following the proof process of Proposition 2, we mainly focus on the multi-valued indicators and assume
that the model has one multi-valued input, one multi-valued desirable output, and one multi-valued undesirable
output, which indicates P = 1, Q = 1, and U = 1. We also assume that δxao = 1,a ∈ IM1 ; δyco = 1,c ∈ RM

1 ; and
δbdo = 1,d∈ FM

1 . We only need to verify the part about goals because of Proposition 2. The objective function about
goals of model (11) is

∑
i∈IS

(uio + vio)
xio

+ (uao + vao)
xao

+ ∑
r∈RS

(uro + vro)
yro

+ (uco + vco)
yco

+ ∑
f∈FS

(ufo + vfo)
bfo

+ (udo + vdo)
bdo

SI + 1 + SR + 1 + SF + 1
.

The corresponding constraints about goals for multi-valued inputs are ∑
j∈J

λjxaj ≤ gx
ao - sg-ao , ∑

j∈J
λjxaj ≥ gx

ao - sg-ao ,

∑
j∈J

λjxij ≤ gx
io - sg-io + M,i≠ a∈ IM1 , and∑

j∈J
λjxij ≥ gx

io - sg-io - M,i≠ a∈ IM1 . By Proposition 4, we have LBx
io ≤

sg-io = uio - vio ≤ UBx
io,i ∈ IM1 . For multi-valued desirable outputs, the constraints on goals containing ∑

j∈J
λjycj ≤

gy
co + sg+co , ∑

j∈J
λjycj ≥ gy

co + sg+co , ∑
j∈J

λjyrj ≤ gy
ro + sg+ro + M,r ≠ c ∈ RM

1 and ∑
j∈J

λjyrj ≥ gy
ro + sg+ro - M,r ≠ c ∈ RM

1 .

Based on Proposition 4, we get LBy
ro ≤ sg+ro = uro - vro ≤ UBy

ro,r ∈ RM
q . For multi-valued undesirable outputs, we

have ∑
j∈J

λjbdj ≤ gb
do - sg-do , ∑

j∈J
λjbdj ≥ gb

do - sg-do , ∑
j∈J

λjbfj ≤ gb
fo - sg-fo + M,f ≠ d ∈ FM

1 , and∑
j∈J

λjbfj ≥ gb
fo - sg-fo -

M,f ≠ d ∈ FM
1 . We get LBb

fo ≤ sg-fo = ufo - vfo ≤ UBb
fo,f ∈ FM

1 from Proposition 4.
In addition, since zxuio = u io∗δx

io,zxvio = v io∗δx
io,i ∈ IM1 ; zyuro = u ro∗δy

ro,zyvro = vro∗δy
ro,r ∈ RM

1 ; and zbufo =
ufo∗δbfo,zbvfo = vfo∗δbfo,f ∈ FM

1 , we have uao = zxuao,vao = zxvao,a ∈ IM1 ; uco = zyuco ,vco = zyvco,c ∈ RM
1 ; and udo = zbudo,

vdo = zbvdo,d ∈ FM
1 . The objective function about goals of model ( C. 3 ) can be rewritten as

∑
i∈IS

(uio + vio)
xio

+ (uao + vao)
xao

+ ∑
r∈RS

(uro + vro)
yro

+ (uco + vco)
yco

+ ∑
f∈FS

(ufo + vfo)
bfo

+ (udo + vdo)
bdo

.

SI + 1 + SR + 1 + SF + 1
, which is the same

as that of model (11) .
We now discuss the relevant constraints about goals in model (C. 3) . The constraints of multi-valued inputs are

∑
j∈J

λjxaj ≤ gx
ao - (uao - vao)= gx

ao - sg-ao , ∑
j∈J

λjxaj ≥ gx
ao - (uao - vao)= gx

ao - sg-ao , LBx
ao ≤ sg-ao = uao - vao ≤ UBx

ao,

and ∑
j∈J

λjxij ≤ gx
io - (uio - vio) + M = gx

io - sg-io + M,i≠ a∈ IM1 , ∑
j∈J

λjxij ≥ gx
io - (uio - vio) - M = gx

io - sg-io - M,

i ≠ a ∈ IM1 , LBx
io ≤ sg-io = uio - vio ≤ UBx

io,i ≠ a ∈ IM1 . For the multi-valued desirable outputs, the constraints are
∑
j∈J

λjycj ≤ gy
co + (uco - vco) = gy

co + sg+co , ∑
j∈J

λjycj ≥ gy
co + (uco - vco) = gy

co + sg+co , LBy
co ≤ sg+co = uco - vco ≤ UBy

c ,

and ∑
j∈J

λjyrj ≤ gy
ro + (uro - vro) + M = gy

ro + sg+ro + M,r ≠ c ∈ RM
1 , ∑

j∈J
λjyrj ≥ gy

ro + (uro - vro) - M = gy
ro + sg+ro -

M,r ≠ c ∈ RM
1 , LBy

ro ≤ sg+ro = uro - vro ≤ UBy
r ,r ≠ c∈ RM

1 . When it comes to the multi-valued undesirable output,
the constraints contain ∑

j∈J
λjbfj ≤ gb

do - (udo - vdo) = gb
do - sg-do , ∑

j∈J
λjbfj ≥ gb

do - (udo - vdo) = gb
do - sg-do , LBb

do ≤

sg-do = udo - vdo ≤ UBb
do ,and ∑

j∈J
λjbfj ≤ gb

fo - (ufo - vfo) + M = gb
fo - sg-fo + M,f≠ d∈ FM

1 , ∑
j∈J

λjbfj ≥ gb
fo - (ufo -

vfo) -M = gb
fo - sg-fo -M,f≠d∈ FM

1 , LBb
fo ≤ sg-fo = ufo - vfo ≤ UBb

fo,f≠d∈ FM
1 . We prove that both the constraints

and the objective function about the goals are the same in the two models. Therefore, combining with Proposition 2,
we have Proposition 5. When there are more multi-valued inputs / outputs, the analysis process is analogous.
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Appendix D
We consider the DMUt,t ∈ J under centralized decision-making case. We assume that sg-it = uit + vit, sg-it =
uit - vit, sg+rt = urt + vrt, sg+rt = urt - vrt, sg-ft = uft + vft and sg-ft = uft - vftfor input / output indicators. The ρgt

can be rewritten as

∑
i∈IS

(uit + vit)
xit

+∑ P

p = 1∑
i∈IMp

(uit + vit)δxit
xit

+∑
r∈RS

(urt + vrt)
yrt

+∑Q

q = 1∑
r∈RMq

(urt + vrt)δyrt
yrt

+∑
f∈FS

(uft + vft)
bft

+∑
U

u = 1
∑
f∈FMu

(uft + vf t)δbf
bft

SI + P + SR + Q + SF + U
.

We use zxuit , zxvit , zyurt , zyvrt , zbuft and zbvft to represent uit∗δxi , vit∗δxi , urt∗δyr , vrt∗δyr , uft∗δbf and vft∗δbf
respectively. Then, we express ρg″t as

∑
i∈IS

(uit + vit)
xit

+∑Q

q = 1∑
i∈IMp

(zxuit + zxvit )
xit

+∑
r∈RS

(urt + vrt)
yrt

+ ∑Q

q = 1∑
r∈RMq

(zyu
rt + zyv

rt )
yrt

+ ∑
f∈FS

(uft + vft)
bft

+ ∑
U

u = 1
∑
f∈FMu

(zbu
ft + zbv

ft )
bft

SI + P + SR + Q + SF + U
.

　 　 Then, using Propositions 3 and 4, we rewrite the model as follows, given ρM′
t in model (B. 1) and ρg″t .

max∑ n

t = 1
ρM′
t

min∑ n

t = 1
ρg″t

s. t. (8. 1 - 8. 9)
∑
j∈J

λjtxij = gx
i - (uit - vit),t ∈ J,i ∈ IS

∑
j∈J

λjtxij ≤ gx
i - (uit - vit) + M(1 - δxi ),t ∈ J,i ∈ IMp ,p = 1,…P

∑
j∈J

λjtxij ≥ gx
i - (uit - vit) - M(1 - δxi ),t ∈ J,i ∈ IMp ,p = 1,…P

∑
j∈J

λjtyrj = gy
r + (urt - vrt),t ∈ J,r ∈ RS

∑
j∈J

λjtyrj ≤ gy
r + (urt - vrt) + M(1 - δyr ),t ∈ J,r ∈ RM

q ,q = 1,…Q

∑
j∈J

λjtxij ≥ gy
r + (urt - vrt) - M(1 - δyr ),t ∈ J,r ∈ RM

q ,q = 1,…Q

∑
j∈J

λjtbfj = gb
f - (uft - vft),t ∈ J,f ∈ FS

∑
j∈J

λjtbfj ≤ gb
f - (uft - vft) + M(1 - δbf ),t ∈ J,f ∈ FM

u ,u = 1,…U

∑
j∈J

λjtbfj ≥ gb
f - (uft - vft) - M(1 - δbf ),t ∈ J,f ∈ FM

u ,u = 1,…U

(8. 10 - 8. 14)
(B. 1. 1 - B. 1. 6)

δxi ∗LBx
i ≤ zxuit - zxvit ≤ δxi ∗UBx

i ,t ∈ J,i ∈ IMp ,p = 1,…P
(1 - δxi )LBx

i ≤ (uit - vit) - (zxuit - zxvit ) ≤ (1 - δxi )UBx
i ,t ∈ J,i ∈ IMp ,p = 1,…P

δyr∗LBy
r ≤ zyurt - zyvrt ≤ δyr∗UBy

r ,t ∈ J,r ∈ RM
q ,q = 1,…Q

(1 - δyr )LBy
r ≤ (urt - vrt) - (zyurt - zyvrt ) ≤ (1 - δyr )UBy

r ,t ∈ J,r ∈ RM
q ,q = 1,…Q

δbf ∗LBb
f ≤ zbuft - zbvft ≤ δbf ∗UBb

f ,t ∈ J,f ∈ FM
u ,u = 1,…U

(1 - δbf )LBb
f ≤ (uft - vft) - (zbuft - zbvft ) ≤ (1 - δbf )UBb

f ,t ∈ J,f ∈ FM
u ,u = 1,…U

λjt ≥0,s -it ≥0,s +rt ≥0,s -ft ≥0,t ∈ J,j ∈ J,i ∈ I,r ∈ R,f ∈ F
zxit ≥0,zyrt ≥0,zbft ≥0,i ∈ I,r ∈ R,f ∈ F,t ∈ J

zxuit ,zxvit ≥0,zyurt ,zyvrt ≥0,zbuft ,zbvft ≥0,i ∈ I,r ∈ R,f ∈ F,t ∈ J
uit ≥0,vit ≥0,urt ≥0,vrt ≥0,uft ≥0,vft ≥0,i ∈ I,r ∈ R,f ∈ F,t ∈ J

(D. 1)
　 　 Proposition 6　 Model (D. 1) is equivalent to model (14) .

Proof　 The process is similar to that of Proposition 5, seen in detail in Appendix C.
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非期望产出存在时考虑多值指标的目标导向 DEA 方法

童谣
中国科学技术大学管理学院,安徽合肥 230026
∗通讯作者. E-mail:joytung@ mail. ustc. edu. cn

摘要: 数据包络分析(DEA)是一种重要的数据驱动方法,可用于对一组有多个投入和多个产出的同质决策单

元(DMU)进行绩效评价和改进,这些投入和产出称为绩效指标. 某些绩效指标与传统 DEA 模型中使用的具有

单个值的绩效指标不同,由于其定义或衡量标准不同,可能对应多个值,称为多值指标. 绩效指标通常反映了

DMU 的当前生产状态,忽略了决策者的目标. 为此提出了基于松弛的 DEA 改进模型,用于处理多值指标,可以

得到帕累托最优解,并考虑了分散决策和集中决策两种常见决策场景. 此外,我们通过考虑决策者目标得到扩

展模型,以帮助 DMU 提高绩效并尽可能达到决策者的目标. 基于松弛的方法和进一步考虑决策者目标增强了

模型对 DMU 的区分能力,并为某些指标提供更符合实际的改进. 通过中国长江三角洲 22 个城市的实例应用,
说明了我们提出的模型的有效性和实用性.
关键词: 数据包络分析;多值指标;目标;分散决策;集中决策
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