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1　 Introduction
Let M be a smooth Riemann surface, and p1,…,pl be
finitely many points on M. For each point pi, we assign
a weight βi > - 1. We are interested in the class of
metrics g which are smooth and compatible with the
conformal structure of M away from pi . Assume that in
some neighborhood of pi, g is given by

g = | z | 2βi | dz | 2 (1)
where z is a complex coordinate around pi and z(pi)=
0. A metric g that satisfies the above conditions is
called a metric with conical singularities. Obviously,
around pi, (M,g) is isometric to a flat cone metric with
total cone angle 2π(βi+1), i. e.

r2βi(dr2 + r2dθ2) .
　 　 In this paper, we investigate a linear parabolic
equation of fourth order:

ut =
1
2
e -2a△(e -2a( - △u + K0)) (2)

where △ is the Laplacian of g, a and K0 are known
coefficients. We will prove that under appropriate
conditions the initial value problem of ( 2 ) has a
solution, and the solution satisfies some estimates( see
Theorem 1. 1) .

The purpose of discussing Equation (2) is to make
preparations for investigating the conical Calabi flow.
The Calabi flow was first proposed by Calabi[1] in 1982.
Precisely, on a smooth surface, we define Calabi flow
to be

􀆟g
􀆟t

= △gK·g (3)

where K is the Gaussian curvature. For a smooth initial

metric g0, if g(t)= e2u( t)g0 is a solution of (3), then

ut =
1
2
e -2u△g0(e

-2u( - △g0u + K0)) (4)

where K0 is the Gaussian curvature of g0 . Chrusciel[2],
Chen[3] and Struwe[4] independently proved the long
time existence and convergence of Calabi flow on
smooth surfaces. And Li et al. [5] obtained convergence
theorems of the Calabi flow on extremal Kähler
surfaces, under the assumption of global existence of the
Calabi flow solutions. In the mean time, the topic of
Ricci flow with conical singularities attracts the attention
of many researchers[6-9] . In particular, Yin[10] proved
the long time existence of the conical Ricci flow for
general cone angle. And Zheng[11,12] also did some
research on the conical Calabi flow.

We may also investigate the conical Calabi flow.
To dicuss Equation (4) on conical surfaces, we will
first need to study the corresponding linear equation
(2) . Although Equation (2 ) is linear, (M, g) is
incomplete. Hence, we need to define some special
function spaces.

We assume without loss of generality that there is
only one singular point p of order β. In a neighborhood
of p, let x,y be the real and imaginary part of z. We
define the coordinate (ρ,θ) by the following equations:

x = rcosθ, y = rsinθ (5)
and

ρ = 1
β + 1

rβ+1 (6)

It is not hard to see that ρ is the Riemannian distance to
p with respect to g. We assume that (1) holds in {ρ<



1}, and define U=M \{ρ≤1
2
} .

Definition 1. 1[10] 　 Let (ρ ,θ) and U be used as
above, and l∈NN , α∈(0,1) . For any function u∈
Cl,α(M \{p}), we define
‖u‖El,α: = sup

k∈NN
‖u(2 -kρ,θ)‖Cl,α(B1 \B1 / 2)

+ ‖u‖Cl,α(U)

(7)
where Br is {(ρ,θ) | ρ < r} . We define E l,α to be the
set of functions u satisfying ‖u‖E l,α<+∞ .

Similarly, we can define the parabolic version of the
above weighted Hölder function space.

Definition 1. 2[10] 　 If u is a function defined on
M \{p}×[0,T] ,we define
‖u‖P l,α,[0,T]: = 　 　 　 　 　 　 　 　 　 　 　 　 　 　

sup
k∈NN

‖u(2 -kρ,θ,16 -k t)‖Cl,α(B1 \B1 / 2×[0,16kT])
+

‖u‖Cl,α(U×[0,T]) (8)
and P l,α,[0,T] to be the set of functions u satisfying
‖u‖P l,α,[0,T]<+∞ .

It is not hard to see E l,α and P l,α,[0,T] are Banach
spaces. Since the main tool used for proving the apriori
estimate in this paper is the energy method, we need to
add another constraint to the spaces above.

Definition 1. 3 　 For a function u defined on M \
{p}, we define

[u]X: = ∫( | u | 2 +|∇u | 2 +|△u | 2)dV( )
1 / 2

(9)
For a function v defined on (M \ {p}) ×[0,T], we
define

[v]X,T = sup
t∈[0,T]

[v(t)]X .
　 　 Definition 1. 4 　 For u∈Cl,α(M \ {p}), we say u
has the property of approximations, if there is a
sequence of functions ui defined on M \{p} satisfying:

(i) For each i, there is a neighborhood of p, such
that ui in it are constant;

(ii) ui converges to u in Cl,α
loc(M \{p});

(iii) lim
i→∞

[ui]X = [u]X .

Similarly, for v∈Cl,α( (M \ {p})×[0,T]), we say v
has the property of approximations, if there is a
sequence of vi defined in (M \{p})×[0,T] satisfying:

( i′) For each i, there is a neighborhood of p, such
that for t∈[0,T], vi(t) in it are constant;

(ii′) vi( t) converges to v in Cl,α
loc ( (M \ {p}) ×

[0,T]);
(iii′) lim

i→∞
[ai]X,T = [a]X,T ;

(iv′) there is a constant c ( independent of v ),
such that

‖vi‖C0((M \{p}) ×[0,T]) ≤ c‖v‖C0((M \{p}) ×[0,T]),
‖􀆟t vi‖C0((M \{p}) ×[0,T]) ≤ c‖􀆟t v‖C0((M \{p}) ×[0,T]) .

　 　 With these definitions, we can state the main
theorem of this paper as follows.

Theorem 1. 1 　 Let (M,g) be a closed surface

with conical metric and assume that p is the only cone
point. Assume that a ∈ P 2,α ,[0,T], 􀆟ta ∈ C0 (M ×
[0,T]), K0∈E 2,α, u0∈E 4,α, and

(i) K0 is identically 0 in a neighborhood UK of p;
(ii) [a]X,T, [u0]X<∞;
(iii) a and u0 have the property of approximations,

then there exists a solution u∈P 4,α,[0,T] satisfying

ut =
1
2
e -2a△ e -2a( - △u + K0)( ) (10)

and u(0)= u0 such that
‖u‖P 4,α,[0,T] ≤ C(‖u0‖E 4,α,
‖a‖P 4,α,[0,T], ‖K0‖E 2,α) (11)

and
[u]X,T ≤ C(‖a‖C0, ‖􀆟ta‖C0,
‖K0‖E 2,α, [a]X,T, [u0]X,T) (12)

　 　 To prove this theorem, we use a sequence of
surfaces with boundary to approximate the surface with
conical point. Specifically, we consider

Mk: = M \ (ρ,θ) | ρ < 1
k{ } .

In this surface with boundary, we consider the same
initial value problem, with some special boundary
conditions:

􀆟u
􀆟ν

= 􀆟(△u)
􀆟ν

= 0 on 􀆟Mk .

By the boundary conditions, we can use the energy
method to get some uniform apriori estimates (see Section
2). Based on this result, in Section 3, we finish the
proof of Theorem 1. 1 by taking k →∞. Finally, in
Section 4, we discuss the property of approximations
stated in Definition 1. 4 and prove that the condition (iii)
in Theorem 1. 1 can be removed when β∈(-1,0) and
△u is bound. Specifically,

Theorem 1. 2　 Let β∈(-1,0) . If u∈C4,α(M \
{p}) satisfies [u]X<∞ and △u is bounded, then u has
the property of approximations defined as Definition
1. 4. Similarly, if a∈C2,α((M \{p})×[0,T]) satisfies
[a]X,T<∞ and △a(t) is bounded ,∀t∈[0,T], then a
has the property of approximations.

2　 Estimates of boundary value problem
In this section, M is a compact surface with nonempty
boundary and a smooth Riemannian metric g. Consider
the linear boundary value problem

􀆟t u = 1
2
e -2a△(e -2a( - △u + K0)) on M × [0,T],

u(0) = u0 on M,
􀆟u
􀆟ν

= 􀆟(△u)
􀆟ν

= 0 on 􀆟M

ü

þ

ý

ï
ïï

ï
ïï

(13)
where ν is the outward normal vector to the boundary.

Theorem 2. 1 　 Let a∈C2,α(M ×[0,T]), K0 ∈
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C2,α(M), u0∈C4,α(M) . Assume that a( t) and u0 are
constants in a neighborhood of 􀆟M. Then there is a
unique solution u(x,t)∈C4,α(M×[0,T]) to Equation
(13) satisfying the initial condition u(0) = u0 . If M′
containing the support of K0 is a smooth domain with
boundary satisfying M′∩ 􀆟M = Ø, then we have the
following uniform estimate:

max
t∈[0,T]∫M( | u | 2 +|∇u | 2 +|△u | 2)dV ≤ 　 　 　 　 　

C(‖a‖C0,‖K0‖C2,‖􀆟ta‖C0,[a]X,T,[u0]X,T,M′)
(14)

where C depends on the geometric property of (M′,g),
such as Sobolev inequality, the coefficient of Lp

estimates, but is independent of M.
Proof 　 Since u0 is constant around 􀆟M, the

compatibility condition
􀆟u0

􀆟ν
= 􀆟(△u0)

􀆟ν
= 0 on 􀆟M (15)

holds. The existence and uniqueness of the solution u is
well known from the classical theroy[13] .

Next, we prove some uniform estimates of the L2

norm of △u,∇u,u.
Differentiating directly and using integration by

parts by boundary conditions, we have
d
dt∫M |△u | 2e -2adV = 　 　 　 　 　 　 　 　 　 　 　 　

2∫
M
△u△ 􀆟u

􀆟t
e -2adV - 2∫

M
|△u | 2e -2a􀆟tadV ≤

- 2∫
M
∇(△ue -2a)·∇ 􀆟u

􀆟t
dV + Ca∫

M
|△u | 2dV,

where Ca is a constant depending on ‖ a ‖C0 and
‖􀆟ta‖C0 . In the calculation below, each time Ca

appears it may represent a different constant. If
necessary, to specify a constant, we use double
subscripts, such as Ca1 .

Use integration by parts once again, substitute
Equation (2) into the inequality, and apply Young’ s
inequality, we get

d
dt∫M |△u | 2e -2adV ≤2∫

M
△(△ue -2a) 􀆟u

􀆟t
dV +

Ca∫
M
|△u | 2dV = - 4∫

M
| 􀆟tu | 2e2adV +

2∫
M
△(e -2aK0)􀆟tudV + Ca∫

M
|△u | 2dV ≤

- Ca1∫
M
| 􀆟tu | 2dV + ε∫

M
| 􀆟tu | 2dV +

1
ε ∫M |△(e -2aK0) | 2dV + Ca∫

M
|△u | 2dV ≤

Ca∫
M
|△u | 2dV + Ca∫

M
|△(e -2aK0) | 2dV.

Here in the last line above, we choose ε<
Ca1

2
. For the

second term in the above inequality,

∫
M
|△(e -2aK0) | 2dV ≤ 　 　 　 　 　 　 　 　 　 　 　 　 　

CK0 ∫M( |△a | 2 +| K0 | 2 |∇a | 4 +|∇a | 2)dV( ) + Ca,K0

(16)
where the meaning of subscript in CK0

and Ca,K0
is

understood in a similar way as in Ca . The items in
parentheses above, except |∇a | 4, are controlled by
[a]X,T . Using Sobolev’s embedding theorem and L2

estimates in the support of K0, we have

∫
M
| K0 | 2 |∇a | 4dV ≤ CK0∫M′

|∇a | 4dV ≤ 　 　 　 　

CK0CM′‖a‖4
W2,2(M′) ≤

CK0CM′(‖△a‖L2(M′) + ‖∇a‖L2(M′) + ‖a‖L2(M′))4 ≤
CK0CM′[a]4

X,T .
Base on the above, we have

d
dt∫M |△u | 2e -2adV ≤ 　 　 　 　 　 　 　 　 　 　 　 　

Ca∫
M
|△u | 2e -2adV + Ca,K0

+ Ca,K0CM′[a]4
X,T .

We can then get the uniform estimate of ‖△u‖L2(M) by
Gronwall’s inequality.

Similarly, using Equation (2) and integration by
parts twice(use the condition that a is constant around
􀆟M and boundary condition), we have
d
dt∫M |∇u | 2dV = - 2∫

M
△u 􀆟u

􀆟t
dV = 　 　 　 　 　 　 　

∫
M
△ue -2a△(e -2a△u)dV - ∫

M
△ue -2a△(e -2aK0)dV =

- ∫
M
|∇(△ue -2a) | 2dV - ∫

M
△ue -2a△(e -2aK0)dV ≤

1
2 ∫M |△u | 2dV + Ca

2 ∫M |△(e -2aK0) | 2dV.

　 　 In the last line above, we drop a negative term,
and use the Schwarz’s inequality. The first term on the
far right of the above inequality is already estimated,
and the second term is already discussed in (16) .

Using Gronwall’ s inequality once again, we get
the estimate of ∫

M
|∇u | 2dV.

To get the estimate of L2 norm of u, noticing that
􀆟ν a = 􀆟νK0 = 􀆟ν(△u) = 􀆟νu = 0, we use integration by
parts twice,

d
dt∫M | u | 2e2adV = 2∫

M
| u | 2e2a􀆟tadV +

∫
M
u△(e -2a( - △u + K0))dV ≤

Ca∫
M
| u | 2dV - ∫

M
∇u·∇(e -2a( - △u + K0))dV =

Ca∫
M
| u | 2dV + ∫

M
△ue -2a( - △u + K0)dV.

By the Young’s inequality,
d
dt∫M | u | 2e2adV ≤
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Ca∫
M
| u | 2dV - Ca∫

M
|△u | 2 + Ca,K0 ≤

Ca∫
M
| u | 2dV + Ca,K0 .

By the Gronwall’s inequality, and the proof is done.

3 　 Solution of the linear equation via
approximations

The purpose of this section is to prove Theorem 1. 1 by
Theorem 2. 1.

Recall the definition

Mk: = M \ (ρ,θ) | ρ < 1
k{ } (17)

Due to the assumption (iii) in Theorem 1. 1, by taking
a subsequence, we can assume without loss of generality
that there are u0;k ∈C4,α (X \ { p}) such that u0;k is
constant around 􀆟Mk, similarly, ak∈C2,α( (M \ {p})×
[0,T]) satisfying that ak is constant around 􀆟 Mk for t∈
[0,T] . Furthermore, due to the assumption ( i) in
Theorem 1. 1, we can assume that M′: = M \ UK is
compactly contained in Mk when k goes to infinity.

By the above discussion, we can apply Theorem
2. 1 to the boundary value problem

􀆟t u = 1
2
e -2ak△(e -2ak( - △u + K0)) on Mk × [0,T],

u(0) = u0;k on Mk,
􀆟u
􀆟ν

= 􀆟(△u)
􀆟ν

= 0 on 􀆟Mk

ü

þ

ý

ï
ïï

ï
ïï

(18)
and denote the solution by uk . It is defined in Mk×[0,
T], and satisfies the uniform estimate (14):

max
t∈[0,T]∫Mk( | uk | 2 +|∇uk | 2 +|△uk | 2)dV ≤

C(‖ak‖C0,‖K0‖C2,‖􀆟tak‖C0,
[ak]X,T,[u0;k]X,T,M′) (19)

Meanwhile, for any fixed compact set W⊂M \ {p}, ak

converges to a in C2,α(W×[0,T]), u0;k converges to u0

in C2,α(W) . After taking subsequence if necessary, we
might as well call it uk, it converges to a function u(x,
t) defined in (M \ {p}) ×[0,T], and u is a classical
solution to the initial value problem of Equation (2) .

Since a∈P 2,α,[0,T], u0∈E 4,α and K0∈E 2,α, we
may apply the Schauder interior estimates to (2 ) to
obtain that u∈P 4,α,[0,T] and (11).

Meanwhile, since uk satisfies ( 14 ), by the
definition of the property of approximations, we have

‖ak‖C0 ≤ c ‖a‖C0,
‖􀆟t ak‖C0 ≤ c ‖􀆟ta‖C0,

lim
k→∞

[ak]X,T = [a]X,T,
lim
k→∞

[u0;k]X = [u0]X .
Let k go to ∞, and we get (12). Hence we finish the
proof of Theorem 1. 1.

4　 About the property of approximations
The aim of this section is to prove Theorem 1. 2. We will
give the approximation sequence by explicit construction.
The proof is divided into two parts. First, we prove the
theorem for u∈C4,α( M \{p}).

In order to define the approximation sequence, we
first give some properties of the function u near the cone
point p. Although the function class C4,α(M \ {p}) puts
few restrictions on the properties of the function near p,
the condition

∫
M
( | u | 2 +|∇u | 2 +|△u | 2)dV < ∞

implies a lot, which is summarized in the following
lemma.

First,we need a lemma about the integration by
parts.

Lemma 4. 1　 A function u is defined on M. If u is
bounded and ∫

M
|∇u | 2dV is bounded,then

∫
M
△udV = 0 and ∫

M
u·△udV = - ∫

M
|∇u | 2dV.

　 　 Lemma 4. 2 　 Let u satisfy the requirements of
Theorem 1. 2, then

(i) there is γ∈(0,1) which depends only on β,
such that u is in C0,γ in the coordinate z;

(ii) |∇u | 2 is bounded.
Proof　 We denote the flat metric dx2 +dy2 by gs

and write W2,p(gs) for the Sobolev space with respect to
gs .

Letting f=△u, in the neighborhood B:={ρ<1 / 2}
of p, by (1), we have

△gsu = | z | 2β f (20)

Meanwhile, by the assumption ∫
M
|△u | 2dV < ∞, we

have

∫
B
| f | 2 | z | 2βdxdy < ∞ (21)

Since β∈(-1,0), there exists q>2, such that | z | β is in
Lq(gs) . With (21), we deduce that the right hand side

of (20) is in L
2q
2+q . By ∫

M
|∇u | 2dV < ∞,we get that u

is a weak solution to (20), and then by Lp estimates
and Sobolev’s imbedding theorem, there exists γ∈(0,
1), such that u is in C0,γ in {ρ<1 / 4} as a function of z.

Next we prove (ii) . Assume first that - 1
2
<β<0.

In this case, △gsu= | z | 2β f∈Lq(gs), for some q>2.
We claim that u∈W2,q(gs) . To see this, let u be

the usual solution of
△gsu = | z | 2β f

with boundary value u = u on { r = 1} . We know u∈
W2,q(gs) . Meanwhile, the difference u-u is a harmonic
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function defined on {0 <r<1} and vanish on {r=1} .
Moreover, it is bounded and ∫

M
| ∇(u - u) | 2dV is

bounded. Hence it is zero by Lemma 4. 1 and u=u.
By Sobolev’s embedding theorem, 􀆟xu and 􀆟yu are

bounded. Hence, |∇u | 2 is bounded because
|∇u | 2 = | z | -2β( | 􀆟x u | 2 +| 􀆟yu | 2) .

　 　 If -1<β≤- 1
2
, we can find positive integer m and

β0∈(- 1
2
,0] such that 1+β0 =m(1+β) . Hence, we

may consider a cone of order β0, which is m-fold cover
of the original one. Then the lemma with cone of order
β follows from the cone of β0 . Precisely,by setting ρ =
1

β+1
, we have

g = dρ2 + (1 + β)2ρ2dθ2 .
Consider another cone of order β0, whose metric is
given by

g︿ = dρ2 + (1 + β0)2ρ2dη2 .
　 　 The map Ψ from (ρ,η) to (ρ,mη mod 2π) is an
m-fold isometric covering. By setting u︿ = u 􀳱Ψ and f︿ =
f 􀳱Ψ, we have

△g︿u
︿ = f︿.

Since f︿,u︿ are bounded and ∫ |∇u︿ | 2dVg︿ is bounded, we

know |∇︿ u︿ | 2 is bounded. So is u and the lemma is
proved.

To define the approximation sequence, we need a
sequence of cut-off functions φi satisfying:

(C1) for any ρ∈[0, 1
2
], φi(ρ)∈[0,1];

(C2) there is δi>0, φi≡1 in [0,δi];

(C3) for any ρ> 1
i
, φi(ρ)= 0;

(C4) φi is smooth, and

lim
i→∞ ∫

1
2

0
| φ′i(ρ) | 2ρdρ = 0.

　 　 (C5) there exists c>0, such that

sup
[0,12 ]

| φ″i(ρ) | ≤ c
ρ2 .

We claim that φi satisfying the above conditions exists.
To see this, for any m>1, we choose a smooth function
ψ:RR → RR such that

ψ(s) ≡ 1 ∀x ≥ m + 1,
ψ(s) ≡ 0 ∀x ≤ m.

Naturally we have
sup

RR
( | ψ′ | +| ψ″ | ) ≤ 4.

For any i, we choose m which is large enough
(dependent of i), and define

φi(ρ) = ψ(log( - log ρ)) .

Due to the equations

φ′i(ρ) =
ψ′(log( - log ρ)) 1

ρlog ρ
,

　 　 m < log( - log ρ) < m + 1;
0, otherwise;

ì

î

í

ï
ï

ï
ï

and

φ″i(ρ) = ψ″(log( - log ρ)) 1
ρ2(log ρ)2

+

ψ′(log( - log ρ)) - 1 - log ρ
ρ2(log ρ)2 ,

we obtain that if m is large enough, (C1)-(C5) hold.
By Lemma 4. 2, we can write

u(ρ,θ) = u(p) + u􀮨(ρ,θ),
where u(p) is the value of u at p, and

| u􀮨 | (ρ,θ) ≤ C ρα (22)
for some α > 1. This is very important for later
estimates.

We define
ui = u(p) + (1 - φi) u􀮨 (23)

We just need to verify that ui meets the requirements of
Definition 1. 4, where ( i) and ( ii) therein are direct
consequences of (C2) and (C3) . Hence, it suffices to
show

lim
i→∞ ∫B1 / 2( | φi u􀮨 | 2 +|∇(φi u􀮨) | 2 +

|△(φi u􀮨) | 2)dVg = 0 (24)
　 　 By the dominated convergence theorem,

lim
i→∞∫B1 / 2 | φi u􀮨 | 2dVg = 0

is obvious. Meanwhile,

∫
B1 / 2

|∇(φi u􀮨) | 2dVg ≤ 　 　 　 　 　 　 　 　 　

2∫
B1 / 2

( |∇φi | 2 | u􀮨 | 2 + φi
2 |∇u􀮨 | 2)dVg .

By (C4), we get that the right hand side of the above
equation goes to 0 when i→∞ .

Finally,
|△(φi u􀮨) | 2 ≤ 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　

c ( |△φi | 2u􀮨2 +|∇φi | 2 |∇u􀮨 | 2 + φi
2 |△u􀮨 | 2) .

It is obvious that the integral of the last term in the right
hand side of the above inequality goes to 0, and the
integral of the second term also goes to 0 because of
(ii) in Lemma 4. 2 and (C4) . To estimate the first
one, we use (C5) and (22),

∫
B1 / 2

|△φi | 2u􀮨2dVg ≤ C∫
0

1 / 2
(φ″i +

1
ρ
φ′i)2ρ2αρdρ.

Notice that 2α>2, and the domain of the above integral

is really just [0, 1
i
], we get this term also goes to 0

when i → ∞ . Therefore we finish the proof of the
property of approximations for u.
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Let a satisfy the assumptions of Theorem 1. 2.
Naturally, a ( t) as a function defined on M \ { p},
satisfies that [a( t)]X is finite, then Lemma 4. 2 holds
for a(t) . Hence we can write

a = a(p,t) + a􀮨.
Next set

ai = a(p,t) + (1 - φi)a􀮨 (25)
For a fixed t by repeating the proof above, we obtain
that (i′)-(iii′) in Definition 1. 4 hold for ai . To show
(iv′), take the C0 norm of (25),
‖ai(t)‖C0(M \{p}) ≤| a(p,t) | + ‖a􀮨(t)‖C0(M \{p}) ≤

3‖a(t)‖C0(M \{p}) .
Take the derivative of (25) with respect to t, and take
C0 norm again,
‖􀆟t ai(t)‖C0(M \{p}) ≤| 􀆟t a(p,t) | + 　 　 　 　 　 　

‖􀆟t a􀮨(t)‖C0(M \{p}) ≤3‖􀆟t a(t)‖C0(M \{p}) .
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一个带锥曲面上的四阶线性抛物方程

张方旭∗

中国科学技术大学数学科学学院, 安徽合肥 230026
∗通讯作者. E-mail:fxzhang@ mail. ustc. edu. cn

摘要: 考虑一个带锥曲面上的四阶线性抛物方程,利用能量分析和逼近的方法,证明了方程在一个具有逼近性

质的空间上的解的存在唯一性. 最后,证明了当 β∈(-1,0)时,对于一类函数这个性质等价于能量有限.
关键词: 抛物方程;Calabi 流;锥奇点
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