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Abstract; A parabolic equation of fourth order on surfaces with conical singularities is considered. By
the analysis of energy and approximations, the existence and uniqueness of the solution of this equation
in a special space that has some approximation property are proved. Finally, it’s proved that the property
is equivalent to the finiteness of energy for some functions when B e (-1,0).
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1 Introduction

Let M be a smooth Riemann surface, and p,,---,p, be
finitely many points on M. For each point p,, we assign
a weight 8,> —1. We are interested in the class of
metrics ¢ which are smooth and compatible with the
conformal structure of M away from p,. Assume that in
some neighborhood of p,, g is given by

g=1z1%1dz1? (1)
where z is a complex coordinate around p, and z(p,)=
0. A metric g that satisfies the above conditions is
called a metric with conical singularities. Obviously,
around p,, (M,g) is isometric to a flat cone metric with
total cone angle 277 (83,+1), i.e.

2(dr +r7de).

In this paper, we investigate a linear parabolic

equation of fourth order .

w= e A= AutK)) ()
where A is the Laplacian of g, a and K, are known
coefficients. We will prove that under appropriate
conditions the initial value problem of (2) has a
solution, and the solution satisfies some estimates ( see
Theorem 1.1).

The purpose of discussing Equation (2) is to make
preparations for investigating the conical Calabi flow.
The Calabi flow was first proposed by Calabi''' in 1982.
Precisely, on a smooth surface, we define Calabi flow
to be
dg _ .

o AK-g (3)
where K is the Gaussian curvature. For a smooth initial

metric g,, if g(#)=¢e" g, is a solution of (3), then

u = %G_Z"Ago(e_z"( S A +K)) (4
where K, is the Gaussian curvature of g,. Chrusciel®',
Chen"’’ and Struwe'*’ independently proved the long
time existence and convergence of Calabi flow on
smooth surfaces. And Li et al. °' obtained convergence
theorems of the Calabi flow on extremal Kihler
surfaces, under the assumption of global existence of the
Calabi flow solutions. In the mean time, the topic of
Ricci flow with conical singularities attracts the attention
of many researchers*’. In particular, Yin''" proved
the long time existence of the conical Ricci flow for
general cone angle. And Zheng'''*' also did some
research on the conical Calabi flow.

We may also investigate the conical Calabi flow.
To dicuss Equation (4) on conical surfaces, we will
first need to study the corresponding linear equation
(2). Although Equation (2) is linear, (M, g) is
incomplete. Hence, we need to define some special
function spaces.

We assume without loss of generality that there is
only one singular point p of order 8. In a neighborhood
of p, let x,y be the real and imaginary part of z. We
define the coordinate (p,6) by the following equations:

x = rcosf, y = rsinf (5)

and
1 pa
B+ llﬁ (6)
It is not hard to see that p is the Riemannian distance to
p with respect to g. We assume that (1) holds in {p<

p:
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1!, and define U=M\{p$%}.

Definition 1.1 Let (p ,0) and U be used as
above, and [ e N, o € (0,1). For any function u e
c"“(M\{p}), we define

| u Aot = I‘Slelly [ u(2_kp,0) | CLa(B\By /) + Jlul cle(u)

(7)
where B, is {(p,0) lp < r|. We define & " to be the
set of functions u satisfying || u || ,i.<+o.

Similarly , we can define the parabolic version of the
above weighted Holder function space.
Definition 1. 2"/ If u is a function defined on
M\{p}x[0,T] ,we define
lwll srasor: =

f‘ig [ u(z_kp,9,16_kl> [ CLa(B\By px[0,1647]) T

[ wl cla(Ux[0,1]) (8)
and 22 """ o be the set of functions u satisfying
lwll racom<too.

It is not hard to see & "* and 22"*""" are Banach
spaces. Since the main tool used for proving the apriori
estimate in this paper is the energy method, we need to
add another constraint to the spaces above.

Definition 1.3 For a function u defined on M\

{pl, we define
172

[uly:= [Cal® +1 Tul® +1 Aul®)dV] (9)
For a function v defined on (M\{p})x[0,T], we
define

[o]yr = sup [v(0) ]

Definition 1.4 For ue C**(M\{p}), we say u
has the property of approximations, if there is a
sequence of functions u, defined on M\{p! satisfying:

(i) For each i, there is a neighborhood of p, such
that ; in it are constant;

(ii) u, converges to u in CS(M\{p});

(iii) lim{,], = [u],.
Similarly, for ve C"*( (M\{p})x[0,T]), we say v
has the property of approximations, if there is a
sequence of v, defined in (M\{p})x[0,T] satisfying:

(i") For each i, there is a neighborhood of p, such
that for r€ [0,7T], v,(¢) in it are constant;

(ii’) v,(t) converges to v in C;5( (M\{p})x
[0,7]);

(iii,) ili?[ai}/v,v' = [a]x,'/' H

(iv") there is a constant ¢ (independent of v ),

such that

I v; | CO((M\{p})x[0,T]) <cluv] CO((M\ip})x[0,T]) s

I d, v, | AN x[0.7]) =€ l d,v I CO((M\{p})x[0,7])"
With these definitions, we can state the main
theorem of this paper as follows.
Theorem 1.1 Let (M, g) be a closed surface

with conical metric and assume that p is the only cone
point. Assume that a € 22 >* %" 94 e € (M x
[0,T]), K,e &>, uye & **, and

(i) K, is identically O in a neighborhood Uy of p;

(ii) I:a]X,Ta [u0]X<°° H

(iii) a and u, have the property of approximations,

b

then there exists a solution u e 22***") satisfying
u, = %efz”A e (- Au+K,)[ (10)

and u(0)=wu, such that
lwll ssaion < CClug || o,
lall paemon, 1Kl y2e) (11)
and
[ulyr s CClall o, ldall o,
Ko Il s2as [G}X,Ts [uo})uT) (12)
To prove this theorem, we use a sequence of
surfaces with boundary to approximate the surface with
conical point. Specifically, we consider
Moo= o0 1p <+
In this surface with boundary, we consider the same
initial value problem, with some special boundary
conditions:

u (Au) = 0 on dM,.
v v

By the boundary conditions, we can use the energy

method to get some uniform apriori estimates (see Section
2). Based on this result, in Section 3, we finish the
proof of Theorem 1. 1 by taking k— o . Finally, in
Section 4, we discuss the property of approximations
stated in Definition 1.4 and prove that the condition (iii)
in Theorem 1.1 can be removed when B e (-1,0) and
Au is bound. Specifically,

Theorem 1.2 Let Be (-1,0). If ue C**(M\
{pl) satisfies [u],<oc and Au is bounded, then u has
the property of approximations defined as Definition
1.4. Similarly, if ae C**((M\{p})x[0,T]) satisfies
[a]y <o and Aa(t) is bounded ,Vre[0,7], then a
has the property of approximations.

2 Estimates of boundary value problem

In this section, M is a compact surface with nonempty
boundary and a smooth Riemannian metric g. Consider
the linear boundary value problem

9 u= %e*hme*zﬂ(— Au+K,)) on Mx[0,7],0
u(0) = u, on M, %

O
du_ D) _ g on oM A
v v

where v is the outward normal vector to the boundary.
Theorem 2.1 Let a e C*(M x[0,T]), K, €
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C**(M), u, e C**(M). Assume that a(t) and u, are
constants in a neighborhood of dM. Then there is a
unique solution u(x,t) € C**(Mx[0,T]) to Equation
(13) satisfying the initial condition u (0) = u,. If M’
containing the support of K, is a smooth domain with
boundary satisfying M’ N dM = @, then we have the
following uniform estimate ;
max [ (lul? +1 Tul? +1 Aul®)dV <
M

te[0,T]Y
Clllallc, 1Ky Il 2y 1@l o, lalypslugly,T,M")
(14)
where C depends on the geometric property of (M’',g),
such as Sobolev inequality, the coefficient of L”
estimates, but is independent of M.

Proof  Since u, is constant around JM, the
compatibility condition
a (A
g _ 0CBW) _ ooy (15)
v v

holds. The existence and uniqueness of the solution u is
well known from the classical theroy'"’.

Next, we prove some uniform estimates of the L’
norm of Au, Vu,u.

Differentiating directly and using integration by
parts by boundary conditions, we have

AL Auleqy =
dt/u

2j Au\ @e_zadV - 2[ | Aul?e™d adV <
M ot n !

—2 V(aue™) - v v +c,[ 18ulta,
M ot M

where C, is a constant depending on || a | o, and
|d,all o- In the calculation below, each time C,
appears it may represent a different constant. If
necessary, to specify a constant, we use double
subscripts, such as C,,.

Use integration by parts once again, substitute
Equation (2) into the inequality, and apply Young’ s
inequality, we get

i 2 -2a = -2a 07”
dthlAul e dV\ZJ'MA(Aue )8t

dV +
.| 18u1av = 4] 1 oul2e™av +
M M
2f Ate K)oudv +C,[ 1Au1?ay <
M M
~Cuf Vaurraveef 1 auiav+
M M
Ll ace k) ravec,| 1auray <
E M M
[ 18uPdv+ .| 1A(e™K,) 120,
M M
C
Here in the last line above, we choose a<7"1. For the

second term in the above inequality,

[ 1ace k) 12av <
M

Cy, fw(maﬂ HOK 12T Val® 1 Val )V +C,

(16)
where the meaning of subscript in C and C, . is
understood in a similar way as in C,. The items in

parentheses above, except |Va |*, are controlled by
[a]y,. Using Sobolev’s embedding theorem and L’
estimates in the support of K,, we have

[Tk FIvatar<c,| 17a1dv <
M M
CKOCM’ [ all ‘:ﬂl(w') =
CKUCM’( | Aa |l oy T | Vall oy T [ all 12(M') )4 =
CKOCM’I:GJ;‘(,T .
Base on the above, we have

d [ Aul?e™dV <
dt’m

cufw | Aul?e™dV + C, . +C,y Cylalt, .
We can then get the uniform estimate of || Au || >, by
Gronwall’ s inequality.

Similarly, using Equation (2) and integration by
parts twice (use the condition that a is constant around
dM and boundary condition) , we have

d 2 19u
— \ = =2 Au—dV =
dtJ:w | VulndV J:W " (9th

jllaue*ZuA<e*2uAu)dv - fMAue’Z“A(e’Z“KO)dV =
- jM |V (Aue™) 12dV - fMAue’z“A(e’z“KO)dV <

1 2 Crl -2a 2
LA Yol A K :
2JM| u|dv+2fM| (eK,) 12dV.

In the last line above, we drop a negative term,
and use the Schwarz’ s inequality. The first term on the
far right of the above inequality is already estimated,
and the second term is already discussed in (16).

Using Gronwall ’ s inequality once again, we get

the estimate off | Vul?dV.
M

To get the estimate of L* norm of u, noticing that
d,a=d,K,=9d,( Au)=9,u=0, we use integration by
parts twice,

d 2 2a _ 2 2a
Ekm e dV = 2fM|u| d adV +
[ un(e™ (- pu+K))av =
M
CJ 1ut?av - Vu- V(e™(- Au+K,))dV=
M M

C[ 1ul?dv + [ Aue™(= Au+Ky)dv.
M M
By the Young’s inequality,
d 2 2
Sl ruizedyv <
dtJ'M vhe
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2 2
can|u| dv—canmm +C, <
2
CanIuI v +C, .

By the Gronwall’ s ihequality, and the proof is done.

3 Solution of the linear equation via
approximations
The purpose of this section is to prove Theorem 1.1 by

Theorem 2. 1.
Recall the definition

va=mleo)ip <l an

Due to the assumption (iii) in Theorem 1.1, by taking
a subsequence, we can assume without loss of generality
that there are u,, € C"*(X\{p}) such that u,, is
constant around dM, , similarly, a, € C**( (M\{p})x
[0,T]) satisfying that a, is constant around d M, for t e
[0,T]. Furthermore, due to the assumption (i) in
Theorem 1. 1, we can assume that M'; = M\ U, is
compactly contained in M, when k goes to infinity.

By the above discussion, we can apply Theorem

2.1 to the boundary value problem
1

(9LLL= ?e_zakA<e_2ak(_ Au+]<0)) on M,L; x I:O,T]9H
u(0) = uy, on M,, 0

0
o oA :
oy v

(18)
and denote the solution by u,. It is defined in M, %[0,
T], and satisfies the uniform estimate (14) .

max [ (1w, 12 + T, 12+ Auy 1)dV <

te[0,T] M,
CCllay [l o, 1Ky Il 2y 1,y [l o0,
[%Jx,ra[uo;k]x,T,M,)
Meanwhile, for any fixed compact set WC M\ |

(19)
pt, a
converges to a in C**(Wx[0,T]), u,,, converges to u,
in C>*(W). After taking subsequence if necessary, we
might as well call it u, , it converges to a function u(x,
t) defined in (M\{p})x[0,T], and u is a classical
solution to the initial value problem of Equation (2).

Since ae 272>y, e £ and K, € £, we
may apply the Schauder interior estimates to (2) to
obtain that u e 22**™ and (11).

Meanwhile , (14), by the
definition of the property of approximations, we have

[a,low=<cllalcw,
10,0, l 0 <ec ldallw,
}LT[“J);/ = [a}X,T’
Lo Ix-

Let k go to o, and we get (12). Hence we finish the

since u, satisfies

lim [ U,k Ix =
o

proof of Theorem 1. 1.

4 About the property of approximations

The aim of this section is to prove Theorem 1.2. We will
give the approximation sequence by explicit construction.
The proof is divided into two parts. First, we prove the
theorem for ue C**( M\{p}).

In order to define the approximation sequence, we
first give some properties of the function u near the cone
point p. Although the function class C**(M\{p}) puts
few restrictions on the properties of the function near p,
the condition

f(|u|2+|vu|2+|Au|2)dV< %
M

implies a lot, which is summarized in the following
lemma.

First, we need a lemma about the integration by
parts.

Lemma 4.1 A function u is defined on M. If u is

bounded and f | Vu12dVis bounded, then
M

L{AudV= 0 and J.Mu c AudV = - fwl Vul*dV.

Lemma 4.2 Let u satisfy the requirements of
Theorem 1.2, then

(i) there is y € (0,1) which depends only on 3,
such that u is in C°*” in the coordinate z;

(ii) IV ul* is bounded.

Proof We denote the flat metric dx’+dy’ by g,
and write W*”(g,) for the Sobolev space with respect to

i Letting f= Au, in the neighborhood B: = {p<1/2|
of p, by (1), we have
Agu=| 1 #f (20)
Meanwhile, by the assumption f | Aul?dV < o, we
have !
Llflzlzlzﬁdxdy<oo (21)

Since Be (-1,0), there exists g>2, such that |z1” is in
L(g,). With (21), we deduce that the right hand side

of (20) is in L. By [ 17ul?dV < o, we get that u
M

is a weak solution to (20), and then by L’ estimates
and Sobolev’ s imbedding theorem, there exists v € (0,
1), such that u is in C*” in {p<1/4} as a function of z.

Next we prove (ii). Assume first that —%<B<O.

. _ ZB
In this case, A, u=1z1"felL'(g,), for some g>2.

We claim that u € W>/(g,). To see this, let u be
the usual solution of

with boundary value u=u on {r=1}. We know ue

W*(g.). Meanwhile, the difference u—u is a harmonic
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function defined on {0<r<1}| and vanish on {r=1}.
Moreover, it is bounded and j | V(u —u) I°dV is
M

bounded. Hence it is zero by Lemma 4.1 and u=u.
By Sobolev’ s embedding theorem, d u and d,u are

bounded. Hence, IV ul” is bounded because

I Vul?> =1z 0, ul®+l 8},u|2).
If —1<B<—%, we can find positive integer m and
B, € (——,0] such that 1+B,=m(1+B). Hence, we

may consider a cone of order 3,, which is m-fold cover
of the original one. Then the lemma with cone of order
B follows from the cone of B,. Precisely,by setting p =

1
——, we have

B+1

= Ao’ + (1 +)’p'de°
Consider another cone of order B,, whose metric is
given by

g= do" + (1 +B)p"dn’

The map ¥ from (p,n) to (p,mn mod 27) is an
m-fold isometric covering. By setting u=uo¥ and f=
fo¥, we have

Au=f
Since f,; are bounded and f | Vul degis bounded, we

know |V u |? is bounded. So is u and the lemma is

proved.
To define the approximation sequence, we need a
sequence of cut-off functions ¢, satisfying :

0,%], e.(p) €[0,1];

(C2) there is §,>0, ¢,=11in [0,5,];

%, @.(p)=0;

(C4) ¢, is smooth, and
yﬂﬁ¢mw%®=o

(C5) there exists ¢>0, such that

(C1) for any p e[

(C3) for any p>

sup | ¢'i(p) | <
ol

We claim that ¢, satisfying the above conditions exists.
To see this, for any m>1, we choose a smooth function
¢y :R — R such that
P(s) =
¥ (s)
Naturally we have
s%p(l YL+l Y ) <4
For any i, we choose m which is large enough
(dependent of i), and define

@,(p) = P(log(—logp)).

2

=0 Vx <

3

Due to the equations

) 1
H{(lt)g(-logp)) oa o’
plog p

¢ilp) = m < log(=logp) <m+1;

, otherwise;
and
" " 1
@(p)= P'(log(—logp)) -5 +
p (log p)
1
w<log<—logp>>——zi——9§£
we obtain that if m is large enough, (C1)—-(C5) hold.
By Lemma 4.2, we can write

u(p,0) = u(p) +u(p,0),
where u(p) is the value of u at p, and

lul (p,8) <Cp° (22)
for some « > 1. This is very important for later
estimates.

We define

w=u(p) +(1-¢) @ (23)
We just need to verify that u, meets the requirements of
Definition 1.4, where (i) and (ii) therein are direct
consequences of (C2) and (C3). Hence, it suffices to
show
lim| (1 g1+ V(g i) 1% +
e B,
| A, ) 17)dV, = 0 (24)
By the dominated convergence theorem,
lim[ 1, @12V, =

imwdp

is obvious. Meanwhile

[ Ve iy, <
B

q;(|v¢|2|u|2+¢2|vu|ﬂdv

By (C4), we get that the right hand side of the above
equation goes to 0 when i—o .
Finally ,

| A () 17 <

c (1A 170 +I Vo, 121 Vu1* +o> I Aul?).
It is obvious that the integral of the last term in the right
hand side of the above inequality goes to 0, and the
integral of the second term also goes to 0 because of
(ii) in Lemma 4.2 and (C4). To estimate the first
one, we use (C5) and (22),

"y 172
f |AQD |2 2 Cf (QD”+ QD )2 20 d,O
B P

Notice that 2a>2, and the domain of the above integral
is really just [O,L,] , we get this term also goes to 0
i

when i — o . Therefore we finish the proof of the
property of approximations for u.
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Let a satisfy the assumptions of Theorem 1. 2.
Naturally, a () as a function defined on M\ {p},
satisfies that [ a(7) ], is finite, then Lemma 4.2 holds
for a(t). Hence we can write

a= a(p,t) +a.
Next set
a, = a(p,t) + (1 —¢)a (25)
For a fixed ¢ by repeating the proof above, we obtain
that (i")—(iii’) in Definition 1.4 hold for @,. To show
(iv"), take the C° norm of (25),

| a;(t) |l COMip}) <l a(p,t) I + | a(e) |l oo =
3lale) | OMp})*
Take the derivative of (25) with respect to 7, and take
C° norm again,
|9, a;(t) | oon S, a(p,t) | +

[ d, aN(t) [ ool = 3 d, a(t) | COM\{p})*
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