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1 Introduction

The problem of deciding whether a given graph contains
cycles of all lengths modulo a positive integer k shows
up in many literature (see Refs. [1-8]). Recently,
Moore and West"®' asked whether every (k+1)-critical
non-complete graph has a cycle of length 2 modulo k.
Here, a graph is k-critical if it has chromatic number k
but deleting any edge will decrease the chromatic
number. Very recently, Gao et al. 1o partially answered
this question by showing the following theorem.

Theorem 1.1 For k=6, every (k+1)-critical
non-complete graph contains cycles of all lengths
modulo k.

However, methods in Ref. [ 10] do not work for
k<6. In this note, we give a new method and prove that
the conclusion of Theorem 1.1 also holds for k=4, 5.

Theorem 1.2 For k=4, 5, every (k+1)-critical
non-complete graph contains cycles of all lengths
modulo k.

Thus, combined with the Theorems 1.1 and 1.2,
we completely give an affirmative answer to the
question of Moore and West.

The rest of the paper is organized as follows. In
Section 2, we introduce the notation. In Section 3, we
give a key lemma. In Section 4, we consider graphs of
chromatic number five and prove Theorem 1.2 for the
case k = 4. In Section 5, we consider graphs of
chromatic number six and prove Theorem 1.2 for the
case k=35.

2 Notation

All graphs considered are finite, undirected, and
simple. Let G be a graph and let H be a subgraph of a

graph G. We say that H and a vertex ve V(G)-V(H)
are adjacent in G if v is adjacent in G to some vertex in

V(H). Let N, (H): = ,LWJH)NG(V) -V (H) and

N, H]:=N,H)UV(H). For a subset S of V(G),
G[S] denotes the subgraph induced by S in G, and
G—-S denotes the subgraph G[ V(G)-S]. A vertex is a
leaf in G if it has degree one in G. We say that a path P
is internally disjoint from H if no vertex of P other than
its endpoints is in V ( H). For two vertex-disjoint
subgraphs H, H' of G, let N,(H') be the set of vertices
in H which are adjacent to some vertex in H'.

A cycle or a path is said to be odd (resp. even) if
its length is odd (resp. even). Given a cycle C and an
orientation of C, for two vertices x and y in C, let
C[x, y] denote the path on C from x to y in the
direction, including x and y. Let C[x, y):=Clx, y]|-
y, C(x, y]:=C[x, y]-x, and C(x, y):=C[x, y]-
{x, y|. We use the similar notation to a path P.

Let u and v be two vertices of a graph. If there are
three internally disjoint paths between u and v, then we
call such a graph as the theta graph. Note that any theta
graph contains an even cycle.

A vertex v of a graph G is a cut-vertex of G if G-
v contains more components than G. A block B in G is a
maximal connected subgraph of G such that there exists
no cut-vertex of B. So a block is an isolated vertex, an
edge or a 2-connected graph. An end-block in G is a
block in G containing at most one cut-vertex of G. If D
is an end-block of G and a vertex x is the only cut-
vertex of G with x e V(D) , then we say that D is an
end-block with cut-vertex x.

Let T be a tree, and fix a vertex r as its root. Let v
be a vertex of 7. The parent of v is the vertex adjacent
to v on the path from v to r. An ascendant of v is any

Citation: HUO Qingyi. Cycle lengths in graphs of chromatic number five and six. J. Univ. Sci. Tech. China, 2021, 51(5) : 374-381.



%54

Cycle lengths in graphs of chromatic number five and six 375

vertex which is either the parent of v or is recursively
the ascendant of the parent of v. A child of v is a vertex
of which v is the parent. A descendant of v is any vertex
which is either the child of v or is recursively the
descendant of any of the children of v. Let Y be a subset
of V(T). We say a vertex x is the descendant of Y if x
is the descendant of some vertex in Y. Let a, b be two
vertices of 7. Denote T, , the unique path between a
and b in T.

3 Key lemma

Let G be a 2-connected graph and let C and D be two
cycles in G. We say that (C, D) is an opposite pair in
G, if Cis odd and D is even satisfying that C and D are
edge-disjoint and share at most one common vertex.

Lemma 3.1 Let G be a 2-connected graph of
minimum degree at least 4. Let (C, D) be an opposite
pair in G. Then G contains cycles of all lengths modulo
4.

Proof Suppose to the contrary that G does not
contain cycles of all lengths modulo 4. Since G is 2-
connected and |V(C) NV(D) | <1, there exist two
vertex-disjoint paths P, Q between C and D satisfying
(V(C)NV(D))-V(Q)= @Y. We take such an
opposite pair (C, D), paths P and Q as the following
manner ;

@ IE(P) | is as large as possible;

@ IE(Q) | is as large as possible subject to (D.

Let p and g be the endpoints of P and Q in D,
respectively.

Claim 1 Every even cycle in the block of G-
(V(CUPUQ)-1{p, q}) including D contains both p
and ¢. In particular, every theta graph in the block
includes both p and gq.

Proof of Claim 1 Let H be the block of

G-(V(CUPUQ)-ip, q})

including D. Let D' be an even cycle in H other than
D. Suppose that p ¢ V(D'). Since H is 2-connected,
there are two vertex-disjoint paths L,, L, from {p, q}
to D' in H. We may assume that L, links p and D'
Note that L, has a length at least 1 and (C, D') is an
opposite pair. Then PUL, and QU L, are two internally
disjoint paths between C and D’ such that P U L, is
longer than P, a contradiction. Therefore, p e V(D').

Suppose that g ¢ V(D'). Since H is 2-connected,
there is a path L, from ¢ to D' internally disjoint from
V(D'") in H. Note that L, has a length at least 1 and
(C, D") is an opposite pair. Then P and QU L, are two
internally disjoint paths between C and D' such that QU
L, is longer than O, a contradiction. Therefore, ¢ €
V(D'"). Since every theta graph contains an even cycle,
every theta graph in H includes both p and g. This
completes the proof of Claim 1.

Since D is an even cycle, we partition V(D) into
the sets A and B alternatively along D. By symmetry
between A and B, we may assume that p € A.

Claim 2 For any b € B-{q/!, there is no path
from b to CUPUQ-{p, q!| internally disjoint from
CUDUPUQ.

Proof of Claim 2 Suppose to the contrary that
there is a path R from b to xe V(CUPUQ)-{p, q}
internally disjoint from CUD U P U Q. By symmetry,
we may assume that be D(p, q).

Assume that |E(D) | =0 mod 4. As C is an odd
cycle, there is an even path X, and an odd path Y,
between p and ¢ in CUP U Q. If g € B, then both
IE(D[p, gq])! and | E(D[gq, p]) | are odd, and
furthermore, since their sum is 0 modulo 4, they differ
by 2 modulo 4. Then X, UD[p, ¢q], X,UD[gq, p],
Y,UD[p, q] and Y, UD[gq, p] are 4 cycles of
different lengths modulo 4, a contradiction. Therefore,
we have that g € A.

Suppose that x e V(P) —{p}|. Since C is an odd
cycle, there is an even path X, and an odd path Y,
between b and ¢ in CUPUQUR. However, since both
|E(D[b, q])| and |E(D[q, b]) | are odd and differ
by 2 modulo 4, X, UD[b, ¢q], X,UD[q, b], Y, U
D[b, q] and Y, UD[q, b] are 4 cycles of different
lengths modulo 4, a contradiction. Thus, x is not
contained in V(P)—{p}.

Suppose that xe V(CUQ)-(V(P)U {g}!). Then
there is an even path X; and an odd path Y, between b
and p in C U P U Q U R. However, since both
|IE(D[b, p])!| and |E(D[p, b]) | are odd and differ
by 2 modulo 4, X, UD[b, p], X,UD[p, b], Y, U
D[b, p] and Y, UD[p, b] are 4 cycles of different
lengths modulo 4, a contradiction. Thus, x is not
contained in V(CUQ)—-(V(P)U{q!).

Therefore, |E(D) | =2 mod 4. As C is an odd
cycle, there is an even path X, and an odd path Y,
between p and g in CUP U Q. If g € A, then both
|[E(D(p, g])! and | E(D[gq, p]) | are even, and
furthermore, since their sum is 2 modulo 4, they differ
by 2 modulo 4. Then X, UD[p, ¢q], X,UD[q, p],
Y,UD[p, q] and Y, UD[gq, p] are 4 cycles of
different lengths modulo 4, a contradiction. Therefore,
we have that g € B.

Suppose that xe V(CUP)—-(V(Q) U {p}). Since
C is an odd cycle, there is an even path X, between b
and g and an odd path Y, between b and g in CUP U
QUR. However, since both | E(D[b, g]) | and

O We remark that (i) if V(C) NV(D)=¢, then P and ( are vertex-
disjoint, (ii) if C and D share one common vertex, then V(Q)=V(C)
NV(D).
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|[E(D[q, b])| are even and differ by 2 modulo 4, X,
UD[b, q], X;,UD[gq, b], Y;UD[b, q] and Y, U
D[ g, b] are 4 cycles of different lengths modulo 4, a
contradiction. Thus, x is not contained in V(CUP) -
(V(Q)Uipl).

Suppose that x e V(Q) —{q|. Since G is a 2-
connected graph of minimum degree at least 4, there
exists a path T from b to ye V(CUDUPUQUR) -
{b} internally disjoint from CUDUPUQUR. As the
same reason for x, y is not contained in V(CUP) -
(V(Q)U {p!l). Therefore ye V(QUDUR)-{b}.

If ye V(RUQUD(b, p))-1{b} , then D[ b, p) U
RUTU Q contains a theta graph. It follows that there is
an even D, cycle in G-(CUP-Q). Note that (C, D,)
is an opposite pair in G. It is easy to see that there are
two internally disjoint paths P’ and Q' between C and
D' satisfying that P’ contains P and is longer than P and
Q'COUD(b, q] UR, a contradiction. Thus, y is not
contained in V(RUQUD(b, p))-{b}.

Suppose that ye V(D[ p, b)). Since TUD[y, b]
does not contain ¢ and D[ b, g ] URUQ] x, q] does not
contain p, by the choice of opposite pairs, we have that
TUD[y, b] and D[ b, g] URUQ[ x, g ] are both odd
cycles. Since C is an odd cycle, there is an odd path X'
and an even path Y’ between y and x in CUPU QU
D[ p, y]. Note that the lengths of X' and Y’ differ by 1
modulo 4, the lengths of T and D[y, b] differ by 1
modulo 4 and the lengths of D[ b, g]UQ[ x, g] and R
differ by 1 modulo 4. Then the set

{L,UL,UL,IL e {X', Y'},
L, e|T, Dy, b},
Lye{D[b, q]UQ[x, q], R}
contains cycles of all lengths modulo 4, a contradiction.
Thus, y is not contained in V(D[ p, b)).

This completes the proof of Claim 2.

Let z be a vertex in B—{¢q}. By symmetry between
two orientations of C, we may assume that z €
V(D(p, q)). Since the degree of z is at least 4 in G
and G is 2-connected, there is a path Z from z to CUD
UPUQ-{z} internally disjoint from CUDUPUQ. By
Claim 2, the endpoint of Z other than z is contained in
D—-1{z}. Let r be the endpoint of Z other than z. Since
the degree of z is at least 4 in G and G is 2-connected,
there is a path S from z to se V(CUDUPUQUZ) -
{z} internally disjoint from CUDUP U Q U Z. By
Claim 2, s is contained in V(DUZ)-{z}.

Suppose that s e V(Z)-{z}.

If reV(D(z,p)), then D[z, r]UZUS is a theta
graph not containing p, contradicting Claim 1.

If reV(D[p,z)), thenD[r, z]UZUS is a theta
graph not containing ¢, contradicting Claim 1.

Thus, s is not contained in V(Z)-1{z}.

Suppose that s € V(D) - {z, r{. By symmetry

between r and s, we may assume that s € V(D(r, z)).

If reV(D(q,z)),then D[ r, z] UZUS is a theta
graph not containing ¢, contradicting Claim 1.

If reV(D(z, gq]) and se V(D(r, p)), then
D[z, s]UZUS is a theta graph not containing p,
contradicting Claim 1.

Therefore re V(D(z, q]) and se V(D[ p, z)).
Since SUD[ s, z] does not contain g and D[z, r|UZ
does not contain p, by Claim 1, we have that § U
D[s, z] and D[z, r] UZ are both odd cycles. Since C
is an odd cycle, there is an odd path X” and an even
path Y” between s and r in CUPUQUD[p, s] U
D[ r, q]. Note that the lengths of X” and Y” differ by 1
modulo 4, the lengths of S and D[ s, z] differ by 1
modulo 4 and the lengths of D[z, r] and Z differ by 1
modulo 4. Then the set {L, UL, UL, IL, € {X", Y|,
L,e{S, D[s, z]}, L, e {D[z, r], Z!} contains
cycles of all lengths modulo 4, a contradiction.

This completes the proof of Lemma 3. 1.

4 Graphs of chromatic number five

In this section, we prove the following theorem on 2-
connected graphs of the minimum degree at least four,
from which Theorem 1.2 can be inferred as a corollary
for the case k=4.

Theorem 4. 1  Every 2-connected non-bipartite
graph of the minimum degree at least 4 contains cycles
of all lengths modulo 4, except that it is the complete
graph of five vertices.

Proof Let G be a 2-connected non-bipartite graph
of the minimum degree at least 4. Assume that G is not
a K, and does not contain cycles of all lengths modulo
4. Let C:=vyv, v, v, be an odd cycle in G such that
I'V(C) 1 is minimum, where the indices are taken under
the additive group Z ,,,,. Note that C is induced. Let
H:=G-V(C). By Lemma 3. 1, there is no opposite
pairs in G, hence H does not contain an even cycle. It
follows that every block of H is either an odd cycle, an
edge or an isolated vertex.

Claim G does not contain a triangle.

Proof of Claim  Suppose that G contains a
triangle. Then C is a triangle. Let H, be a component of
H. Since the minimum degree of G is at least 4, H, has
at least two vertices. Suppose that H, contains an odd
cycle C,.

If H, is not 2-connected, then there exists an end-
block B, of H, with cut-vertex b, such that

(V(B,)=1b,})NV(C,)=0.
As B, is either an odd cycle or an edge, there exists w €
V(B,)—1{b, | such that w has at least two neighbors on
C. Since C is an odd cycle, G[ CU {w} ] contains an
even cycle D,. Then C, and D, form an opposite pair in
G, a contradiction.
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Therefore, H, is 2-connected, that is H, is an
induced odd cycle, we denote H, ; =u,u, - u,,u,, where
the indices are taken under the additive group Z,,,,.
Since the minimum degree of G is at least 4, u, and u,
have at least two neighbors on C. Without loss of
generality, we may assume that u, is adjacent to v, and
v, and u, is adjacent to v,. Then C, u,vyv,v,u,,
Uyl Uy VoV U, and uyu, u, v, v, v, U, are cycles of lengths 3,
4,5 and 6, respectively, a contradiction.

Therefore, every component of H does not contain
an odd cycle, that is, every component of H is a tree.

If IV(H,)I=2, then G{ICUH, ] is a K;. Suppose
that there is another component H, # H, of H. Since G is
2-connected, there are two disjoint paths L, and L, from
H, to C internally disjoint from C in G[ H, U C].
Without loss of generality, we may assume that
V(L,) NV(C)={v,} fori=1, 2. Concatenating L,, L,
and a path in H,, there exists a path L from v, to v,
internally disjoint from C in G[ H, U C]. As there are
paths of lengths 1, 2, 3 and 4 from v, to v, in
G H,UC], we could easily obtain 4 cycles of
consecutive lengths, a contradiction. Therefore, H =
H,. Tt follows that G=G[ CUH, ], a contradiction.

Therefore | V(H,) | =3. For any two leaves x, y
of H,, let T be the fixed path between x and y in H,.
Since the minimum degree of G is at least 4, x and y
have at least three neighbors on C. Without loss of
generality, we may assume that x is adjacent to v, and
v, and y is adjacent to v,. If T is even, then C and
voyTxv, form an opposite pair, a contradiction.
Therefore T is odd. Suppose that there exist three leaves
x,yand zin H,. Let T, , T, and T_, be the fixed
paths between x and y, yv and z and z and x in H,,
respectively. Note that all of them are odd. However,
their sum is even, a contradiction. Therefore, H, is a
path. Let H,: =z,z,2,-*-z, for some n=2. Since the
minimum degree of G is at least 4, z, is adjacent to all
vertices of C and z, is adjacent to at least 2 vertices of
C. Without loss of generality, we may assume that z, is
adjacent to v, and v,. Then C, z,v,v,v,2y, 29212V %
and z,z,z,v,V,V,Z, are cycles of lengths 3, 4, 5 and 6,
respectively, a contradiction.

This completes the proof of Claim.

By Claim, G does not contain a triangle. Suppose
that there is a vertex u of degree at most one in H.
Since the minimum degree of G is at least 4, u has at
least three neighbors on C. Since C is odd, there exist
two distinct neighbors v;, v; of u on C such that the odd
path between v; and v; on C has no internal vertices
which are the neighbors of u in G. Let Q,, O, be the
odd and even paths between v; and v; in C respectively.
Let C':=uv;, UQ, Uv,u. Note that C' is an odd cycle.

By the choice of C, we have that |E(C') | =1E(C) .
This forces that | E(Q,) | =2 and u is adjacent to all
vertices of V(Q,). It follows that there is a triangle in
G, a contradiction. Therefore, the minimum degree of
H is at least 2.

Suppose that H has more than one component. Let
W, and W, be two components of H. Since the degree of
any vertex in W, is at least 2, we have that W, contains
an odd cycle C,. Since G is 2-connected and C is an
odd cycle, there is an even cycle D, in G V(C) U
W,]. Thus, C, and D, form an opposite pair, a
contradiction. Therefore, H is connected.

Note that the minimum degree of H is at least 2 and
every block of H is either an odd cycle, an edge or an
isolated vertex. There is a vertex ¢t of H which has at
least two neighbors on C. Since C is odd, there exist
two distinct neighbors v;, v; of # on C such that the odd
path between v; and v; on C has no internal vertices
which are the neighbors of # in G . Let Q/, Q’be the
odd and even paths between v; and v; in C respectively.
Let C":=tv;UQ/Uv;t. Note that C"is an odd cycle. By
the choice of C, we have that |[E(C") | =|E(C)|. This
fores that |E( Q) | =2. Without loss of generality, we
may assume that i=j+2. Let s be the neighbor of v,,,,,
in H. Note that C has length at least five. If follows
that v,,,,, #v,, v;. Since H is connected, there is a path
L between ¢ and s in H. Then C[v,,,, v, | Uv,,,,sU
LUtv,,, Cl Vistet 5 ij UvitULUsv,,,, Cl Vis Vi ]
Uv, . SULU;, C[ v, Vi, ] Uyt ULUsy,,,, are
4 cycles of consecutive lengths, a contradiction. This
completes the proof of Theorem 4. 1.

We remark that Theorem 4. 1 is best possible by the
following examples. For any positive integer 7, let P, : =
VoVi* *Vy, and Q,: = uyu, -++u,,, be two vertex-disjoint
paths. Let H, be the graph obtained from P, U Q, by
adding edges in {vylty,y, UyVyinys UgVys Upey Vo 1120,
1, -+, t}. We see that H, is a 2-connected non-bipartite
graph of the minimum degree 3 without cycles of length
1 modulo 4.

Vo

V2i+1 ------ V2t

X
X

Uuo

U2t4-1

Figure 1. Graphs without cycles of length 1 modulo 4.

5 Graphs of chromatic number six

In this section, we consider graphs of chromatic number
six and prove Theorem 1.2 for the case kK =5. Very
recently, Gao et al. """ proved following theorems on
cycles lengths in graphs containing a triangle.

Theorem 5.1 Let G be a connected graph of
minimum degree at least three and (A, B) be a non-
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trivial partition of V(G). For any cycle C in G, there
exist A-B paths of every length less than |V(C)| in G,
unless G is bipartite with the bipartition (A, B).

Theorem 5.2 Let k=3 be an integer and G be a
2-connected graph of the minimum degree at least k. If
G is K,-free, then G contains a cycle of length at least
2k+2, except that G=K, , for some n=k.

Theorem 5.3 Let k=2 be an integer. Every 2-
connected graph G of minimum degree at least k
containing a triangle K, contains k cycles of consecutive
lengths, except that G=K,,,.

Now, we are in a position to prove Theorem 1.2
for the case k=5, which we rephrase as follows.

Theorem 5. 4 Every 6-critical non-complete
graph G contains cycles of all lengths modulo 5.

Proof Suppose that G does not contain cycles of
all lengths modulo 5 and G is not K. It is well-known
that G is a 2-connected graph of the minimum degree at
least 5. By Theorem 5.3, we may assume that G is K-
free. Fix a vertex r and let T be a breadth-first search
tree in G with root r. Let L,= {r} and L, be the set of
vertices of T at distance i from its root 7.

Claim 1  Every component of G [ L, ] has
chromatic number at most 3, for all i=0.

Proof of Claim 1 Suppose to the contrary that
there exists a component D of G [ L, ] which has
chromatic number at least 4 for some ¢. Let H be a 4-
critical subgraph of D. It is clear that H is a 2-connected
non-bipartite graph of minimum degree at least 3. By
Theorem 5.2, H contains a cycle of length at least 8.
Let 7" be the minimal subtree of T whose set of leaves is
precisely V(H), and let r' be the root of T'. Let h
denote the distance between r' and vertices in H in 7T".
Since G is K;-free, h=2. By the minimality of 7", r’
has at least two children in 7’. Let x be one of its
children. Let A be the set of vertices in H which are the
descendants of x in 7" and let B=V(H)—-A. Then both
A, B are nonempty and for any ae A and beB, T,,
has the same length 24. By Theorem 5. 1, there are 7
subpaths of H from a vertex of A to a vertex of B of
lengths 1, 2, ---, 7, respectively. It follows that G
contains 7 cycles of consecutive lengths, a
contradiction. This completes the proof of Claim 1.

For a connected graph D, a vertex in D is called
good if it is not contained in the minimal connected
subgraph of D which contains all 2-connected blocks of
D, and bad otherwise.

We now prove a claim which is key for the proof
of Theorem 5.4.

Claim 2 Let H, be a non-bipartite component of
G[L,] and H, be a non-bipartite component of G[ L,,, |
for some i=1. If N, (H,) # @, then every vertex in

N, (H,) is a good vertex of H,.

Proof of Claim 2 Suppose that there exists a bad
vertex v of H, which has a neighbor in H,. Let T’ be the
minimal subtree of 7" whose set of leaves is precisely
V(H,), and let r' be the root of 7'. Let & denote the
distance between r' and vertices in H, in 7'. Since G is
K,-free, h =2. By the minimality of 7", r' has at least
two children in T'. Let (X, Y) be a non-trivial partition
of all children of ' in 7". Let A be the set of vertices in
H, which are the descendants of X in 7" and let B be the
set of vertices in H, which are the descendants of Y in
T'. Note that (A, B) is a non-trivial partition of
V(H,). Note that every vertex in B is the descendants
of Yin T". Let A’ be the set of vertices in L,—A which
are the descendants of X in 7. Let B’ be the set of
vertices in L,—B which are the descendants of Y in T.
Let M.=L,-(AUA"UBUB’). Note that A, A", B, B’
and M form a partition of L,. Note that every vertex of
H, has a neighbor in L,.

Suppose that there exists a vertex m € V ( H,)
which has a neighbor m’ in M. Recall that H, is non-
bipartite and K;-free. There exists a path z,z,z,2,25 of
length 4 in H, with z, =v. It is easy to see that T,

contains v’ for i € [5], so they have the same length.
Since v has a neighbor in H,, there is a path P from v to
min G[H,U {v{]. Then PUzz,-z,UT, , Um'm,
for ie [5] are 5 cycles of consecutive lengths in G, a
contradiction. Therefore N,, ( H,) = @, that is every
vertex in H, has a neighbor in AUA’"UBUB’. For a
vertex in V(H, ), we call it type-A if it has a neighbor
in AUA’ and it type-B if it has a neighbor in BUB'®.

Let C=v,v,---v, be an odd cycle of H, , where n=
4. Suppose that V(C) CA. Since B is non-empty, we
choose an arbitrary vertex b in B. Since H, is
connected, there exists a path P from b to V(C)
internal disjoint from V( C). Without loss of generality,
we assume that V(P) NV(C)= {v,}. Then PUC|v,,
v, ] U T,, fori=0,1, -, 4 give 5 cycles of consecutive
lengths, a contradiction. Therefore, BNV(C) #@, and
similarly, ANV(C) # @. Then there must be an A-B
path of length 4 in C (otherwise, since 4 and | C| are
co-prime and |C| =5, one can deduce that all vertices
of C are contained in one of the two parts A and B, a
contradiction) .

Without loss of generality, we may assume that v, ,
vieAand v, eB. Then T, , Uv,v, and T, , Uv,v v,

Vi,V2 vo,V2
are two cycles of lengths 2A4+1 and 2A4+2, respectively.
We have showed that there exists some A-B path of
length 4 in C which gives a cycle of length 24+4, so we
may assume that there is no A-B path of length 3 or 5 in

(D We remark that a vertex can be both type-A and type-B.
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C. This would force that one of the following holds.
5.1 There is no A-B path of length 3 in H,
This would force that for any path P’ =u,u, ---u, in H,
with u, =v,, u,=v,, uy=v,, we can derive that u, € B if
J=0mod 3 and u; e A if j=1 or 2 mod 3. Moreover,
we have that v;;, v,,,, €A and v,,,, € B for each possible
i=0. So IC1=9 and G contains a cycle of length / €
{2h+1, 2h+2, 2h+4, 2h+5, 2h+7, 2h+8}|. In
particular, since H, is connected, for any vertex b € B,
there exists a path of length 2 in H, from b to some
vertex in A. And for any bad vertex a € A, there exists
a path b,aa, b, satisfying b,, b, e B and a, a, €A.

Suppose that N, . (H,) #@ and N, ,(H,) # 0.
Since H, is connected and every vertex of H, has a
neighbor in A UA’" U B U B’, there exist two adjacent
vertices p, g of H, such that p has a neighbor p’ in AU
A' and g has a neighbor ¢’ in BUB'. Then p'pqq’ U
T, , is a cycle of length 2h +3. Tt follows that G
contains 5 cycles of lengths 2h+1, 2h+2, 2h+3, 2h+4
and 2h+5, respectively, a contradiction.

Suppose that N, (H,) CBUB'. Since N, ,(H,) #
@, we have that ve B. Let u be any vertex in N, (v).
Choose w, € V(H,) such that there exists a path Q of
length 2 from u to w, in H,. Since any vertex in H, has
a neighbor in L,, by our assumption, w, has a neighbor
in BUB’. Let w, be a neighbor of w, in B U B'".
Suppose that w, #v. Note that there is a path R;=w"v’
such that v', v"€A. Then RUvuUQUw,w,UT, " is
a cycle of length 24+6. So G contains cycles of lengths
2h+4, 2h+5, 2h+6, 2h+7 and 2h+8, a contradiction.
Therefore w, =v and w, € N, (v). That says, every

v’

vertex in H, of distance 2 from a neighbor of v is a
neighbor of v. Continuing to apply this along with a
path from u to an odd cycle C, in H,, we could obtain
that v is adjacent to all vertices of C,, which contradicts
that G is K,-free. Therefore, N, ,(H,)= 0.

Now we see that N, (H,) CAUA’". This forces
that v e A. For any neighbor u’ of v in H,, let w, €
V(H,) satisfies that there exists a path Q" of length 2
from u' to w, in H,. Note that ve A is bad in H,, we
can infer that there exists a path b,va, b, in H, such that
a, € A and b,, b, € B. Note that v and a, are
symmetric. Let w, be a neighbor of w, in A U A’.
Suppose that w, ¢ {v, a,|. Then vu' U Q" Uw,w, U
T,, , Ub,av is a cycle of length 2h+6. So again, G
contains cycles of lengths 2h+4, 2h+5, 2h+6, 2h+7
and 2h+8, a contradiction. Therefore, w, € {v, a,}.
That is, every vertex in H, of distance 2 from a
neighbor of v or a, is adjacent to one of v, a,.
Continuing to apply this along with a path from u’ to an
odd cycle C, in H,, we could obtain that every vertex of

C, is adjacent to one of v, a,. But this would force a
copy of K, containing a,v in G. This final contradiction
completes the proof of this subsection.

5.2 There is an A-B path of length 3 in H,
Therefore, we may assume that there is no A-B paths of
length 5 in H,.

We first show that for any path #t,f, in H,
satisfying that ¢, and ¢, are in different parts, ¢, does not
have a neighbor in V ( H,); call this Property .
Suppose to the contrary that #, has a neighbor in H,.
Without loss of generality, we may assume that ¢, ,f, €
A and t; € B. Let s be any vertex in N, (t,). Choose
s'e V(H,) such that there exists a path Q of length 2
from s to s" in H,. Let ¢t be a neighbor of s’ in L,-M.
Suppose that r#t,. If re AUA’, then #,5,sUQUs'tU
T, , is a cycle of length 2h+5. So G contains cycles of
lengths 22+ 1, 2h+2, 2h+3, 2h+4 and 2h+5, a
contradiction. Therefore r € BU B’, then t,f,s U Q U
s'tUT, , is a cycle of length 2h+5. So G contains
cycles of lengths 2h+1, 2h+2, 2h+3, 2h+4 and 2h+5,
a contradiction. Therefore 7=¢, and s’ is the neighbor of
t,. That says, every vertex in H, of distance 2 from a
neighbor of 7, is a neighbor of #,. Continuing to apply
this along with a path from s to an odd cycle C, in H,,
we could obtain that ¢, is adjacent to all vertices of C,,
which contradicts that G is K;-free.

Suppose that N, ,, (H,) #@ and Ny, (H,) # 0.
Suppose that there exists a path p,p,p,p; in H, such that
D, 1s type-A and p, is type-B. Let g be the neighbor of
p,in AUA" and ¢’ be the neighbor of p, in BU B’.
Then gp,p,p,r;q'UT, ,is a cycle of length 2h+5. So
G contains cycles of lengths 2h+1, 2h+2, 2h+3, 2h+4
and 2h+5, a contradiction. This forces that every two
vertices which are linked by a path of length 3 in H,
have the same type. Note that N, ., (H,) # @ and
Nz (H,) #@. By symmetry between AUA’ and BU
B', there exists a path z,z,z, in H, such that z, and z, are
type-A and z, is type-B. Moreover, for any path P"; =
uyu,---u, in H, with u, =z,, u, =z,, u, =z,, we can
derive that u; is type-A if j=0 or 1 mod 3 and u, is type-
B if j=2 mod 3. Moreover, for any path P"; =u,u,--u
in H, with u,=z,, u,=z,, u,=z,, we can derive that u,
is type-B if j=0 mod 3 and u, is type-A if j=1 or 2 mod
3. This forces that every cycle in H, has length 0
modulo 3. Since H, is non-bipartite and K,-free, there
is an odd cycle C,:=w,w,---w,w, of length at least 9.
Note that w, and w, have different types. If follows that
there is a cycle of length 24+10. So G contains cycles
of lengths 2A+1, 2h+2, 2h+3, 2h+4 and 2A+10, a
contradiction.

Therefore, all vertices in H, have the same type.

s
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Without loss of generality, we may assume that
N, (H,) A UA’. Therefore v € A and let f, be a
neighbor of v in H,. Since H, is K;-free and non-
bipartite, there is a path fif,f, in H,. Since H, is a K;-
free non-bipartite graph and v is a bad vertex in H,,
there is a path a,a,va,a, in H,. Since there is no A-B
path of length 5 in H,, we have that for any path Q'. =
ugu,--u, in H, with uy=a,, u,=a,, u,=v, uy=a,, u,=
a,, we can derive that u; and u, are in the same part if
j=k mod 5. Also, we have that for any path Q':=
ugu,--u, in H, with u,=a;, u,=a,, u,=v, u,=a, ,u,=
a,, we can derive that u; and u, are in the same part if
j=kmod 5. By Property % , we have that a, and a, are
in the same part of H,.

Suppose that a,, a, € A. Since V(H,) NB# 0,
we have that one of g, and a, is in B. Without loss of
generality, we may assume that a, € B. Let w be a
neighbor of f; in H,. We have that we AUA’. Since G
is K;-free, w#v. Note that a,a,v satisfying that a, and
v are in different parts of H,. By Property %, we have
that w#a,. Therefore, wff,va,a,UT,  is a cycle of
length 24 +5. So G contains cycles of lengths 2A+1,
2h+2, 2h+3, 2h+4 and 2h+5, a contradiction.

Therefore, a,, a, € B. Let w' be a neighbor of f,
in H,. We have that w' e AUA’. Suppose that w’#v.
Then w'f,f fova, UT, , is a cycle of length 2h+5. So
G contains cycles of lengths 2h+1, 2h+2, 2h+3, 2h+4
and 2h+5, a contradiction. Therefore w'=v. That says,
every vertex in H, of distance 2 from a neighbor of v is
a neighbor of v. Continuing to apply this along with a
path from f; to an odd cycle C, in H,, we could obtain
that v is adjacent to all vertices of C,, which contradicts
that G is K;-free.

This completes the proof of Claim 2.

Now, we define a coloring c:V(G)—{1,2, 3, 4,
5! as follows. Let D be any bipartite component of
G[ L,] for some i. If i is even, we color one part of D
with color 1 and the other part with color 2, and if i is
odd, we color one part of D with color 4 and the other
part with color 5. Let F be any non-bipartite component
of G[L;] for some j. If j is even, by using the block
structure of F', we can properly color V(F) with colors
1, 2 and 3 by coloring bad vertices with colors 1, 2 and
3 and coloring good vertices with colors 1 and 2. If j is
odd, then we also can properly color V( F) with colors
3, 4 and 5 by coloring bad vertices with colors 3, 4 and
5 and coloring good vertices with colors 4 and 5.

Next, we argue that ¢ is a proper coloring on G.
Let H, be a component of G[L,] and H, be a
component of G[ L,,, ] for i=0 such that there exists an
edge between H, and H,. If one of them is bipartite,
then c is proper on V(H,) UV(H,). Therefore, both

H, and H, are non-bipartite. By the above claim, all
vertices of H, are not adjacent to vertices of color 3 in
H,. It follows that ¢ is proper on V(H,) UV (H,).
Therefore, ¢ is a proper 5-coloring of G, which
contradicts that G is 6-critical. This completes the proof
of Theorem 5.4.

Proof of Theorem 1.2 Let G be a (k+1) -critical
non-complete graph, for ke {4, 5}. Suppose that k=4.
It is well-known that G is a 2-connected graph of
minimum degree at least 4. Then by Theorem 4.1, G
contains cycles of all lengths modulo 4. Suppose that
k=5. By Theorem 5.4, G contains cycles of all lengths
modulo 5.
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