# Cycle lengths in graphs of chromatic number five and six 

HUO Qingyi ${ }^{*}$<br>School of Mathematical Sciences，University of Science and Technology of China，Hefei 230026，China<br>＊Corresponding author．E－mail：qyhuo＠mail．ustc．edu．cn


#### Abstract

A problem was proposed by Moore and West to determine whether every（ $k+1$ ）－critical non－ complete graph has a cycle of length 2 modulo $k$ ．We prove a stronger result that for $k=4$ ， 5 ，every $(k+1)$－critical non－complete graph contains cycles of all lengths modulo $k$ ．


Keywords：cycle length；chromatic number；minimum degree；breadth－first search tree
CLC number：O157．5 Document code：A
2020 Mathematics Subject Classification：05C38

## 1 Introduction

The problem of deciding whether a given graph contains cycles of all lengths modulo a positive integer $k$ shows up in many literature（ see Refs．［1－8］）．Recently， Moore and West ${ }^{[9]}$ asked whether every $(k+1)$－critical non－complete graph has a cycle of length 2 modulo $k$ ． Here，a graph is $k$－critical if it has chromatic number $k$ but deleting any edge will decrease the chromatic number．Very recently，Gao et al．${ }^{[10]}$ partially answered this question by showing the following theorem．

Theorem 1．1 For $k \geqslant 6$ ，every（ $k+1$ ）－critical non－complete graph contains cycles of all lengths modulo $k$ ．

However，methods in Ref．［10］do not work for $k<6$ ．In this note，we give a new method and prove that the conclusion of Theorem 1.1 also holds for $k=4,5$ ．

Theorem 1．2 For $k=4$ ，5，every $(k+1)$－critical non－complete graph contains cycles of all lengths modulo $k$ ．

Thus，combined with the Theorems 1.1 and 1．2， we completely give an affirmative answer to the question of Moore and West．

The rest of the paper is organized as follows．In Section 2，we introduce the notation．In Section 3，we give a key lemma．In Section 4，we consider graphs of chromatic number five and prove Theorem 1.2 for the case $k=4$ ．In Section 5 ，we consider graphs of chromatic number six and prove Theorem 1．2 for the case $k=5$ ．

## 2 Notation

All graphs considered are finite，undirected，and simple．Let $G$ be a graph and let $H$ be a subgraph of a
graph $G$ ．We say that $H$ and a vertex $v \in V(G)-V(H)$ are adjacent in $G$ if $v$ is adjacent in $G$ to some vertex in $V(H)$ ．Let $N_{G}(H):=\bigcup_{v \in V(H)} N_{G}(v)-V(H)$ and $N_{G}[H]:=N_{G}(H) \cup V(H)$ ．For a subset $S$ of $V(G)$ ， $G[S]$ denotes the subgraph induced by $S$ in $G$ ，and $G-S$ denotes the subgraph $G[V(G)-S]$ ．A vertex is a leaf in $G$ if it has degree one in $G$ ．We say that a path $P$ is internally disjoint from $H$ if no vertex of $P$ other than its endpoints is in $V(H)$ ．For two vertex－disjoint subgraphs $H, H^{\prime}$ of $G$ ，let $N_{H}\left(H^{\prime}\right)$ be the set of vertices in $H$ which are adjacent to some vertex in $H^{\prime}$ ．

A cycle or a path is said to be odd（resp．even）if its length is odd（resp．even）．Given a cycle $C$ and an orientation of $C$ ，for two vertices $x$ and $y$ in $C$ ，let $C[x, y]$ denote the path on $C$ from $x$ to $y$ in the direction，including $x$ and $y$ ．Let $C[x, y):=C[x, y]-$ $y, C(x, y]:=C[x, y]-x$ ，and $C(x, y):=C[x, y]-$ $\{x, y\}$ ．We use the similar notation to a path $P$ ．

Let $u$ and $v$ be two vertices of a graph．If there are three internally disjoint paths between $u$ and $v$ ，then we call such a graph as the theta graph．Note that any theta graph contains an even cycle．

A vertex $v$ of a graph $G$ is a cut－vertex of $G$ if $G-$ $v$ contains more components than $G$ ．A block $B$ in $G$ is a maximal connected subgraph of $G$ such that there exists no cut－vertex of $B$ ．So a block is an isolated vertex，an edge or a 2 －connected graph．An end－block in $G$ is a block in $G$ containing at most one cut－vertex of $G$ ．If $D$ is an end－block of $G$ and a vertex $x$ is the only cut－ vertex of $G$ with $x \in V(D)$ ，then we say that $D$ is an end－block with cut－vertex $x$ ．

Let $T$ be a tree，and fix a vertex $r$ as its root．Let $v$ be a vertex of $T$ ．The parent of $v$ is the vertex adjacent to $v$ on the path from $v$ to $r$ ．An ascendant of $v$ is any
vertex which is either the parent of $v$ or is recursively the ascendant of the parent of $v$. A child of $v$ is a vertex of which $v$ is the parent. A descendant of $v$ is any vertex which is either the child of $v$ or is recursively the descendant of any of the children of $v$. Let $Y$ be a subset of $V(T)$. We say a vertex $x$ is the descendant of $Y$ if $x$ is the descendant of some vertex in $Y$. Let $a, b$ be two vertices of $T$. Denote $T_{a, b}$ the unique path between $a$ and $b$ in $T$.

## 3 Key lemma

Let $G$ be a 2 -connected graph and let $C$ and $D$ be two cycles in $G$. We say that $(C, D)$ is an opposite pair in $G$, if $C$ is odd and $D$ is even satisfying that $C$ and $D$ are edge-disjoint and share at most one common vertex.

Lemma 3. 1 Let $G$ be a 2-connected graph of minimum degree at least 4 . Let $(C, D)$ be an opposite pair in $G$. Then $G$ contains cycles of all lengths modulo 4.

Proof Suppose to the contrary that $G$ does not contain cycles of all lengths modulo 4 . Since $G$ is 2 connected and $|V(C) \cap V(D)| \leqslant 1$, there exist two vertex-disjoint paths $P, Q$ between $C$ and $D$ satisfying $(V(C) \cap V(D))-V(Q)=\emptyset^{(1)}$. We take such an opposite pair $(C, D)$, paths $P$ and $Q$ as the following manner:
(1) $|E(P)|$ is as large as possible;
(2) $|E(Q)|$ is as large as possible subject to (1).

Let $p$ and $q$ be the endpoints of $P$ and $Q$ in $D$, respectively.

Claim 1 Every even cycle in the block of $G$ $(V(C \cup P \cup Q)-\{p, q\})$ including $D$ contains both $p$ and $q$. In particular, every theta graph in the block includes both $p$ and $q$.

Proof of Claim 1 Let $H$ be the block of

$$
G-(V(C \cup P \cup Q)-\{p, q\})
$$

including $D$. Let $D^{\prime}$ be an even cycle in $H$ other than $D$. Suppose that $p \notin V\left(D^{\prime}\right)$. Since $H$ is 2 -connected, there are two vertex-disjoint paths $L_{1}, L_{2}$ from $\{p, q\}$ to $D^{\prime}$ in $H$. We may assume that $L_{1}$ links $p$ and $D^{\prime}$. Note that $L_{1}$ has a length at least 1 and $\left(C, D^{\prime}\right)$ is an opposite pair. Then $P \cup L_{1}$ and $Q \cup L_{2}$ are two internally disjoint paths between $C$ and $D^{\prime}$ such that $P \cup L_{1}$ is longer than $P$, a contradiction. Therefore, $p \in V\left(D^{\prime}\right)$.

Suppose that $q \notin V\left(D^{\prime}\right)$. Since $H$ is 2-connected, there is a path $L_{3}$ from $q$ to $D^{\prime}$ internally disjoint from $V\left(D^{\prime}\right)$ in $H$. Note that $L_{3}$ has a length at least 1 and $\left(C, D^{\prime}\right)$ is an opposite pair. Then $P$ and $Q \cup L_{3}$ are two internally disjoint paths between $C$ and $D^{\prime}$ such that $Q \cup$ $L_{3}$ is longer than $Q$, a contradiction. Therefore, $q \in$ $V\left(D^{\prime}\right)$. Since every theta graph contains an even cycle, every theta graph in $H$ includes both $p$ and $q$. This completes the proof of Claim 1.

Since $D$ is an even cycle, we partition $V(D)$ into the sets $A$ and $B$ alternatively along $D$. By symmetry between $A$ and $B$, we may assume that $p \in A$.

Claim 2 For any $b \in B-\{q\}$, there is no path from $b$ to $C \cup P \cup Q-\{p, q\}$ internally disjoint from $C \cup D \cup P \cup Q$.

Proof of Claim 2 Suppose to the contrary that there is a path $R$ from $b$ to $x \in V(C \cup P \cup Q)-\{p, q\}$ internally disjoint from $C \cup D \cup P \cup Q$. By symmetry, we may assume that $b \in D(p, q)$.

Assume that $|E(D)| \equiv 0 \bmod 4$. As $C$ is an odd cycle, there is an even path $X_{1}$ and an odd path $Y_{1}$ between $p$ and $q$ in $C \cup P \cup Q$. If $q \in B$, then both $|E(D[p, q])|$ and $|E(D[q, p])|$ are odd, and furthermore, since their sum is 0 modulo 4 , they differ by 2 modulo 4. Then $X_{1} \cup D[p, q], X_{1} \cup D[q, p]$, $Y_{1} \cup D[p, q]$ and $Y_{1} \cup D[q, p]$ are 4 cycles of different lengths modulo 4, a contradiction. Therefore, we have that $q \in A$.

Suppose that $x \in V(P)-\{p\}$. Since $C$ is an odd cycle, there is an even path $X_{2}$ and an odd path $Y_{2}$ between $b$ and $q$ in $C \cup P \cup Q \cup R$. However, since both $|E(D[b, q])|$ and $|E(D[q, b])|$ are odd and differ by 2 modulo $4, X_{2} \cup D[b, q], X_{2} \cup D[q, b], Y_{2} \cup$ $D[b, q]$ and $Y_{2} \cup D[q, b]$ are 4 cycles of different lengths modulo 4 , a contradiction. Thus, $x$ is not contained in $V(P)-\{p\}$.

Suppose that $x \in V(C \cup Q)-(V(P) \cup\{q\})$. Then there is an even path $X_{3}$ and an odd path $Y_{3}$ between $b$ and $p$ in $C \cup P \cup Q \cup R$. However, since both $|E(D[b, p])|$ and $|E(D[p, b])|$ are odd and differ by 2 modulo $4, X_{3} \cup D[b, p], X_{3} \cup D[p, b], Y_{3} \cup$ $D[b, p]$ and $Y_{3} \cup D[p, b]$ are 4 cycles of different lengths modulo 4 , a contradiction. Thus, $x$ is not contained in $V(C \cup Q)-(V(P) \cup\{q\})$.

Therefore, $|E(D)| \equiv 2 \bmod 4$. As $C$ is an odd cycle, there is an even path $X_{4}$ and an odd path $Y_{4}$ between $p$ and $q$ in $C \cup P \cup Q$. If $q \in A$, then both $|E(D[p, q])|$ and $|E(D[q, p])|$ are even, and furthermore, since their sum is 2 modulo 4 , they differ by 2 modulo 4. Then $X_{4} \cup D[p, q], X_{4} \cup D[q, p]$, $Y_{4} \cup D[p, q]$ and $Y_{4} \cup D[q, p]$ are 4 cycles of different lengths modulo 4, a contradiction. Therefore, we have that $q \in B$.

Suppose that $x \in V(C \cup P)-(V(Q) \cup\{p\})$. Since $C$ is an odd cycle, there is an even path $X_{5}$ between $b$ and $q$ and an odd path $Y_{5}$ between $b$ and $q$ in $C \cup P \cup$ $Q \cup R$. However, since both $|E(D[b, q])|$ and

[^0]$|E(D[q, b])|$ are even and differ by 2 modulo $4, X_{5}$ $\cup D[b, q], X_{5} \cup D[q, b], Y_{5} \cup D[b, q]$ and $Y_{5} \cup$ $D[q, b]$ are 4 cycles of different lengths modulo 4 ，a contradiction．Thus，$x$ is not contained in $V(C \cup P)-$ $(V(Q) \cup\{p\})$ ．

Suppose that $x \in V(Q)-\{q\}$ ．Since $G$ is a $2-$ connected graph of minimum degree at least 4 ，there exists a path $T$ from $b$ to $y \in V(C \cup D \cup P \cup Q \cup R)-$ $\{b\}$ internally disjoint from $C \cup D \cup P \cup Q \cup R$ ．As the same reason for $x, y$ is not contained in $V(C \cup P)$－ $(V(Q) \cup\{p\})$ ．Therefore $y \in V(Q \cup D \cup R)-\{b\}$ ．

If $y \in V(R \cup Q \cup D(b, p))-\{b\}$ ，then $D[b, p) \cup$ $R \cup T \cup Q$ contains a theta graph．It follows that there is an even $D_{1}$ cycle in $G^{-}(C \cup P-Q)$ ．Note that $\left(C, D_{1}\right)$ is an opposite pair in $G$ ．It is easy to see that there are two internally disjoint paths $P^{\prime}$ and $Q^{\prime}$ between $C$ and $D^{\prime}$ satisfying that $P^{\prime}$ contains $P$ and is longer than $P$ and $Q^{\prime} \subseteq Q \cup D(b, q] \cup R$ ，a contradiction．Thus，$y$ is not contained in $V(R \cup Q \cup D(b, p))-\{b\}$ ．

Suppose that $y \in V(D[p, b))$ ．Since $T \cup D[y, b]$ does not contain $q$ and $D[b, q] \cup R \cup Q[x, q]$ does not contain $p$ ，by the choice of opposite pairs，we have that $T \cup D[y, b]$ and $D[b, q] \cup R \cup Q[x, q]$ are both odd cycles．Since $C$ is an odd cycle，there is an odd path $X^{\prime}$ and an even path $Y^{\prime}$ between $y$ and $x$ in $C \cup P \cup Q \cup$ $D[p, y]$ ．Note that the lengths of $X^{\prime}$ and $Y^{\prime}$ differ by 1 modulo 4，the lengths of $T$ and $D[y, b]$ differ by 1 modulo 4 and the lengths of $D[b, q] \cup Q[x, q]$ and $R$ differ by 1 modulo 4 ．Then the set

$$
\begin{gathered}
\left\{L_{1} \cup L_{2} \cup L_{3} \mid L_{1} \in\left\{X^{\prime}, Y^{\prime}\right\},\right. \\
L_{2} \in\{T, D[y, b]\}, \\
\left.L_{3} \in\{D[b, q] \cup Q[x, q], R\}\right\}
\end{gathered}
$$

contains cycles of all lengths modulo 4 ，a contradiction． Thus，$y$ is not contained in $V(D[p, b))$ ．

This completes the proof of Claim 2.
Let $z$ be a vertex in $B-\{q\}$ ．By symmetry between two orientations of $C$ ，we may assume that $z \in$ $V(D(p, q))$ ．Since the degree of $z$ is at least 4 in $G$ and $G$ is 2－connected，there is a path $Z$ from $z$ to $C \cup D$ $\cup P \cup Q-\{z\}$ internally disjoint from $C \cup D \cup P \cup Q$ ．By Claim 2，the endpoint of $Z$ other than $z$ is contained in $D-\{z\}$ ．Let $r$ be the endpoint of $Z$ other than $z$ ．Since the degree of $z$ is at least 4 in $G$ and $G$ is 2－connected， there is a path $S$ from $z$ to $s \in V(C \cup D \cup P \cup Q \cup Z)-$ $\{z\}$ internally disjoint from $C \cup D \cup P \cup Q \cup Z$ ．By Claim 2，$s$ is contained in $V(D \cup Z)-\{z\}$ ．

Suppose that $s \in V(Z)-\{z\}$ ．
If $r \in V(D(z, p))$ ，then $D[z, r] \cup Z \cup S$ is a theta graph not containing $p$ ，contradicting Claim 1 ．

If $r \in V(D[p, z))$ ，then $D[r, z] \cup Z \cup S$ is a theta graph not containing $q$ ，contradicting Claim 1 ．

Thus，$s$ is not contained in $V(Z)-\{z\}$ ．
Suppose that $s \in V(D)-\{z, r\}$ ．By symmetry
between $r$ and $s$ ，we may assume that $s \in V(D(r, z))$ ．
If $r \in V(D(q, z))$ ，then $D[r, z] \cup Z \cup S$ is a theta graph not containing $q$ ，contradicting Claim 1 ．

If $r \in V(D(z, q])$ and $s \in V(D(r, p))$ ，then $D[z, s] \cup Z \cup S$ is a theta graph not containing $p$ ， contradicting Claim 1 ．

Therefore $r \in V(D(z, q])$ and $s \in V(D[p, z))$ ．
Since $S \cup D[s, z]$ does not contain $q$ and $D[z, r] \cup Z$ does not contain $p$ ，by Claim 1，we have that $S \cup$ $D[s, z]$ and $D[z, r] \cup Z$ are both odd cycles．Since $C$ is an odd cycle，there is an odd path $X^{\prime \prime}$ and an even path $Y^{\prime \prime}$ between $s$ and $r$ in $C \cup P \cup Q \cup D[p, s] \cup$ $D[r, q]$ ．Note that the lengths of $X^{\prime \prime}$ and $Y^{\prime \prime}$ differ by 1 modulo 4，the lengths of $S$ and $D[s, z]$ differ by 1 modulo 4 and the lengths of $D[z, r]$ and $Z$ differ by 1 modulo 4．Then the set $\left\{L_{1} \cup L_{2} \cup L_{3} \mid L_{1} \in\left\{X^{\prime \prime}, Y^{\prime \prime}\right\}\right.$ ， $\left.L_{2} \in\{S, D[s, z]\}, L_{3} \in\{D[z, r], Z\}\right\}$ contains cycles of all lengths modulo 4 ，a contradiction．

This completes the proof of Lemma 3．1．

## 4 Graphs of chromatic number five

In this section，we prove the following theorem on 2－ connected graphs of the minimum degree at least four， from which Theorem 1.2 can be inferred as a corollary for the case $k=4$ ．

Theorem 4． 1 Every 2－connected non－bipartite graph of the minimum degree at least 4 contains cycles of all lengths modulo 4 ，except that it is the complete graph of five vertices．

Proof Let $G$ be a 2－connected non－bipartite graph of the minimum degree at least 4．Assume that $G$ is not a $K_{5}$ and does not contain cycles of all lengths modulo 4．Let $C:=v_{0} v_{1} \cdots v_{2 l} v_{0}$ be an odd cycle in $G$ such that $|V(C)|$ is minimum，where the indices are taken under the additive group $\mathbb{Z}_{2 l+1}$ ．Note that $C$ is induced．Let $H:=G-V(C)$ ．By Lemma 3．1，there is no opposite pairs in $G$ ，hence $H$ does not contain an even cycle．It follows that every block of $H$ is either an odd cycle，an edge or an isolated vertex．

Claim $G$ does not contain a triangle．
Proof of Claim Suppose that $G$ contains a triangle．Then $C$ is a triangle．Let $H_{1}$ be a component of $H$ ．Since the minimum degree of $G$ is at least $4, H_{1}$ has at least two vertices．Suppose that $H_{1}$ contains an odd cycle $C_{1}$ ．

If $H_{1}$ is not 2－connected，then there exists an end－ block $B_{1}$ of $H_{1}$ with cut－vertex $b_{1}$ such that

$$
\left(V\left(B_{1}\right)-\left\{b_{1}\right\}\right) \cap V\left(C_{1}\right)=\emptyset .
$$

As $B_{1}$ is either an odd cycle or an edge，there exists $w \in$ $V\left(B_{1}\right)-\left\{b_{1}\right\}$ such that $w$ has at least two neighbors on $C$ ．Since $C$ is an odd cycle，$G[C \cup\{w\}]$ contains an even cycle $D_{1}$ ．Then $C_{1}$ and $D_{1}$ form an opposite pair in $G$ ，a contradiction．

Therefore, $H_{1}$ is 2 -connected, that is $H_{1}$ is an induced odd cycle, we denote $H_{1}:=u_{0} u_{1} \cdots u_{2 h} u_{0}$, where the indices are taken under the additive group $\mathbb{Z}_{2 h+1}$. Since the minimum degree of $G$ is at least $4, u_{0}$ and $u_{2}$ have at least two neighbors on $C$. Without loss of generality, we may assume that $u_{0}$ is adjacent to $v_{0}$ and $v_{1}$ and $u_{2}$ is adjacent to $v_{0}$. Then $C, u_{0} v_{0} v_{2} v_{1} u_{0}$, $u_{0} u_{1} u_{2} v_{0} v_{1} u_{0}$ and $u_{0} u_{1} u_{2} v_{0} v_{2} v_{1} u_{0}$ are cycles of lengths 3 , 4,5 and 6 , respectively, a contradiction.

Therefore, every component of $H$ does not contain an odd cycle, that is, every component of $H$ is a tree.

If $\left|V\left(H_{1}\right)\right|=2$, then $G\left[C \cup H_{1}\right]$ is a $K_{5}$. Suppose that there is another component $H_{2} \neq H_{1}$ of $H$. Since $G$ is 2-connected, there are two disjoint paths $L_{1}$ and $L_{2}$ from $H_{2}$ to $C$ internally disjoint from $C$ in $G\left[H_{2} \cup C\right]$. Without loss of generality, we may assume that $V\left(L_{i}\right) \cap V(C)=\left\{v_{i}\right\}$ for $i=1,2$. Concatenating $L_{1}, L_{2}$ and a path in $H_{2}$, there exists a path $L$ from $v_{1}$ to $v_{2}$ internally disjoint from $C$ in $G\left[H_{2} \cup C\right]$. As there are paths of lengths $1,2,3$ and 4 from $v_{1}$ to $v_{2}$ in $G\left[H_{1} \cup C\right]$, we could easily obtain 4 cycles of consecutive lengths, a contradiction. Therefore, $H=$ $H_{1}$. It follows that $G=G\left[C \cup H_{1}\right]$, a contradiction.

Therefore $\left|V\left(H_{1}\right)\right| \geqslant 3$. For any two leaves $x, y$ of $H_{1}$, let $T$ be the fixed path between $x$ and $y$ in $H_{1}$. Since the minimum degree of $G$ is at least $4, x$ and $y$ have at least three neighbors on $C$. Without loss of generality, we may assume that $x$ is adjacent to $v_{0}$ and $v_{1}$ and $y$ is adjacent to $v_{0}$. If $T$ is even, then $C$ and $v_{0} y T x v_{0}$ form an opposite pair, a contradiction. Therefore $T$ is odd. Suppose that there exist three leaves $x, y$ and $z$ in $H_{1}$. Let $T_{x, y}, T_{y, z}$ and $T_{z, x}$ be the fixed paths between $x$ and $y, y$ and $z$ and $z$ and $x$ in $H_{1}$, respectively. Note that all of them are odd. However, their sum is even, a contradiction. Therefore, $H_{1}$ is a path. Let $H_{1}:=z_{0} z_{1} z_{2} \cdots z_{n}$ for some $n \geqslant 2$. Since the minimum degree of $G$ is at least $4, z_{0}$ is adjacent to all vertices of $C$ and $z_{2}$ is adjacent to at least 2 vertices of C. Without loss of generality, we may assume that $z_{2}$ is adjacent to $v_{0}$ and $v_{1}$. Then $C, z_{0} v_{0} v_{2} v_{1} z_{0}, z_{0} z_{1} z_{2} v_{0} v_{1} z_{0}$ and $z_{0} z_{1} z_{2} v_{0} v_{2} v_{1} z_{0}$ are cycles of lengths $3,4,5$ and 6 , respectively, a contradiction.

This completes the proof of Claim.
By Claim, $G$ does not contain a triangle. Suppose that there is a vertex $u$ of degree at most one in $H$. Since the minimum degree of $G$ is at least 4 , $u$ has at least three neighbors on $C$. Since $C$ is odd, there exist two distinct neighbors $v_{i}, v_{j}$ of $u$ on $C$ such that the odd path between $v_{i}$ and $v_{j}$ on $C$ has no internal vertices which are the neighbors of $u$ in $G$. Let $Q_{o}, Q_{e}$ be the odd and even paths between $v_{i}$ and $v_{j}$ in $C$ respectively. Let $C^{\prime}:=u v_{i} \cup Q_{o} \cup v_{j} u$. Note that $C^{\prime}$ is an odd cycle.

By the choice of $C$, we have that $\left|E\left(C^{\prime}\right)\right| \geqslant|E(C)|$. This forces that $\left|E\left(Q_{e}\right)\right|=2$ and $u$ is adjacent to all vertices of $V\left(Q_{e}\right)$. It follows that there is a triangle in $G$, a contradiction. Therefore, the minimum degree of $H$ is at least 2 .

Suppose that $H$ has more than one component. Let $W_{1}$ and $W_{2}$ be two components of $H$. Since the degree of any vertex in $W_{1}$ is at least 2 , we have that $W_{1}$ contains an odd cycle $C_{2}$. Since $G$ is 2 -connected and $C$ is an odd cycle, there is an even cycle $D_{2}$ in $G[V(C) \cup$ $\left.W_{2}\right]$. Thus, $C_{2}$ and $D_{2}$ form an opposite pair, a contradiction. Therefore, $H$ is connected.

Note that the minimum degree of $H$ is at least 2 and every block of $H$ is either an odd cycle, an edge or an isolated vertex. There is a vertex $t$ of $H$ which has at least two neighbors on $C$. Since $C$ is odd, there exist two distinct neighbors $v_{i}, v_{j}$ of $t$ on $C$ such that the odd path between $v_{i}$ and $v_{j}$ on $C$ has no internal vertices which are the neighbors of $t$ in $G$. Let $Q_{o}^{\prime}, Q_{e}^{\prime}$ be the odd and even paths between $v_{i}$ and $v_{j}$ in $C$ respectively. Let $C^{\prime \prime}:=t v_{i} \cup Q_{0}^{\prime} \cup v_{j} t$. Note that $C^{\prime \prime}$ is an odd cycle. By the choice of $C$, we have that $\left|E\left(C^{\prime \prime}\right)\right| \geqslant|E(C)|$. This fores that $\left|E\left(Q_{e}^{\prime}\right)\right|=2$. Without loss of generality, we may assume that $i=j+2$. Let $s$ be the neighbor of $v_{j+l+1}$ in $H$. Note that $C$ has length at least five. If follows that $v_{j+l+1} \neq v_{i}, v_{j}$. Since $H$ is connected, there is a path $L$ between $t$ and $s$ in $H$. Then $C\left[v_{j+2}, v_{j+l+1}\right] \cup v_{j+l+1} s \cup$ $L \cup t v_{j+2}, C\left[v_{j+l+1}, v_{j}\right] \cup v_{j} t \cup L \cup s v_{j+l+1}, C\left[v_{j}, v_{j+t+1}\right]$ $\cup v_{j+l+1} s \cup L \cup t v_{j}, C\left[v_{j+l+1}, v_{j+2}\right] \cup v_{j+2} t \cup L \cup s v_{j+l+1}$ are 4 cycles of consecutive lengths, a contradiction. This completes the proof of Theorem 4.1.

We remark that Theorem 4.1 is best possible by the following examples. For any positive integer $t$, let $P_{t}$ := $v_{0} v_{1} \cdots v_{2 t+1}$ and $Q_{t}:=u_{0} u_{1} \cdots u_{2 t+1}$ be two vertex-disjoint paths. Let $H_{t}$ be the graph obtained from $P_{t} \cup Q_{t}$ by adding edges in $\left\{v_{2 i} u_{2 i+1}, u_{2 i} v_{2 i+1}, u_{0} v_{0}, u_{2+1} v_{2 t+1} \mid i=0\right.$, $1, \cdots, t\}$. We see that $H_{t}$ is a 2 -connected non-bipartite graph of the minimum degree 3 without cycles of length 1 modulo 4.


Figure 1. Graphs without cycles of length 1 modulo 4.

## 5 Graphs of chromatic number six

In this section, we consider graphs of chromatic number six and prove Theorem 1.2 for the case $k=5$. Very recently, Gao et al. ${ }^{[10]}$ proved following theorems on cycles lengths in graphs containing a triangle.

Theorem 5. 1 Let $G$ be a connected graph of minimum degree at least three and $(A, B)$ be a non-
trivial partition of $V(G)$ ．For any cycle $C$ in $G$ ，there exist $A-B$ paths of every length less than $|V(C)|$ in $G$ ， unless $G$ is bipartite with the bipartition $(A, B)$ ．

Theorem 5．2 Let $k \geqslant 3$ be an integer and $G$ be a 2 －connected graph of the minimum degree at least $k$ ．If $G$ is $K_{3}$－free，then $G$ contains a cycle of length at least $2 k+2$ ，except that $G=K_{k, n}$ for some $n \geqslant k$ ．

Theorem 5．3 Let $k \geqslant 2$ be an integer．Every 2－ connected graph $G$ of minimum degree at least $k$ containing a triangle $K_{3}$ contains $k$ cycles of consecutive lengths，except that $G=K_{k+1}$ ．

Now，we are in a position to prove Theorem 1.2 for the case $k=5$ ，which we rephrase as follows．

Theorem 5． 4 Every 6－critical non－complete graph $G$ contains cycles of all lengths modulo 5.

Proof Suppose that $G$ does not contain cycles of all lengths modulo 5 and $G$ is not $K_{6}$ ．It is well－known that $G$ is a 2 －connected graph of the minimum degree at least 5．By Theorem 5．3，we may assume that $G$ is $K_{3}$－ free．Fix a vertex $r$ and let $T$ be a breadth－first search tree in $G$ with root $r$ ．Let $L_{0}=\{r\}$ and $L_{i}$ be the set of vertices of $T$ at distance $i$ from its root $r$ ．

Claim 1 Every component of $G\left[L_{i}\right]$ has chromatic number at most 3 ，for all $i \geqslant 0$ ．

Proof of Claim 1 Suppose to the contrary that there exists a component $D$ of $G\left[L_{t}\right]$ which has chromatic number at least 4 for some $t$ ．Let $H$ be a 4－ critical subgraph of $D$ ．It is clear that $H$ is a 2 －connected non－bipartite graph of minimum degree at least 3．By Theorem 5．2，$H$ contains a cycle of length at least 8 ． Let $T^{\prime}$ be the minimal subtree of $T$ whose set of leaves is precisely $V(H)$ ，and let $r^{\prime}$ be the root of $T^{\prime}$ ．Let $h$ denote the distance between $r^{\prime}$ and vertices in $H$ in $T^{\prime}$ ． Since $G$ is $K_{3}$－free，$h \geqslant 2$ ．By the minimality of $T^{\prime}$ ，$r^{\prime}$ has at least two children in $T^{\prime}$ ．Let $x$ be one of its children．Let $A$ be the set of vertices in $H$ which are the descendants of $x$ in $T^{\prime}$ and let $B=V(H)-A$ ．Then both $A, B$ are nonempty and for any $a \in A$ and $b \in B, T_{a, b}$ has the same length $2 h$ ．By Theorem 5．1，there are 7 subpaths of $H$ from a vertex of $A$ to a vertex of $B$ of lengths $1,2, \cdots, 7$ ，respectively．It follows that $G$ contains 7 cycles of consecutive lengths，a contradiction．This completes the proof of Claim 1.

For a connected graph $D$ ，a vertex in $D$ is called good if it is not contained in the minimal connected subgraph of $D$ which contains all 2－connected blocks of $D$ ，and bad otherwise．

We now prove a claim which is key for the proof of Theorem 5．4．

Claim 2 Let $H_{1}$ be a non－bipartite component of $G\left[L_{i}\right]$ and $H_{2}$ be a non－bipartite component of $G\left[L_{i+1}\right]$ for some $i \geqslant 1$ ．If $N_{H_{1}}\left(H_{2}\right) \neq \emptyset$ ，then every vertex in $N_{H_{1}}\left(H_{2}\right)$ is a good vertex of $H_{1}$ ．

Proof of Claim 2 Suppose that there exists a bad vertex $v$ of $H_{1}$ which has a neighbor in $H_{2}$ ．Let $T^{\prime}$ be the minimal subtree of $T$ whose set of leaves is precisely $V\left(H_{1}\right)$ ，and let $r^{\prime}$ be the root of $T^{\prime}$ ．Let $h$ denote the distance between $r^{\prime}$ and vertices in $H_{1}$ in $T^{\prime}$ ．Since $G$ is $K_{3}$－free，$h \geqslant 2$ ．By the minimality of $T^{\prime}, r^{\prime}$ has at least two children in $T^{\prime}$ ．Let $(X, Y)$ be a non－trivial partition of all children of $r^{\prime}$ in $T^{\prime}$ ．Let $A$ be the set of vertices in $H_{1}$ which are the descendants of $X$ in $T^{\prime}$ and let $B$ be the set of vertices in $H_{1}$ which are the descendants of $Y$ in $T^{\prime}$ ．Note that $(A, B)$ is a non－trivial partition of $V\left(H_{1}\right)$ ．Note that every vertex in $B$ is the descendants of $Y$ in $T^{\prime}$ ．Let $A^{\prime}$ be the set of vertices in $L_{i}-A$ which are the descendants of $X$ in $T$ ．Let $B^{\prime}$ be the set of vertices in $L_{i}-B$ which are the descendants of $Y$ in $T$ ． Let $M:=L_{i}-\left(A \cup A^{\prime} \cup B \cup B^{\prime}\right)$ ．Note that $A, A^{\prime}, B, B^{\prime}$ and $M$ form a partition of $L_{i}$ ．Note that every vertex of $H_{2}$ has a neighbor in $L_{i}$ ．

Suppose that there exists a vertex $m \in V\left(H_{2}\right)$ which has a neighbor $m^{\prime}$ in $M$ ．Recall that $H_{1}$ is non－ bipartite and $K_{3}$－free．There exists a path $z_{1} z_{2} z_{3} z_{4} z_{5}$ of length 4 in $H_{1}$ with $z_{1}=v$ ．It is easy to see that $T_{z_{i}, m}$ contains $r^{\prime}$ for $i \in[5]$ ，so they have the same length． Since $v$ has a neighbor in $H_{2}$ ，there is a path $P$ from $v$ to $m$ in $G\left[H_{2} \cup\{v\}\right]$ ．Then $P \cup z_{1} z_{2} \cdots z_{i} \cup T_{z_{i}, m^{\prime}} \cup m^{\prime} m$ ， for $i \in[5]$ are 5 cycles of consecutive lengths in $G$ ，a contradiction．Therefore $N_{M}\left(H_{2}\right)=\varnothing$ ，that is every vertex in $H_{2}$ has a neighbor in $A \cup A^{\prime} \cup B \cup B^{\prime}$ ．For a vertex in $V\left(H_{2}\right)$ ，we call it type－$A$ if it has a neighbor in $A \cup A^{\prime}$ and it type－$B$ if it has a neighbor in $B \cup B^{\prime(1)}$ ．

Let $C=v_{0} v_{1} \cdots v_{n}$ be an odd cycle of $H_{1}$ ，where $n \geqslant$ 4．Suppose that $V(C) \subseteq A$ ．Since $B$ is non－empty，we choose an arbitrary vertex $b$ in $B$ ．Since $H_{1}$ is connected，there exists a path $P$ from $b$ to $V(C)$ internal disjoint from $V(C)$ ．Without loss of generality， we assume that $V(P) \cap V(C)=\left\{v_{0}\right\}$ ．Then $P \cup C\left[v_{0}\right.$ ， $\left.v_{i}\right] \cup T_{b, v_{i}}$ for $i=0,1, \cdots, 4$ give 5 cycles of consecutive lengths，a contradiction．Therefore，$B \cap V(C) \neq \varnothing$ ，and similarly，$A \cap V(C) \neq \varnothing$ ．Then there must be an $A-B$ path of length 4 in $C$（otherwise，since 4 and $|C|$ are co－prime and $|C| \geqslant 5$ ，one can deduce that all vertices of $C$ are contained in one of the two parts $A$ and $B$ ，a contradiction）．

Without loss of generality，we may assume that $v_{0}$ ， $v_{1} \in A$ and $v_{2} \in B$ ．Then $T_{v_{1}, v_{2}} \cup v_{2} v_{1}$ and $T_{v_{0}, v_{2}} \cup v_{2} v_{1} v_{0}$ are two cycles of lengths $2 h+1$ and $2 h+2$ ，respectively． We have showed that there exists some $A-B$ path of length 4 in $C$ which gives a cycle of length $2 h+4$ ，so we may assume that there is no $A-B$ path of length 3 or 5 in

[^1]$C$. This would force that one of the following holds.

### 5.1 There is no $A-B$ path of length 3 in $H_{1}$

This would force that for any path $P^{\prime}=u_{0} u_{1} \cdots u_{s}$ in $H_{1}$ with $u_{1}=v_{0}, u_{2}=v_{1}, u_{3}=v_{2}$, we can derive that $u_{j} \in B$ if $j \equiv 0 \bmod 3$ and $u_{j} \in A$ if $j \equiv 1$ or $2 \bmod 3$. Moreover, we have that $v_{3 i}, v_{3 i+1} \in A$ and $v_{3 i+2} \in B$ for each possible $i \geqslant 0$. So $|C| \geqslant 9$ and $G$ contains a cycle of length $l \in$ $\{2 h+1,2 h+2,2 h+4,2 h+5,2 h+7,2 h+8\}$. In particular, since $H_{1}$ is connected, for any vertex $b \in B$, there exists a path of length 2 in $H_{1}$ from $b$ to some vertex in $A$. And for any bad vertex $a \in A$, there exists a path $b_{1} a a_{1} b_{2}$ satisfying $b_{1}, b_{2} \in B$ and $a, a_{1} \in A$.

Suppose that $N_{A \cup A^{\prime}}\left(H_{2}\right) \neq \varnothing$ and $N_{B \cup B^{\prime}}\left(H_{2}\right) \neq \emptyset$. Since $H_{2}$ is connected and every vertex of $H_{2}$ has a neighbor in $A \cup A^{\prime} \cup B \cup B^{\prime}$, there exist two adjacent vertices $p, q$ of $H_{2}$ such that $p$ has a neighbor $p^{\prime}$ in $A \cup$ $A^{\prime}$ and $q$ has a neighbor $q^{\prime}$ in $B \cup B^{\prime}$. Then $p^{\prime} p q q^{\prime} \cup$ $T_{p^{\prime}, q^{\prime}}$ is a cycle of length $2 h+3$. It follows that $G$ contains 5 cycles of lengths $2 h+1,2 h+2,2 h+3,2 h+4$ and $2 h+5$, respectively, a contradiction.

Suppose that $N_{L_{i}}\left(H_{2}\right) \subseteq B \cup B^{\prime}$. Since $N_{A \cup B}\left(H_{2}\right) \neq$ $\emptyset$, we have that $v \in B$. Let $u$ be any vertex in $N_{H_{2}}(v)$. Choose $w_{1} \in V\left(H_{2}\right)$ such that there exists a path $Q$ of length 2 from $u$ to $w_{1}$ in $H_{2}$. Since any vertex in $H_{2}$ has a neighbor in $L_{i}$, by our assumption, $w_{1}$ has a neighbor in $B \cup B^{\prime}$. Let $w_{2}$ be a neighbor of $w_{1}$ in $B \cup B^{\prime}$. Suppose that $w_{2} \neq v$. Note that there is a path $R:=v v^{\prime \prime} v^{\prime}$ such that $v^{\prime}, v^{\prime \prime} \in A$. Then $R \cup v u \cup Q \cup w_{1} w_{2} \cup T_{w_{2}, v^{\prime}}$ is a cycle of length $2 h+6$. So $G$ contains cycles of lengths $2 h+4,2 h+5,2 h+6,2 h+7$ and $2 h+8$, a contradiction. Therefore $w_{2}=v$ and $w_{1} \in N_{H_{2}}(v)$. That says, every vertex in $H_{2}$ of distance 2 from a neighbor of $v$ is a neighbor of $v$. Continuing to apply this along with a path from $u$ to an odd cycle $C_{0}$ in $H_{2}$, we could obtain that $v$ is adjacent to all vertices of $C_{0}$, which contradicts that $G$ is $K_{3}$-free. Therefore, $N_{B \cup B^{\prime}}\left(H_{2}\right)=\emptyset$.

Now we see that $N_{L_{i}}\left(H_{2}\right) \subseteq A \cup A^{\prime}$. This forces that $v \in A$. For any neighbor $u^{\prime}$ of $v$ in $H_{2}$, let $w_{3} \in$ $V\left(\mathrm{H}_{2}\right)$ satisfies that there exists a path $Q^{\prime}$ of length 2 from $u^{\prime}$ to $w_{3}$ in $H_{2}$. Note that $v \in A$ is bad in $H_{1}$, we can infer that there exists a path $b_{2} v a_{1} b_{1}$ in $H_{1}$ such that $a_{1} \in A$ and $b_{1}, b_{2} \in B$. Note that $v$ and $a_{1}$ are symmetric. Let $w_{4}$ be a neighbor of $w_{3}$ in $A \cup A^{\prime}$. Suppose that $w_{4} \notin\left\{v, a_{1}\right\}$. Then $v u^{\prime} \cup Q^{\prime} \cup w_{3} w_{4} \cup$ $T_{w_{4}, b_{1}} \cup b_{1} a_{1} v$ is a cycle of length $2 h+6$. So again, $G$ contains cycles of lengths $2 h+4,2 h+5,2 h+6,2 h+7$ and $2 h+8$, a contradiction. Therefore, $w_{4} \in\left\{v, a_{1}\right\}$. That is, every vertex in $H_{2}$ of distance 2 from a neighbor of $v$ or $a_{1}$ is adjacent to one of $v, a_{1}$. Continuing to apply this along with a path from $u^{\prime}$ to an odd cycle $C_{1}$ in $H_{2}$, we could obtain that every vertex of
$C_{1}$ is adjacent to one of $v, a_{1}$. But this would force a copy of $K_{3}$ containing $a_{1} v$ in $G$. This final contradiction completes the proof of this subsection.

### 5.2 There is an $A-B$ path of length 3 in $H_{1}$

Therefore, we may assume that there is no $A-B$ paths of length 5 in $H_{1}$.

We first show that for any path $t_{1} t_{2} t_{3}$ in $H_{1}$ satisfying that $t_{1}$ and $t_{3}$ are in different parts, $t_{2}$ does not have a neighbor in $V\left(H_{2}\right)$; call this Property $\star$. Suppose to the contrary that $t_{2}$ has a neighbor in $H_{2}$. Without loss of generality, we may assume that $t_{1}, t_{2} \in$ $A$ and $t_{3} \in B$. Let $s$ be any vertex in $N_{H_{2}}\left(t_{2}\right)$. Choose $s^{\prime} \in V\left(H_{2}\right)$ such that there exists a path $Q$ of length 2 from $s$ to $s^{\prime}$ in $H_{2}$. Let $t$ be a neighbor of $s^{\prime}$ in $L_{i}-M$. Suppose that $t \neq t_{2}$. If $t \in A \cup A^{\prime}$, then $t_{3} t_{2} s \cup Q \cup s^{\prime} t \cup$ $T_{t, t_{3}}$ is a cycle of length $2 h+5$. So $G$ contains cycles of lengths $2 h+1,2 h+2,2 h+3,2 h+4$ and $2 h+5$, a contradiction. Therefore $t \in B \cup B^{\prime}$, then $t_{1} t_{2} s \cup Q \cup$ $s^{\prime} t \cup T_{t, t_{1}}$ is a cycle of length $2 h+5$. So $G$ contains cycles of lengths $2 h+1,2 h+2,2 h+3,2 h+4$ and $2 h+5$, a contradiction. Therefore $t=t_{2}$ and $s^{\prime}$ is the neighbor of $t_{2}$. That says, every vertex in $H_{2}$ of distance 2 from a neighbor of $t_{2}$ is a neighbor of $t_{2}$. Continuing to apply this along with a path from $s$ to an odd cycle $\mathrm{C}_{2}$ in $\mathrm{H}_{2}$, we could obtain that $t_{2}$ is adjacent to all vertices of $C_{2}$, which contradicts that $G$ is $K_{3}$-free.

Suppose that $N_{A \cup A^{\prime}}\left(H_{2}\right) \neq \emptyset$ and $N_{B \cup B^{\prime}}\left(H_{2}\right) \neq \emptyset$. Suppose that there exists a path $p_{0} p_{1} p_{2} p_{3}$ in $H_{2}$ such that $p_{0}$ is type- $A$ and $p_{3}$ is type- $B$. Let $q$ be the neighbor of $p_{0}$ in $A \cup A^{\prime}$ and $q^{\prime}$ be the neighbor of $p_{3}$ in $B \cup B^{\prime}$. Then $q p_{0} p_{1} p_{2} p_{3} q^{\prime} \cup T_{q^{\prime}, q}$ is a cycle of length $2 h+5$. So $G$ contains cycles of lengths $2 h+1,2 h+2,2 h+3,2 h+4$ and $2 h+5$, a contradiction. This forces that every two vertices which are linked by a path of length 3 in $\mathrm{H}_{2}$ have the same type. Note that $N_{A \cup A^{\prime}}\left(H_{2}\right) \neq \varnothing$ and $N_{B \cup B^{\prime}}\left(H_{2}\right) \neq \emptyset$. By symmetry between $A \cup A^{\prime}$ and $B \cup$ $B^{\prime}$, there exists a path $z_{0} z_{1} z_{2}$ in $H_{2}$ such that $z_{0}$ and $z_{1}$ are type $-A$ and $z_{2}$ is type- $B$. Moreover, for any path $P^{\prime \prime}$ : $=$ $u_{0} u_{1} \cdots u_{s}$ in $H_{2}$ with $u_{0}=z_{0}, u_{1}=z_{1}, u_{2}=z_{2}$, we can derive that $u_{j}$ is type- $A$ if $j \equiv 0$ or $1 \bmod 3$ and $u_{j}$ is type$B$ if $j \equiv 2 \bmod 3$. Moreover, for any path $P^{\prime \prime \prime}:=u_{0} u_{1} \cdots u_{s}$ in $H_{2}$ with $u_{0}=z_{2}, u_{1}=z_{1}, u_{2}=z_{0}$, we can derive that $u_{j}$ is type- $B$ if $j \equiv 0 \bmod 3$ and $u_{j}$ is type- $A$ if $j \equiv 1$ or $2 \bmod$ 3. This forces that every cycle in $H_{2}$ has length 0 modulo 3. Since $\mathrm{H}_{2}$ is non-bipartite and $K_{3}$-free, there is an odd cycle $C_{3}:=w_{0} w_{1} \cdots w_{m} w_{0}$ of length at least 9 . Note that $w_{0}$ and $w_{8}$ have different types. If follows that there is a cycle of length $2 h+10$. So $G$ contains cycles of lengths $2 h+1,2 h+2,2 h+3,2 h+4$ and $2 h+10$, a contradiction.

Therefore, all vertices in $\mathrm{H}_{2}$ have the same type.

Without loss of generality，we may assume that $N_{L_{i}}\left(H_{2}\right) \subseteq A \cup A^{\prime}$ ．Therefore $v \in A$ and let $f_{0}$ be a neighbor of $v$ in $H_{2}$ ．Since $H_{2}$ is $K_{3}$－free and non－ bipartite，there is a path $f_{0} f_{1} f_{2}$ in $H_{2}$ ．Since $H_{1}$ is a $K_{3}$－ free non－bipartite graph and $v$ is a bad vertex in $H_{1}$ ， there is a path $a_{0} a_{1} v a_{2} a_{3}$ in $H_{1}$ ．Since there is no $A-B$ path of length 5 in $H_{1}$ ，we have that for any path $Q^{\prime}$ ：＝ $u_{0} u_{1} \cdots u_{s}$ in $H_{1}$ with $u_{0}=a_{0}, u_{1}=a_{1}, u_{2}=v, u_{3}=a_{2}, u_{4}=$ $a_{3}$ ，we can derive that $u_{j}$ and $u_{k}$ are in the same part if $j \equiv k \bmod 5$ ．Also，we have that for any path $Q^{\prime}:=$ $u_{0} u_{1} \cdots u_{s}$ in $H_{1}$ with $u_{0}=a_{3}, u_{1}=a_{2}, u_{2}=v, u_{3}=a_{1}, u_{4}=$ $a_{0}$ ，we can derive that $u_{j}$ and $u_{k}$ are in the same part if $j \equiv k \bmod 5$ ．By Property $\star$ ，we have that $a_{1}$ and $a_{2}$ are in the same part of $H_{1}$ ．

Suppose that $a_{1}, a_{2} \in A$ ．Since $V\left(H_{1}\right) \cap B \neq \emptyset$ ， we have that one of $a_{0}$ and $a_{3}$ is in $B$ ．Without loss of generality，we may assume that $a_{0} \in B$ ．Let $w$ be a neighbor of $f_{1}$ in $H_{1}$ ．We have that $w \in A \cup A^{\prime}$ ．Since $G$ is $K_{3}$－free，$w \neq v$ ．Note that $a_{0} a_{1} v$ satisfying that $a_{0}$ and $v$ are in different parts of $H_{1}$ ．By Property $\star$ ，we have that $w \neq a_{1}$ ．Therefore，$w f_{1} f_{0} v a_{1} a_{0} \cup T_{a_{0}, w}$ is a cycle of length $2 h+5$ ．So $G$ contains cycles of lengths $2 h+1$ ， $2 h+2,2 h+3,2 h+4$ and $2 h+5$ ，a contradiction．

Therefore，$a_{1}, a_{2} \in B$ ．Let $w^{\prime}$ be a neighbor of $f_{2}$ in $H_{1}$ ．We have that $w^{\prime} \in A \cup A^{\prime}$ ．Suppose that $w^{\prime} \neq v$ ． Then $w^{\prime} f_{2} f_{1} f_{0} v a_{1} \cup T_{a_{1}, w^{\prime}}$ is a cycle of length $2 h+5$ ．So $G$ contains cycles of lengths $2 h+1,2 h+2,2 h+3,2 h+4$ and $2 h+5$ ，a contradiction．Therefore $w^{\prime}=v$ ．That says， every vertex in $H_{2}$ of distance 2 from a neighbor of $v$ is a neighbor of $v$ ．Continuing to apply this along with a path from $f_{0}$ to an odd cycle $C_{4}$ in $H_{2}$ ，we could obtain that $v$ is adjacent to all vertices of $C_{4}$ ，which contradicts that $G$ is $K_{3}$－free．

This completes the proof of Claim 2.
Now，we define a coloring $c: V(G) \rightarrow\{1,2,3,4$ ， $5\}$ as follows．Let $D$ be any bipartite component of $G\left[L_{i}\right]$ for some $i$ ．If $i$ is even，we color one part of $D$ with color 1 and the other part with color 2 ，and if $i$ is odd，we color one part of $D$ with color 4 and the other part with color 5．Let $F$ be any non－bipartite component of $G\left[L_{j}\right]$ for some $j$ ．If $j$ is even，by using the block structure of $F$ ，we can properly color $V(F)$ with colors 1,2 and 3 by coloring bad vertices with colors 1,2 and 3 and coloring good vertices with colors 1 and 2 ．If $j$ is odd，then we also can properly color $V(F)$ with colors 3,4 and 5 by coloring bad vertices with colors 3,4 and 5 and coloring good vertices with colors 4 and 5.

Next，we argue that $c$ is a proper coloring on $G$ ． Let $H_{1}$ be a component of $G\left[L_{i}\right]$ and $H_{2}$ be a component of $G\left[L_{i+1}\right]$ for $i \geqslant 0$ such that there exists an edge between $H_{1}$ and $H_{2}$ ．If one of them is bipartite， then $c$ is proper on $V\left(H_{1}\right) \cup V\left(H_{2}\right)$ ．Therefore，both
$H_{1}$ and $H_{2}$ are non－bipartite．By the above claim，all vertices of $\mathrm{H}_{2}$ are not adjacent to vertices of color 3 in $H_{1}$ ．It follows that $c$ is proper on $V\left(H_{1}\right) \cup V\left(H_{2}\right)$ ． Therefore，$c$ is a proper 5－coloring of $G$ ，which contradicts that $G$ is 6 －critical．This completes the proof of Theorem 5．4．

Proof of Theorem 1．2 Let $G$ be a $(k+1)$－critical non－complete graph，for $k \in\{4,5\}$ ．Suppose that $k=4$ ． It is well－known that $G$ is a 2 －connected graph of minimum degree at least 4 ．Then by Theorem 4．1，$G$ contains cycles of all lengths modulo 4．Suppose that $k=5$ ．By Theorem 5．4，$G$ contains cycles of all lengths modulo 5.

## Acknowledgments

The author would like to thank Gao Jun and Prof．Ma Jie for useful discussions．The author also thanks Gao Jun for carefully reading a draft of this paper．The work is supported by the National Natural Science Foundation of China（ 11622110 ），National Key Research and Development Project（SQ2020YFA070080），and Anhui Initiative in Quantum Information Technologies （AHY150200）．

## Conflict of interest

The author declares no conflict of interest．

## Author information

HUO Qingyi is currently a graduate student at University of Science and Technology of China．His research interests focus on graph theory．

## References

［ 1 ］Bollobás B．Cycles modulo k．Bull．London Math．Soc．， 1977，9：97－98．
［2］Diwan A．Cycles of even lengths modulo $k$ ．J．Graph Theory，2010，65：246－252．
［3］Erdös P．Some of my favourite problems in various branches of combinatorics．Annals of Discrete Mathematics，1992，51：69－79．
［4］Fan G．Distribution of cycle lengths in graphs．J．Combin． Theory Ser．B．，2002，84：187－202．
［5］Liu C，Ma J．Cycle lengths and minimum degree of graphs．J．Combin．Theory Ser．B．，2018，128：66－95．
［6］Sudakov B，Verstraëte J．The extremal function for cycles of length $l \bmod k$ ．The Electronic Journal of Combinatorics， 2017，24（1）：\＃P1．7．
［7］Thomassen C．Graph decomposition with applications to subdivisions and path systems modulo $k$ ．J．Graph Theory， 1983，7：261－271．
［8］Verstraëte J．On arithmetic progressions of cycle lengths in graphs．Combin．Probab．Comput．，2000，9：369－373．
［9］Moore B，West D B．Cycles in color－critical graphs． https：／／export．arxiv．org／abs／1912．03754v2．
［10］Gao J，Huo Q，Ma J．A strengthening on odd cycles in graphs of given chromatic number．SIAM J．Discrete Math．，2021，35（4）：2317－2327．

## 染色数为 $\mathbf{5}$ 和 $\mathbf{6}$ 的图中的圈长

火清羿＊<br>中国科学技术大学数学科学学院，安徽合肥 230026<br>＊通讯作者．E－mail：qyhuo＠mail．ustc．edu．cn

摘要：Moore 和 West 提出问题：每一个 $(k+1)$－临界的非完全图中是否存在一个模 $k$ 的意义下长度为 2 的圈。这里证明了更强的结论：对于 $k=4,5$ ，每一个 $(k+1)$－临界的非完全图中一定存在模 $k$ 的意义下所有长度的圈。关键词：圈长；染色数；最小度；广度优先搜索树


[^0]:    (1) We remark that (i) if $V(C) \cap V(D)=\emptyset$, then $P$ and $Q$ are vertexdisjoint, (ii) if $C$ and $D$ share one common vertex, then $V(Q)=V(C)$ $\cap V(D)$.

[^1]:    （1）We remark that a vertex can be both type－$A$ and type－$B$ ．

