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1　 Introduction
The problem of deciding whether a given graph contains
cycles of all lengths modulo a positive integer k shows
up in many literature ( see Refs. [1 -8]) . Recently,
Moore and West[9] asked whether every (k+1)-critical
non-complete graph has a cycle of length 2 modulo k.
Here, a graph is k-critical if it has chromatic number k
but deleting any edge will decrease the chromatic
number. Very recently, Gao et al. [10] partially answered
this question by showing the following theorem.

Theorem 1. 1 　 For k≥6, every (k+1)-critical
non-complete graph contains cycles of all lengths
modulo k.

However, methods in Ref. [10] do not work for
k<6. In this note, we give a new method and prove that
the conclusion of Theorem 1. 1 also holds for k=4, 5.

Theorem 1. 2　 For k=4, 5, every (k+1)-critical
non-complete graph contains cycles of all lengths
modulo k.

Thus, combined with the Theorems 1. 1 and 1. 2,
we completely give an affirmative answer to the
question of Moore and West.

The rest of the paper is organized as follows. In
Section 2, we introduce the notation. In Section 3, we
give a key lemma. In Section 4, we consider graphs of
chromatic number five and prove Theorem 1. 2 for the
case k = 4. In Section 5, we consider graphs of
chromatic number six and prove Theorem 1. 2 for the
case k=5.

2　 Notation
All graphs considered are finite, undirected, and
simple. Let G be a graph and let H be a subgraph of a

graph G. We say that H and a vertex v∈V(G)-V(H)
are adjacent in G if v is adjacent in G to some vertex in
V(H) . Let NG (H): = ∪

v∈V(H)
NG ( v) - V (H) and

NG[H]:=NG(H)∪V(H) . For a subset S of V(G),
G[S] denotes the subgraph induced by S in G, and
G-S denotes the subgraph G[V(G)-S] . A vertex is a
leaf in G if it has degree one in G. We say that a path P
is internally disjoint from H if no vertex of P other than
its endpoints is in V ( H ) . For two vertex-disjoint
subgraphs H, H′ of G, let NH(H′) be the set of vertices
in H which are adjacent to some vertex in H′.

A cycle or a path is said to be odd (resp. even) if
its length is odd (resp. even) . Given a cycle C and an
orientation of C, for two vertices x and y in C, let
C[x, y] denote the path on C from x to y in the
direction, including x and y. Let C[x, y):=C[x, y]-
y, C(x, y]:=C[x, y]-x, and C(x, y):=C[x, y]-
{x, y} . We use the similar notation to a path P.

Let u and v be two vertices of a graph. If there are
three internally disjoint paths between u and v, then we
call such a graph as the theta graph. Note that any theta
graph contains an even cycle.

A vertex v of a graph G is a cut-vertex of G if G-
v contains more components than G. A block B in G is a
maximal connected subgraph of G such that there exists
no cut-vertex of B. So a block is an isolated vertex, an
edge or a 2-connected graph. An end-block in G is a
block in G containing at most one cut-vertex of G. If D
is an end-block of G and a vertex x is the only cut-
vertex of G with x∈V(D), then we say that D is an
end-block with cut-vertex x.

Let T be a tree, and fix a vertex r as its root. Let v
be a vertex of T. The parent of v is the vertex adjacent
to v on the path from v to r. An ascendant of v is any



vertex which is either the parent of v or is recursively
the ascendant of the parent of v. A child of v is a vertex
of which v is the parent. A descendant of v is any vertex
which is either the child of v or is recursively the
descendant of any of the children of v. Let Y be a subset
of V(T) . We say a vertex x is the descendant of Y if x
is the descendant of some vertex in Y. Let a, b be two
vertices of T. Denote Ta,b the unique path between a
and b in T.

3　 Key lemma
Let G be a 2-connected graph and let C and D be two
cycles in G. We say that (C, D) is an opposite pair in
G, if C is odd and D is even satisfying that C and D are
edge-disjoint and share at most one common vertex.

Lemma 3. 1 　 Let G be a 2-connected graph of
minimum degree at least 4. Let (C, D) be an opposite
pair in G. Then G contains cycles of all lengths modulo
4.

Proof　 Suppose to the contrary that G does not
contain cycles of all lengths modulo 4. Since G is 2-
connected and | V(C)∩V(D) | ≤1, there exist two
vertex-disjoint paths P, Q between C and D satisfying
(V(C) ∩V (D)) - V (Q) = Ø①. We take such an
opposite pair (C, D), paths P and Q as the following
manner:

① |E(P) | is as large as possible;
② |E(Q) | is as large as possible subject to ①.
Let p and q be the endpoints of P and Q in D,

respectively.
Claim 1 　 Every even cycle in the block of G -

(V(C∪P∪Q) -{p, q}) including D contains both p
and q. In particular, every theta graph in the block
includes both p and q.

Proof of Claim 1　 Let H be the block of
G-(V(C∪P∪Q)-{p, q})

including D. Let D′ be an even cycle in H other than
D. Suppose that p∉V(D′) . Since H is 2-connected,
there are two vertex-disjoint paths L1, L2 from {p, q}
to D′ in H. We may assume that L1 links p and D′.
Note that L1 has a length at least 1 and (C, D′) is an
opposite pair. Then P∪L1 and Q∪L2 are two internally
disjoint paths between C and D′ such that P∪ L1 is
longer than P, a contradiction. Therefore, p∈V(D′) .

Suppose that q∉V(D′) . Since H is 2-connected,
there is a path L3 from q to D′ internally disjoint from
V(D′) in H. Note that L3 has a length at least 1 and
(C, D′) is an opposite pair. Then P and Q∪L3 are two
internally disjoint paths between C and D′ such that Q∪
L3 is longer than Q, a contradiction. Therefore, q∈
V(D′) . Since every theta graph contains an even cycle,
every theta graph in H includes both p and q. This
completes the proof of Claim 1.

Since D is an even cycle, we partition V(D) into
the sets A and B alternatively along D. By symmetry
between A and B, we may assume that p∈A.

Claim 2 　 For any b∈B-{q}, there is no path
from b to C∪P∪Q-{p, q} internally disjoint from
C∪D∪P∪Q.

Proof of Claim 2 　 Suppose to the contrary that
there is a path R from b to x∈V(C∪P∪Q)-{p, q}
internally disjoint from C∪D∪P∪Q. By symmetry,
we may assume that b∈D(p, q) .

Assume that |E(D) |≡0 mod 4. As C is an odd
cycle, there is an even path X1 and an odd path Y1

between p and q in C∪P∪Q. If q∈B, then both
|E(D[p, q]) | and | E (D [ q, p]) | are odd, and
furthermore, since their sum is 0 modulo 4, they differ
by 2 modulo 4. Then X1∪D[p, q], X1∪D[q, p],
Y1∪D[p, q] and Y1 ∪ D [ q, p ] are 4 cycles of
different lengths modulo 4, a contradiction. Therefore,
we have that q∈A.

Suppose that x∈V(P) -{p} . Since C is an odd
cycle, there is an even path X2 and an odd path Y2

between b and q in C∪P∪Q∪R. However, since both
|E(D[b, q]) | and |E(D[q, b]) | are odd and differ
by 2 modulo 4, X2∪D[b, q], X2∪D[q, b], Y2 ∪
D[b, q] and Y2 ∪D[q, b] are 4 cycles of different
lengths modulo 4, a contradiction. Thus, x is not
contained in V(P)-{p} .

Suppose that x∈V(C∪Q)-(V(P)∪{q}) . Then
there is an even path X3 and an odd path Y3 between b
and p in C ∪ P ∪ Q ∪ R. However, since both
|E(D[b, p]) | and |E(D[p, b]) | are odd and differ
by 2 modulo 4, X3∪D[b, p], X3∪D[p, b], Y3 ∪
D[b, p] and Y3 ∪D[p, b] are 4 cycles of different
lengths modulo 4, a contradiction. Thus, x is not
contained in V(C∪Q)-(V(P)∪{q}) .

Therefore, |E(D) | ≡2 mod 4. As C is an odd
cycle, there is an even path X4 and an odd path Y4

between p and q in C∪P∪Q. If q∈A, then both
|E(D[p, q]) | and | E (D [ q, p]) | are even, and
furthermore, since their sum is 2 modulo 4, they differ
by 2 modulo 4. Then X4∪D[p, q], X4∪D[q, p],
Y4∪D[ p, q] and Y4 ∪D [ q, p] are 4 cycles of
different lengths modulo 4, a contradiction. Therefore,
we have that q∈B.

Suppose that x∈V(C∪P)-(V(Q)∪{p}) . Since
C is an odd cycle, there is an even path X5 between b
and q and an odd path Y5 between b and q in C∪P∪
Q∪R. However, since both | E (D [ b, q]) | and
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① We remark that ( i) if V(C)∩V(D)= Ø, then P and Q are vertex-
disjoint, (ii) if C and D share one common vertex, then V(Q)= V(C)
∩V(D).



|E(D[q, b]) | are even and differ by 2 modulo 4, X5

∪D[b, q], X5∪D[q, b], Y5∪D[b, q] and Y5∪
D[q, b] are 4 cycles of different lengths modulo 4, a
contradiction. Thus, x is not contained in V(C∪P) -
(V(Q)∪{p}) .

Suppose that x∈V(Q) -{q} . Since G is a 2-
connected graph of minimum degree at least 4, there
exists a path T from b to y∈V(C∪D∪P∪Q∪R) -
{b} internally disjoint from C∪D∪P∪Q∪R. As the
same reason for x, y is not contained in V(C∪P) -
(V(Q)∪{p}) . Therefore y∈V(Q∪D∪R)-{b} .

If y∈V(R∪Q∪D(b, p))-{b}, then D[b, p)∪
R∪T∪Q contains a theta graph. It follows that there is
an even D1 cycle in G-(C∪P-Q) . Note that (C, D1)
is an opposite pair in G. It is easy to see that there are
two internally disjoint paths P′ and Q′ between C and
D′ satisfying that P′ contains P and is longer than P and
Q′⊆Q∪D(b, q]∪R, a contradiction. Thus, y is not
contained in V(R∪Q∪D(b, p))-{b} .

Suppose that y∈V(D[p, b)) . Since T∪D[y, b]
does not contain q and D[b, q]∪R∪Q[x, q] does not
contain p, by the choice of opposite pairs, we have that
T∪D[y, b] and D[b, q]∪R∪Q[x, q] are both odd
cycles. Since C is an odd cycle, there is an odd path X′
and an even path Y′ between y and x in C∪P∪Q∪
D[p, y] . Note that the lengths of X′ and Y′ differ by 1
modulo 4, the lengths of T and D[y, b] differ by 1
modulo 4 and the lengths of D[b, q]∪Q[x, q] and R
differ by 1 modulo 4. Then the set

{L1∪L2∪L3 |L1∈{X′, Y′},
L2∈{T, D[y, b]},

L3∈{D[b, q]∪Q[x, q], R}}
contains cycles of all lengths modulo 4, a contradiction.
Thus, y is not contained in V(D[p, b)) .

This completes the proof of Claim 2.
Let z be a vertex in B-{q} . By symmetry between

two orientations of C, we may assume that z ∈
V(D(p, q)) . Since the degree of z is at least 4 in G
and G is 2-connected, there is a path Z from z to C∪D
∪P∪Q-{z} internally disjoint from C∪D∪P∪Q. By
Claim 2, the endpoint of Z other than z is contained in
D-{z} . Let r be the endpoint of Z other than z. Since
the degree of z is at least 4 in G and G is 2-connected,
there is a path S from z to s∈V(C∪D∪P∪Q∪Z)-
{z} internally disjoint from C∪D∪P∪Q∪Z. By
Claim 2, s is contained in V(D∪Z)-{z} .

Suppose that s∈V(Z)-{z} .
If r∈V(D(z, p)), then D[z, r]∪Z∪S is a theta

graph not containing p, contradicting Claim 1.
If r∈V(D[p, z)), then D[r, z]∪Z∪S is a theta

graph not containing q, contradicting Claim 1.
Thus, s is not contained in V(Z)-{z} .
Suppose that s∈V (D) - { z, r} . By symmetry

between r and s, we may assume that s∈V(D(r, z)) .
If r∈V(D(q, z)), then D[r, z]∪Z∪S is a theta

graph not containing q, contradicting Claim 1.
If r∈V(D( z, q]) and s∈V(D( r, p)), then

D[z, s]∪Z ∪ S is a theta graph not containing p,
contradicting Claim 1.

Therefore r∈V(D(z, q]) and s∈V(D[p, z)) .
Since S∪D[s, z] does not contain q and D[z, r]∪Z
does not contain p, by Claim 1, we have that S∪
D[s, z] and D[z, r]∪Z are both odd cycles. Since C
is an odd cycle, there is an odd path X″ and an even
path Y″ between s and r in C∪P∪Q∪D[p, s]∪
D[r, q] . Note that the lengths of X″ and Y″ differ by 1
modulo 4, the lengths of S and D[ s, z] differ by 1
modulo 4 and the lengths of D[z, r] and Z differ by 1
modulo 4. Then the set {L1 ∪L2 ∪L3 | L1 ∈{X″, Y″},
L2∈{S, D[ s, z]}, L3 ∈{D[ z, r], Z}} contains
cycles of all lengths modulo 4, a contradiction.

This completes the proof of Lemma 3. 1.

4　 Graphs of chromatic number five
In this section, we prove the following theorem on 2-
connected graphs of the minimum degree at least four,
from which Theorem 1. 2 can be inferred as a corollary
for the case k=4.

Theorem 4. 1 　 Every 2-connected non-bipartite
graph of the minimum degree at least 4 contains cycles
of all lengths modulo 4, except that it is the complete
graph of five vertices.

Proof　 Let G be a 2-connected non-bipartite graph
of the minimum degree at least 4. Assume that G is not
a K5 and does not contain cycles of all lengths modulo
4. Let C:= v0v1…v2lv0 be an odd cycle in G such that
|V(C) | is minimum, where the indices are taken under
the additive group ZZ 2l+1 . Note that C is induced. Let
H:=G-V(C) . By Lemma 3. 1, there is no opposite
pairs in G, hence H does not contain an even cycle. It
follows that every block of H is either an odd cycle, an
edge or an isolated vertex.

Claim　 G does not contain a triangle.
Proof of Claim 　 Suppose that G contains a

triangle. Then C is a triangle. Let H1 be a component of
H. Since the minimum degree of G is at least 4, H1 has
at least two vertices. Suppose that H1 contains an odd
cycle C1 .

If H1 is not 2-connected, then there exists an end-
block B1 of H1 with cut-vertex b1 such that

(V(B1)-{b1})∩V(C1)= Ø.
As B1 is either an odd cycle or an edge, there exists w∈
V(B1)-{b1} such that w has at least two neighbors on
C. Since C is an odd cycle, G[C∪{w}] contains an
even cycle D1 . Then C1 and D1 form an opposite pair in
G, a contradiction.
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Therefore, H1 is 2-connected, that is H1 is an
induced odd cycle, we denote H1:=u0u1…u2hu0, where
the indices are taken under the additive group ZZ 2h+1 .
Since the minimum degree of G is at least 4, u0 and u2

have at least two neighbors on C. Without loss of
generality, we may assume that u0 is adjacent to v0 and
v1 and u2 is adjacent to v0 . Then C, u0v0v2v1u0,
u0u1u2v0v1u0 and u0u1u2v0v2v1u0 are cycles of lengths 3,
4, 5 and 6, respectively, a contradiction.

Therefore, every component of H does not contain
an odd cycle, that is, every component of H is a tree.

If |V(H1) | =2, then G[C∪H1] is a K5 . Suppose
that there is another component H2≠H1 of H. Since G is
2-connected, there are two disjoint paths L1 and L2 from
H2 to C internally disjoint from C in G [H2 ∪ C] .
Without loss of generality, we may assume that
V(Li)∩V(C)= {vi} for i=1, 2. Concatenating L1, L2

and a path in H2, there exists a path L from v1 to v2

internally disjoint from C in G[H2∪C] . As there are
paths of lengths 1, 2, 3 and 4 from v1 to v2 in
G[H1∪C], we could easily obtain 4 cycles of
consecutive lengths, a contradiction. Therefore, H =
H1 . It follows that G=G[C∪H1], a contradiction.

Therefore |V(H1) |≥3. For any two leaves x, y
of H1, let T be the fixed path between x and y in H1 .
Since the minimum degree of G is at least 4, x and y
have at least three neighbors on C. Without loss of
generality, we may assume that x is adjacent to v0 and
v1 and y is adjacent to v0 . If T is even, then C and
v0yTxv0 form an opposite pair, a contradiction.
Therefore T is odd. Suppose that there exist three leaves
x, y and z in H1 . Let Tx,y, Ty,z and Tz,x be the fixed
paths between x and y, y and z and z and x in H1,
respectively. Note that all of them are odd. However,
their sum is even, a contradiction. Therefore, H1 is a
path. Let H1: = z0z1z2…zn for some n≥2. Since the
minimum degree of G is at least 4, z0 is adjacent to all
vertices of C and z2 is adjacent to at least 2 vertices of
C. Without loss of generality, we may assume that z2 is
adjacent to v0 and v1 . Then C, z0v0v2v1z0, z0z1z2v0v1z0
and z0z1z2v0v2v1z0 are cycles of lengths 3, 4, 5 and 6,
respectively, a contradiction.

This completes the proof of Claim.
By Claim, G does not contain a triangle. Suppose

that there is a vertex u of degree at most one in H.
Since the minimum degree of G is at least 4, u has at
least three neighbors on C. Since C is odd, there exist
two distinct neighbors vi, vj of u on C such that the odd
path between vi and vj on C has no internal vertices
which are the neighbors of u in G. Let Qo, Qe be the
odd and even paths between vi and vj in C respectively.
Let C′:=uvi∪Qo∪vju. Note that C′ is an odd cycle.

By the choice of C, we have that |E(C′) |≥|E(C) | .
This forces that | E(Qe) | = 2 and u is adjacent to all
vertices of V(Qe) . It follows that there is a triangle in
G, a contradiction. Therefore, the minimum degree of
H is at least 2.

Suppose that H has more than one component. Let
W1 and W2 be two components of H. Since the degree of
any vertex in W1 is at least 2, we have that W1 contains
an odd cycle C2 . Since G is 2-connected and C is an
odd cycle, there is an even cycle D2 in G[V(C)∪
W2] . Thus, C2 and D2 form an opposite pair, a
contradiction. Therefore, H is connected.

Note that the minimum degree of H is at least 2 and
every block of H is either an odd cycle, an edge or an
isolated vertex. There is a vertex t of H which has at
least two neighbors on C. Since C is odd, there exist
two distinct neighbors vi, vj of t on C such that the odd
path between vi and vj on C has no internal vertices
which are the neighbors of t in G . Let Q′o, Q′e be the
odd and even paths between vi and vj in C respectively.
Let C″:= tvi∪Q′o∪vj t. Note that C″ is an odd cycle. By
the choice of C, we have that |E(C″) |≥|E(C) | . This
fores that |E(Q′e) | = 2. Without loss of generality, we
may assume that i= j+2. Let s be the neighbor of vj+l+1
in H. Note that C has length at least five. If follows
that vj+l+1≠vi, vj . Since H is connected, there is a path
L between t and s in H. Then C[vj+2, vj+l+1]∪vj+l+1s∪
L∪tvj+2, C[vj+l+1, vj]∪vj t∪L∪svj+l+1, C[vj, vj+l+1]
∪vj+l+1s∪L∪tvj, C[vj+l+1, vj+2]∪vj+2 t∪L∪svj+l+1 are
4 cycles of consecutive lengths, a contradiction. This
completes the proof of Theorem 4. 1.

We remark that Theorem 4. 1 is best possible by the
following examples. For any positive integer t, let Pt:=
v0v1…v2t+1 and Qt: = u0u1 …u2t+1 be two vertex-disjoint
paths. Let Ht be the graph obtained from Pt ∪Qt by
adding edges in {v2iu2i+1, u2iv2i+1, u0v0, u2t+1v2t+1 | i =0,
1, …, t} . We see that Ht is a 2-connected non-bipartite
graph of the minimum degree 3 without cycles of length
1 modulo 4.

Figure 1. Graphs without cycles of length 1 modulo 4.

5　 Graphs of chromatic number six
In this section, we consider graphs of chromatic number
six and prove Theorem 1. 2 for the case k = 5. Very
recently, Gao et al. [10] proved following theorems on
cycles lengths in graphs containing a triangle.

Theorem 5. 1 　 Let G be a connected graph of
minimum degree at least three and (A, B) be a non-
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trivial partition of V(G) . For any cycle C in G, there
exist A-B paths of every length less than |V(C) | in G,
unless G is bipartite with the bipartition (A, B) .

Theorem 5. 2　 Let k≥3 be an integer and G be a
2-connected graph of the minimum degree at least k. If
G is K3-free, then G contains a cycle of length at least
2k+2, except that G=Kk,n for some n≥k.

Theorem 5. 3 　 Let k≥2 be an integer. Every 2-
connected graph G of minimum degree at least k
containing a triangle K3 contains k cycles of consecutive
lengths, except that G=Kk+1 .

Now, we are in a position to prove Theorem 1. 2
for the case k=5, which we rephrase as follows.

Theorem 5. 4 　 Every 6-critical non-complete
graph G contains cycles of all lengths modulo 5.

Proof　 Suppose that G does not contain cycles of
all lengths modulo 5 and G is not K6 . It is well-known
that G is a 2-connected graph of the minimum degree at
least 5. By Theorem 5. 3, we may assume that G is K3-
free. Fix a vertex r and let T be a breadth-first search
tree in G with root r. Let L0 = {r} and Li be the set of
vertices of T at distance i from its root r.

Claim 1 　 Every component of G [ Li ] has
chromatic number at most 3, for all i≥0.

Proof of Claim 1 　 Suppose to the contrary that
there exists a component D of G [ Lt ] which has
chromatic number at least 4 for some t. Let H be a 4-
critical subgraph of D. It is clear that H is a 2-connected
non-bipartite graph of minimum degree at least 3. By
Theorem 5. 2, H contains a cycle of length at least 8.
Let T′ be the minimal subtree of T whose set of leaves is
precisely V(H), and let r′ be the root of T′. Let h
denote the distance between r′ and vertices in H in T′.
Since G is K3-free, h≥2. By the minimality of T′, r′
has at least two children in T′. Let x be one of its
children. Let A be the set of vertices in H which are the
descendants of x in T′ and let B=V(H)-A. Then both
A, B are nonempty and for any a∈A and b∈B, Ta,b

has the same length 2h. By Theorem 5. 1, there are 7
subpaths of H from a vertex of A to a vertex of B of
lengths 1, 2, …, 7, respectively. It follows that G
contains 7 cycles of consecutive lengths, a
contradiction. This completes the proof of Claim 1.

For a connected graph D, a vertex in D is called
good if it is not contained in the minimal connected
subgraph of D which contains all 2-connected blocks of
D, and bad otherwise.

We now prove a claim which is key for the proof
of Theorem 5. 4.

Claim 2　 Let H1 be a non-bipartite component of
G[Li] and H2 be a non-bipartite component of G[Li+1]
for some i≥1. If NH1

(H2)≠Ø, then every vertex in
NH1

(H2) is a good vertex of H1 .

Proof of Claim 2　 Suppose that there exists a bad
vertex v of H1 which has a neighbor in H2 . Let T′ be the
minimal subtree of T whose set of leaves is precisely
V(H1), and let r′ be the root of T′. Let h denote the
distance between r′ and vertices in H1 in T′. Since G is
K3-free, h ≥2. By the minimality of T′, r′ has at least
two children in T′. Let (X, Y) be a non-trivial partition
of all children of r′ in T′. Let A be the set of vertices in
H1 which are the descendants of X in T′ and let B be the
set of vertices in H1 which are the descendants of Y in
T′. Note that ( A, B) is a non-trivial partition of
V(H1) . Note that every vertex in B is the descendants
of Y in T′. Let A′ be the set of vertices in Li-A which
are the descendants of X in T. Let B′ be the set of
vertices in Li-B which are the descendants of Y in T.
Let M:=Li-(A∪A′∪B∪B′) . Note that A, A′, B, B′
and M form a partition of Li . Note that every vertex of
H2 has a neighbor in Li .

Suppose that there exists a vertex m ∈ V (H2 )
which has a neighbor m′ in M. Recall that H1 is non-
bipartite and K3-free. There exists a path z1z2z3z4z5 of
length 4 in H1 with z1 = v. It is easy to see that Tzi, m

contains r′ for i∈[5], so they have the same length.
Since v has a neighbor in H2, there is a path P from v to
m in G[H2∪{v}] . Then P∪z1z2…zi∪Tzi,m′∪m′m,
for i∈[5] are 5 cycles of consecutive lengths in G, a
contradiction. Therefore NM (H2 ) = Ø, that is every
vertex in H2 has a neighbor in A∪A′∪B∪B′. For a
vertex in V(H2), we call it type-A if it has a neighbor
in A∪A′ and it type-B if it has a neighbor in B∪B′①.

Let C=v0v1…vn be an odd cycle of H1, where n≥
4. Suppose that V(C)⊆A. Since B is non-empty, we
choose an arbitrary vertex b in B. Since H1 is
connected, there exists a path P from b to V (C)
internal disjoint from V(C) . Without loss of generality,
we assume that V(P)∩V(C)= {v0} . Then P∪C[v0,
vi]∪Tb,vi for i=0, 1, …, 4 give 5 cycles of consecutive
lengths, a contradiction. Therefore, B∩V(C)≠Ø, and
similarly, A∩V(C)≠Ø. Then there must be an A-B
path of length 4 in C (otherwise, since 4 and |C | are
co-prime and |C | ≥5, one can deduce that all vertices
of C are contained in one of the two parts A and B, a
contradiction) .

Without loss of generality, we may assume that v0,
v1∈A and v2∈B. Then Tv1,v2∪v2v1 and Tv0,v2∪v2v1v0

are two cycles of lengths 2h+1 and 2h+2, respectively.
We have showed that there exists some A-B path of
length 4 in C which gives a cycle of length 2h+4, so we
may assume that there is no A-B path of length 3 or 5 in
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C. This would force that one of the following holds.
5. 1　 There is no A-B path of length 3 in H1
This would force that for any path P′ = u0u1…us in H1

with u1 =v0, u2 =v1, u3 =v2, we can derive that uj∈B if
j≡0 mod 3 and uj∈A if j≡1 or 2 mod 3. Moreover,
we have that v3i, v3i+1∈A and v3i+2∈B for each possible
i≥0. So |C |≥9 and G contains a cycle of length l∈
{2h+ 1, 2h + 2, 2h + 4, 2h + 5, 2h + 7, 2h + 8} . In
particular, since H1 is connected, for any vertex b∈B,
there exists a path of length 2 in H1 from b to some
vertex in A. And for any bad vertex a∈A, there exists
a path b1aa1b2 satisfying b1, b2∈B and a, a1∈A.

Suppose that NA∪A′(H2)≠Ø and NB∪B′(H2)≠Ø.
Since H2 is connected and every vertex of H2 has a
neighbor in A∪A′∪B∪B′, there exist two adjacent
vertices p, q of H2 such that p has a neighbor p′ in A∪
A′ and q has a neighbor q′ in B∪B′. Then p′pqq′∪
Tp′,q′ is a cycle of length 2h + 3. It follows that G
contains 5 cycles of lengths 2h+1, 2h+2, 2h+3, 2h+4
and 2h+5, respectively, a contradiction.

Suppose that NLi(H2)⊆B∪B′. Since NA∪B(H2)≠
Ø, we have that v∈B. Let u be any vertex in NH2

(v) .
Choose w1∈V(H2) such that there exists a path Q of
length 2 from u to w1 in H2 . Since any vertex in H2 has
a neighbor in Li, by our assumption, w1 has a neighbor
in B∪ B′. Let w2 be a neighbor of w1 in B∪ B′.
Suppose that w2≠v. Note that there is a path R:=vv″v′
such that v′, v″∈A. Then R∪vu∪Q∪w1w2∪Tw2, v′ is
a cycle of length 2h+6. So G contains cycles of lengths
2h+4, 2h+5, 2h+6, 2h+7 and 2h+8, a contradiction.
Therefore w2 = v and w1 ∈NH2

( v) . That says, every
vertex in H2 of distance 2 from a neighbor of v is a
neighbor of v. Continuing to apply this along with a
path from u to an odd cycle C0 in H2, we could obtain
that v is adjacent to all vertices of C0, which contradicts
that G is K3-free. Therefore, NB∪B′(H2)= Ø.

Now we see that NLi(H2 )⊆A∪A′. This forces
that v∈A. For any neighbor u′ of v in H2, let w3 ∈
V(H2) satisfies that there exists a path Q′ of length 2
from u′ to w3 in H2 . Note that v∈A is bad in H1, we
can infer that there exists a path b2va1b1 in H1 such that
a1 ∈ A and b1, b2 ∈ B. Note that v and a1 are
symmetric. Let w4 be a neighbor of w3 in A ∪ A′.
Suppose that w4 ∉{v, a1 } . Then vu′∪Q′∪w3w4 ∪
Tw4, b1∪b1a1v is a cycle of length 2h+6. So again, G
contains cycles of lengths 2h+4, 2h+5, 2h+6, 2h+7
and 2h+8, a contradiction. Therefore, w4 ∈{v, a1 } .
That is, every vertex in H2 of distance 2 from a
neighbor of v or a1 is adjacent to one of v, a1 .
Continuing to apply this along with a path from u′ to an
odd cycle C1 in H2, we could obtain that every vertex of

C1 is adjacent to one of v, a1 . But this would force a
copy of K3 containing a1v in G. This final contradiction
completes the proof of this subsection.
5. 2　 There is an A-B path of length 3 in H1
Therefore, we may assume that there is no A-B paths of
length 5 in H1 .

We first show that for any path t1 t2 t3 in H1

satisfying that t1 and t3 are in different parts, t2 does not
have a neighbor in V (H2 ); call this Property ★.
Suppose to the contrary that t2 has a neighbor in H2 .
Without loss of generality, we may assume that t1,t2∈
A and t3∈B. Let s be any vertex in NH2

( t2) . Choose
s′∈V(H2) such that there exists a path Q of length 2
from s to s′ in H2 . Let t be a neighbor of s′ in Li-M.
Suppose that t≠t2 . If t∈A∪A′, then t3 t2s∪Q∪s′t∪
Tt, t3 is a cycle of length 2h+5. So G contains cycles of
lengths 2h + 1, 2h + 2, 2h + 3, 2h + 4 and 2h + 5, a
contradiction. Therefore t∈B∪B′, then t1 t2s∪Q∪
s′t∪Tt, t1 is a cycle of length 2h + 5. So G contains
cycles of lengths 2h+1, 2h+2, 2h+3, 2h+4 and 2h+5,
a contradiction. Therefore t= t2 and s′ is the neighbor of
t2 . That says, every vertex in H2 of distance 2 from a
neighbor of t2 is a neighbor of t2 . Continuing to apply
this along with a path from s to an odd cycle C2 in H2,
we could obtain that t2 is adjacent to all vertices of C2,
which contradicts that G is K3-free.

Suppose that NA∪A′(H2)≠Ø and NB∪B′(H2)≠Ø.
Suppose that there exists a path p0p1p2p3 in H2 such that
p0 is type-A and p3 is type-B. Let q be the neighbor of
p0 in A∪A′ and q′ be the neighbor of p3 in B∪B′.
Then qp0p1p2p3q′∪Tq′, q is a cycle of length 2h+5. So
G contains cycles of lengths 2h+1, 2h+2, 2h+3, 2h+4
and 2h+5, a contradiction. This forces that every two
vertices which are linked by a path of length 3 in H2

have the same type. Note that NA∪A′ (H2 ) ≠Ø and
NB∪B′(H2)≠Ø. By symmetry between A∪A′ and B∪
B′, there exists a path z0z1z2 in H2 such that z0 and z1 are
type-A and z2 is type-B. Moreover, for any path P″: =
u0u1…us in H2 with u0 = z0, u1 = z1, u2 = z2, we can
derive that uj is type-A if j≡0 or 1 mod 3 and uj is type-
B if j≡2 mod 3. Moreover, for any path P‴:=u0u1…us

in H2 with u0 =z2, u1 =z1, u2 =z0, we can derive that uj

is type-B if j≡0 mod 3 and uj is type-A if j≡1 or 2 mod
3. This forces that every cycle in H2 has length 0
modulo 3. Since H2 is non-bipartite and K3-free, there
is an odd cycle C3:=w0w1…wmw0 of length at least 9.
Note that w0 and w8 have different types. If follows that
there is a cycle of length 2h+10. So G contains cycles
of lengths 2h+1, 2h+2, 2h+3, 2h+4 and 2h+10, a
contradiction.

Therefore, all vertices in H2 have the same type.
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Without loss of generality, we may assume that
NLi(H2)⊆A∪ A′. Therefore v ∈ A and let f0 be a
neighbor of v in H2 . Since H2 is K3-free and non-
bipartite, there is a path f0 f1 f2 in H2 . Since H1 is a K3-
free non-bipartite graph and v is a bad vertex in H1,
there is a path a0a1va2a3 in H1 . Since there is no A-B
path of length 5 in H1, we have that for any path Q′:=
u0u1…us in H1 with u0 =a0, u1 =a1, u2 =v, u3 =a2, u4 =
a3, we can derive that uj and uk are in the same part if
j≡k mod 5. Also, we have that for any path Q′:=
u0u1…us in H1 with u0 =a3, u1 =a2, u2 =v, u3 =a1,u4 =
a0, we can derive that uj and uk are in the same part if
j≡k mod 5. By Property ★, we have that a1 and a2 are
in the same part of H1 .

Suppose that a1, a2 ∈A. Since V(H1 )∩B≠Ø,
we have that one of a0 and a3 is in B. Without loss of
generality, we may assume that a0 ∈B. Let w be a
neighbor of f1 in H1 . We have that w∈A∪A′. Since G
is K3-free, w≠v. Note that a0a1v satisfying that a0 and
v are in different parts of H1 . By Property ★, we have
that w≠a1 . Therefore, wf1 f0va1a0∪Ta0, w is a cycle of
length 2h +5. So G contains cycles of lengths 2h +1,
2h+2, 2h+3, 2h+4 and 2h+5, a contradiction.

Therefore, a1, a2∈B. Let w′ be a neighbor of f2
in H1 . We have that w′∈A∪A′. Suppose that w′≠v.
Then w′f2 f1 f0va1∪Ta1, w′ is a cycle of length 2h+5. So
G contains cycles of lengths 2h+1, 2h+2, 2h+3, 2h+4
and 2h+5, a contradiction. Therefore w′=v. That says,
every vertex in H2 of distance 2 from a neighbor of v is
a neighbor of v. Continuing to apply this along with a
path from f0 to an odd cycle C4 in H2, we could obtain
that v is adjacent to all vertices of C4, which contradicts
that G is K3-free.

This completes the proof of Claim 2.
Now, we define a coloring c:V(G)→{1, 2, 3, 4,

5} as follows. Let D be any bipartite component of
G[Li] for some i. If i is even, we color one part of D
with color 1 and the other part with color 2, and if i is
odd, we color one part of D with color 4 and the other
part with color 5. Let F be any non-bipartite component
of G[Lj] for some j. If j is even, by using the block
structure of F, we can properly color V(F) with colors
1, 2 and 3 by coloring bad vertices with colors 1, 2 and
3 and coloring good vertices with colors 1 and 2. If j is
odd, then we also can properly color V(F) with colors
3, 4 and 5 by coloring bad vertices with colors 3, 4 and
5 and coloring good vertices with colors 4 and 5.

Next, we argue that c is a proper coloring on G.
Let H1 be a component of G [ Li ] and H2 be a
component of G[Li+1] for i≥0 such that there exists an
edge between H1 and H2 . If one of them is bipartite,
then c is proper on V(H1)∪V(H2) . Therefore, both

H1 and H2 are non-bipartite. By the above claim, all
vertices of H2 are not adjacent to vertices of color 3 in
H1 . It follows that c is proper on V(H1 )∪V(H2 ) .
Therefore, c is a proper 5-coloring of G, which
contradicts that G is 6-critical. This completes the proof
of Theorem 5. 4.

Proof of Theorem 1. 2　 Let G be a (k+1)-critical
non-complete graph, for k∈{4, 5} . Suppose that k=4.
It is well-known that G is a 2-connected graph of
minimum degree at least 4. Then by Theorem 4. 1, G
contains cycles of all lengths modulo 4. Suppose that
k=5. By Theorem 5. 4, G contains cycles of all lengths
modulo 5.
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染色数为 5 和 6 的图中的圈长
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摘要: Moore 和 West 提出问题:每一个(k+1) -临界的非完全图中是否存在一个模 k 的意义下长度为 2 的圈.
这里证明了更强的结论:对于 k=4, 5,每一个(k+1) -临界的非完全图中一定存在模 k 的意义下所有长度的圈.
关键词: 圈长;染色数;最小度;广度优先搜索树
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