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Abstract; The integrable mixed coupled nonlinear Schrodinger (MCNLS) equations is studied, which
describes the propagation of an optical pulse in a birefringent optical fiber. By the Riemann-Hilbert
(RH) approach, the N-soliton solutions of the MCNLS equations can be expressed explicitly when the
jump matrix of a constructed RH problem is a 3x3 unit matrix. As a special example, the expression of
one soliton and two solitons are displayed explicitly. More generally, as a promotion, an integrable
generalized multi-component NLS system with its linear spectral problem is discussed.
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1 Introduction

It is well known that solving nonlinear evolution
equations becomes a challenging task due to the
complexity of nonlinear systems. In particular, to seek
exact solutions is crucial for research in various fields.
Through many years of efforts of mathematicians and
physicists, a variety of methods for exact solutions have
been established, such as the inverse scattering
transform ( IST) method''*', the bilinear derivative
approach"*’ | the Darboux transformation ( DT)"' and
others”®’. In recent years, with the development of the
soliton theory, more and more scholars have paid
attention to Riemann-Hilbert (RH) approach'®’, which
is a new powerful approach to solve integrable partial
differential equations (PDEs) "), The main idea of
this method is to establish a corresponding matrix RH
problem on the Lax pair of integrable equations.
Furthermore, the RH approach is also an effective way
to examine the initial-boundary value problems
(IBVPs )" and the asymptotic properties''* ™" of
solutions for the integrable equations.
The famous integrable nonlinear
(NLS) equation
iq, *q. +1 q1’¢=0 (1)
in various physical backgrounds involving

Schrodinger

arises

hydrodynamics, plasma  physics,  Bose-Einstein
condensation, nonlinear optics, and other physical
fields. However, a slice of phenomena in the real world
and physical experiments can no longer be described by
NLS Eq. (1). Accordingly, quite a few individuals
began to examine the two-component case of NLS Eq.
(1) (also known as the Manakov equations) to
illustrate these phenomena,

. 1
g, + 5 q el g 17+ q,1%)q, = 0,
| e= =1
1qy, +?‘]2ﬂ +e(l g 1%+l 9> |2)‘]2 =0,
(2)
where € = — 1 and € = 1 represents focusing and

defocusing cases, respectively. Indeed, Eq. (2) can be
used to describe the propagation of optical pulses in
birefringent fibers'?'’ | which was first proposed by
Manakov in 1974. Moreover, Eq. (2) also provides
convenience for mathematically extending the local
linearization analysis to the whole nonlinear unstable
manifold under oscillatory waves.

In the present paper, we investigated the coupled
focusing-defocusing NLS system, called the mixed
coupled nonlinear Schrodinger (MCNLS) equations
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%3 4
iq, + - g 1% =1 g, 1%)q, = 0
1(11z+2qlu+( q, q,17)q, =0,
1 . : (3)
145, +7q21z+(| 1" =l gl )Q2= 0

2

based on RH method, where ¢ and z represent time
variables and propagation direction, respectively. In
fact, system (3) is completely integrable, and quite a
few of its properties have been widely discussed. As an
example, Kanna et al. adopt intensity redistribution to
analyze the shape change of soliton collisions >’
Vijayajayanthi et al. obtained the bright and dark
solitons of mixed N-coupled NLS equations and
discussed their collision properties'™. Ling et al. gave
the bright dark rogue wave solutions, the type I and
type II vector rogue wave solutions through DT
method*!. Recently, Tian discussed the IBVPs by the
Fokas method' ™. However, according to the authors,
the N-soliton solutions of the system (3) via the RH
approach has not been solved before.

The organization of this work is as follows. In
Section 2, we will construct a specific RH problem by
the IST approach. In Section 3, we compute soliton
solutions via this specific RH problem, which possesses
the identity jump matrix on the real axis. Discussions
and conclusions are given in the final section.

2 The Riemann-Hilbert problem

The MCNLS equations (3) admit the following Lax
. [25]
pair' ™ .
D = M(z,6,0)D = (-i0A +iQ)D  (4a)

@, = N(z,1,0)® = (- iPA +i6 0 +%<102 —Q))®

(4b)
where 6 is an iso-spectral parameter and
-1.0 0 0 -4 a
A=[0 1 0) , 0= 1q 0 0 (5)
0 0 1 q, 0 0
Eq. (4a)—(4b) can be written as
D +i0AD = QP (6a)
D, +i0AD = Q,D (6b)

where

0= 10, 0. = 6.0+ (i0" - Q).

Suppose A(z,t,0)=e “#® \e find that A(z,
t,0) is a solution for the (6a) and (6b). Let us
introduce a new function

W(z,1,0) = F(z,6,0)A(2,,6),
then we have
F. +i0[A,F] = Q,F (7a)
F +i0’[AF] = Q,F (7b)
For # € R, one can construct two Jost solutions

F.=F_(z,0) of (7a):

Fo= ([F,1,,[F,1,,[F. 1)) (8a)

F_= ([F-]l’[F-]z,[F-]%) (8b)
with the boundary conditions

F.—I, z—>+ o (9a)

(9b)
where {[ F,], |} represents the n-th column vector of
F., I=diag{1,1,1} is a 3x3 unit matrix. In fact, the
Jost solutions F, = F,(z,0) of Eq. (7a) for 6§ e R are
well-defined by

Fo(z0)= 1-| ™C00,(6)F, (£,0)d¢

(10a)

Fo(z0)= 1+[ ™C00,(6)F (£,0)d¢

(10b)
where A is a matrix operator, such as AY=[A,Y] and
el y=etye ™,

Thus, by further analysis, we know that [ F, ],,
[F_],, [ F_]; enjoy analytic prolongations to the upper
half 6-plane C,. On the other hand, [ F_],, [ F.],,
[ F, ], enjoy analytic prolongations to the lower half 6-
plane C_.

Next, we discuss the properties of F,. Due to the
Abel’s identity and tr (Q) = 0, we find that the
determinants of /, are constants for all z. From the
boundary conditions (9a) and (9b), we have

det F,= 1,0 e R (11)

Introducing another new function A(z,0)=¢e "¢,
then we know that the spectral problem (7a) has two
fundamental matrix solutions F,A and F_A, which are

not independent and are linear associated by a 3 x 3
scattering matrix S(6) .

F —I, z—- o

F=F, A-S(O)A™",0 € R (12)
It follows from (11) and (12) we know that
det S(0) = 1 (13)

Moreover, let z—+c |
S(0) is defined by
S(0)= (5;)35 = limA'F_A=

the 3x3 scattering matrix

1+ Q. dE, 0 e R (14)

It follows from the analytic property of F_ that s,,,
Sy ,55, and s,, can be analytically prolonged to C,, s
allows analytic prolongations to C_. Generally speaking,
S5 5813 ,5, and s;, cannot be extended off the real z-axis.
In order to obtain behavior of Jost solutions for a
very large 6, we substitute the asymptotic expansion
F, F, F, F,
F=F,+—+—2+—+—
0 02 03 04
into the Eq. (7a) and compare coefficients
0(6"):i[A,F,] = 0

+oe, 0w (15)

(16a)



198 FEMAFHRRRFEFR

%51 %

(16b)
(16¢)

0(6°):F,, +i[A,F,] -Q,F,= 0
0<0_1>:F1,z + iI:A’sz -QF, =0
from 0(6') and O(6") we find
i[AF ] = QFy, Fy.= 0 (17)
To establish the RH problem of the MCNLS
equations, we define another new Jost solution for Eq.
(7a) by
G, = ([FJJU[F?]Z,[F?}}) =
Losy sy
F+AS+A_1= F,AIO0 sy sy AT (18)
0 sy sy
which is analytic for § € C, and enjoys asymptotic
behavior for very large 6 as
G,—1,0—+x,6,0cC, (19)
Furthermore, to obtain the analysis of G_ in C_
which counterpart is G,, we also need to consider the
adjoint scattering equation of Eq. (7a) :
J+i6[A,]] = - JO, (20)

Similarly, one can define the inverse matrices F_'

as
[F] [F']
(F 17 = [[F 2], [F. ] = |[FZ17 | (21)
[F' P (F'P

where [ F_' ]" represents the n-th row vector of F.', F'
satisfies this adjoint equation (20). Then we find that
[F.']', [F']%and [ F~']® enjoy analytic continuations
to C_as well as [F']", [F,']* and [ F,' ]’ enjoy
analytic prolongations to the C,.
Moreover, it is not difficult to see that the inverse
matrices F,' admits the following boundary conditions.
F'>I, 06 >F » (22)
In addition, we define a matrix function G_
expressed by
[F]
G.= |[F'] (23)
[ F:l :|3
With techniques similar to those used above, one
can demonstrate that the adjoint Jost solutions G_ are
analytic in C_ and

G.—1,0—>—o,0eC_ (24)
Suppose R(0)=5"(0), we find
F'= AR(0)A'F! (25)
and
[F]
G = [[F'])?] = AR, A71F11=
[F']?

1 0 O
A(’zl Typ I AilF;I (26)

3i Ty T3

So far, we have obtained two analytic matrix-value

functions G,(z,0) and G_(z,0) for # in C, and C_,
respectively. In fact, two matrix functions G,(z,6) and
G_(z,0) can be established by a 3 x3 special RH

problem as follows
G (2,0)G, (z,0)= T(z,0),0 € C_ (27)

where
T(z,0)= AR, S, A" =
1 SlzeZiﬁz Sl362i9z
rye 1 0 ,0 e C_ (28)

rye 0 1
and the identity r,,s,,+r,,S, +r;5; =1 holds in (28).
On the other hand, owing to the fact that F_ admits
the following equation
F_, +i0[AF_] = Q,F_ (29)
we find that
F_ A= F_AS, (F,AS), +i0°’[A,F, AS] = Q,F, AS
(30)
assuming that g, and g, have sufficient smoothness and
decay as z— , we find that Q,—0 as z— =+ . Thus
taking the limit z—+o of Eq. (30), we arrive at
S, = -if’[A,S] (31)
which means that the scattering data s,,,5,,, 53,5, 53
are time independent, and
512(8,0) = 5,(0,0)™™, 5,5(2,0) = 5,5(0,0) ™™,
5, (,0) = 5,(0,0) e s, (1,0) = s5,(0,0)e "

3 The soliton solutions

The definitions of G,, F, admits the
relationship (12) in Section 2, it is not difficulty to see
that
det G, (z,0) = r,,(0), det G_(z,0) = 5,,(0)
(32)
where 7, =5,,55, =555, so the det G, and r;,(6) have
the same zeros, as det G_and s,,(0). In fact, since the
scattering data r,, and s,, are time independent, we find
that the roots of r;, =0 and s,, =0 are also time

scattering

independent. Furthermore, as Q' =0 Qo , (o =diag!{1,
-1,1}). It is easy to know that

F'(z2,t,0)= oFl(2,t,0" )0 (33)
and
S7'0)= oS (0" )o, G_(2,0)= oG (2,0" )0
(34)

Assuming that r,, enjoys N=0 feasible zeros in C,
expressed by {0, ,1 <m <N/}, and s, enjoys N=0

m?
o~

feasible zeros in C_ expressed by {6, ,1<m<N/|, one

can set that all zeros {(Gm,ém) ,m=1,2 --- N} are
simple zeros of r;; and s,,. In this event, each of
Ker G,(6,,) only includes a single column vector v,

and each of Ker G_(am) only includes a single row

vector v,.. That is to say
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G(O)v—OvG(Q)— (35)

m m

Since G, (#) is the solution of Eq. (7a), we
suppose that the asymptotic expansion of G,(6) at large
0 is

()
-2

G =

+

(36)

substituting this expansion into (7a) and (7b) and
comparing O(1) terms yields

Ql = I[A,Gs-l)] =
0 —2i(G<+I>)]2 _2i(Gil>)13
2i(6),y 0 0 (37)
2i(6"),, 0 0
then the potential functions ¢, ,q, can be expressed by
= 2(6(”)21, q, = 2<G(+l)>31 (38)
where G'" (G“) )3 and (G is the (i3j)-entry of

G\",i,j=1,273.

To obtain the spatial evolutions for v, (z,t), on the
one hand, from G,v, =0 derivativing about z and with
the help of Eq. (7a) yields

G.v,, +i0,G, Av, = 0 (39)
thus
v,.=—1i60, Av, (40)

on the other hand, from G, v, =0 derivativing about ¢

+ " m

and with the help of Eq. (7b) yields
G,v,, +i0,°G, Av, = 0 (41)
thus
v,, = —i6, *Av, (42)
solving (40) and (42), obtains
_ iH,"Az—i(i,znAl
v,(z,t) = AU'"O , (43)

v (z,0)= vl = p el

In order to compute multi-soliton solutions for the
MCNLS equations (3), one can choose the jump matrix
T=I, which is a 3x3 unit matrix in (27). In this case,
the unique solution to this special RH problem has been

solved in Ref. [6], and the result is

o~

U (P mnvn
c.(0=1- 2 Srea (44)
m=1n=

where matrix P=( pmn) w18 given as

Wl I <ma<N (45)
= > < m,n <
pmn 0 _ 6
Therefore, from (44), we obtaln

6= Y 2 0, (P, (46)

m=1n=
we chose v, =[1,c,,d,]", it follows from (46) that
the general N-soliton solution for the MCNLS equations
(3) is

= 22 2c e (P, (47a)
m= ln
g = 22 Zd e (P, (47b)

m=1n=

and P=(p,,, )y 1s defined as
—(T +7,) —<C ¢ —d d )er T,

p"m — m n m 'n ,
0m - Bn (48)

l1<sm,n<N

with 7, =—i6 z-i6, ’1.
As a special example, let N=1 in (47a) and
(47b) and with (45), one can arrives at the one-soliton

solution expressed as

2¢O - 6,)

¢:(z,t) o (4TI _ (I ¢ 12— d, |2)efl+71*
(49a)
-7 o
(z,0) = -<71+f,*>2dle (219l 61)2 AT
e = (le 17 =1 d 17)e"™
(49b)
Let 6, =6,, +i0,,, then the one-soliton solution

(49a) and (49b) turn into
q,(z,0) = 2ic,0,e" T Fiesch(r, + 1 +€))

(50a)
¢,(z,0) = 2id,0,e" " Fiesch(r, + 1, + &)
(50b)
where
T, -7 = -2i0,z - 2i(6,’ - 6,,)t,

T, +7, = 20,z +46,,0,,t,
and &, admits |c, I°=1d, 1> =e*".

As another special example, let N=2 in (47a) and
(47b) and with (45), one can obtain the two-soliton
solution expressed as

g, (z,0) = 2[c, e (P, +e e TT(PTY),, +
Czerz_n* (pP ) czeTz_Tz* (r )» ] (51a)

q,(z,0) = 2[d e (P, + dle”_”*(P_l)12 +
dzeTZ_Tl*(P_] Yo+ dzeTZ_Tz*(P_l )22] (51b)
where P=(p,, ), is defined as
- 2651 . h( * f )
= — sinh(7, +7, + s
P 0 -0, 1 1 1
- 262 . “
= sinh(7” +7, + &),
P2 01* 0, 1 2 2
- 2652* . s *
= — sinh(7, +7, +& ),
P2 0; — 0, 1 2 &
- 265 . “
= sinh(7, +7, +
P» 02* — 0, (7, , &)
and £,(j=2,3) admit
e = ¢, +dd,, e =1¢, 17+l d, |

4 Discussions and conclusions

As an extension, the integrable Manokov system (2) or
the MCNLS equation (3) can be extended to the
integrable generalized multi-component NLS system as
follows :
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ig, + %qu +eqq' g = 0,e= =1 (52)

Where q:<q1 7q2’ “.,QN>T7 I'(2:diag<a)l 7(”2’ ”'5wN) ’
which enjoy the following Lax pair for e=-1
b = (-i60A +iQ)P (53a)

@, = (—ifPA +i00 - %(moz ~AQ))®

(53b)
where 0 € C is an iso-spectral parameter and

i Dysy q Oy
Indeed, if all w, =1, which meets with the focusing
case, if all w, =-1, which meets with the defocusing

case, or otherwise the mixed case. Accordingly, one
can also examine the N-soliton solutions to the
integrable generalized multi-component NLS system in
the same way in Section 3. But we don’t study them
here since the procedure is mechanical. However, for
other integrable systems, can we seek their multi-soliton
solutions in the complex #-plane according to the RH
approach?

Moreover, based on the 3X 3 matrix RH problem
of the MCNLS equations'®’ | one can examine the
asymptotic properties of the solutions for MCNLS
equations through the Deift-Zhou approach'"!. This two
questions will be solved in our future paper.
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