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1　 Introduction
It is well known that solving nonlinear evolution
equations becomes a challenging task due to the
complexity of nonlinear systems. In particular, to seek
exact solutions is crucial for research in various fields.
Through many years of efforts of mathematicians and
physicists, a variety of methods for exact solutions have
been established, such as the inverse scattering
transform ( IST ) method[1,2], the bilinear derivative
approach[3], the Darboux transformation (DT) [4] and
others[5] . In recent years, with the development of the
soliton theory, more and more scholars have paid
attention to Riemann-Hilbert (RH) approach[6], which
is a new powerful approach to solve integrable partial
differential equations (PDEs) [7-12] . The main idea of
this method is to establish a corresponding matrix RH
problem on the Lax pair of integrable equations.
Furthermore, the RH approach is also an effective way
to examine the initial-boundary value problems
( IBVPs) [13-18] and the asymptotic properties[19-20] of
solutions for the integrable equations.

The famous integrable nonlinear Schrödinger
(NLS) equation

iqt ± qzz +| q | 2q = 0 (1)
arises in various physical backgrounds involving

hydrodynamics, plasma physics, Bose-Einstein
condensation, nonlinear optics, and other physical
fields. However, a slice of phenomena in the real world
and physical experiments can no longer be described by
NLS Eq. (1) . Accordingly, quite a few individuals
began to examine the two-component case of NLS Eq.
(1 ) ( also known as the Manakov equations ) to
illustrate these phenomena,

iq1t +
1
2
q1zz + 􀆠( | q1 | 2 +| q2 | 2)q1 = 0,

iq2t +
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􀆠 = ± 1

(2)
where 􀆠 = - 1 and 􀆠 = 1 represents focusing and
defocusing cases, respectively. Indeed, Eq. (2) can be
used to describe the propagation of optical pulses in
birefringent fibers[21], which was first proposed by
Manakov in 1974. Moreover, Eq. (2) also provides
convenience for mathematically extending the local
linearization analysis to the whole nonlinear unstable
manifold under oscillatory waves.

In the present paper, we investigated the coupled
focusing-defocusing NLS system, called the mixed
coupled nonlinear Schrödinger (MCNLS) equations
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based on RH method, where t and z represent time
variables and propagation direction, respectively. In
fact, system (3) is completely integrable, and quite a
few of its properties have been widely discussed. As an
example, Kanna et al. adopt intensity redistribution to
analyze the shape change of soliton collisions[22] .
Vijayajayanthi et al. obtained the bright and dark
solitons of mixed N-coupled NLS equations and
discussed their collision properties[23] . Ling et al. gave
the bright dark rogue wave solutions, the type I and
type II vector rogue wave solutions through DT
method[24] . Recently, Tian discussed the IBVPs by the
Fokas method[25] . However, according to the authors,
the N-soliton solutions of the system (3) via the RH
approach has not been solved before.

The organization of this work is as follows. In
Section 2, we will construct a specific RH problem by
the IST approach. In Section 3, we compute soliton
solutions via this specific RH problem, which possesses
the identity jump matrix on the real axis. Discussions
and conclusions are given in the final section.

2　 The Riemann-Hilbert problem
The MCNLS equations (3) admit the following Lax
pair[25]:

Φz = M(z,t,θ)Φ = ( - iθΛ + iQ)Φ (4a)

Φt = N(z,t,θ)Φ = ( - iθ2Λ + iθ Q + 1
2
(iQ2 - Qz))Φ

(4b)
where θ is an iso-spectral parameter and

Λ =
- 1 0 0
0 1 0
0 0 1( ) , Q =

0 - q∗
1 q∗

2

q1 0 0
q2 0 0( ) (5)

Eq. (4a)-(4b) can be written as
Φz + iθΛΦ = Q1Φ (6a)
Φt + iθ2ΛΦ = Q2Φ (6b)

where

Q1 = iQ, Q2 = iθ Q + 1
2
(iQ2 - Qz) .

　 　 Suppose A􀮨(z,t,θ)= e-( iθ z+iθ2)Λt, we find that A􀮨(z,
t,θ) is a solution for the (6a) and (6b) . Let us
introduce a new function

Ψ(z,t,θ) = F(z,t,θ)A􀮨(z,t,θ),
then we have

Fz + iθ[Λ,F] = Q1F (7a)
Ft + iθ2[Λ,F] = Q2F (7b)

　 　 For θ∈RR , one can construct two Jost solutions

F± =F±(z,θ) of (7a):
F + = ([F +]1,[F +]2,[F +]3) (8a)
F - = ([F -]1,[F -]2,[F -]3) (8b)

with the boundary conditions
F +→ I, z →+ ∞ (9a)
F -→ I, z →- ∞ (9b)

where {[F± ] n}3
1 represents the n-th column vector of

F±, I=diag{1,1,1} is a 3×3 unit matrix. In fact, the
Jost solutions F± = F±(z,θ) of Eq. (7a) for θ∈RR are
well-defined by

F + (z,θ) = I - ∫+∞

z
e -iθΛ︿ (z-ξ)Q1(ξ)F + (ξ,θ)dξ

(10a)

F - (z,θ) = I + ∫z
-∞

e -iθΛ︿ (z-ξ)Q1(ξ)F - (ξ,θ)dξ

(10b)
where Λ︿ is a matrix operator, such as Λ︿ Y =[Λ,Y] and
ezΛ︿ Y=ezΛYe-zΛ .

Thus, by further analysis, we know that [F+ ]1,
[F-]2, [F-]3 enjoy analytic prolongations to the upper
half θ-plane C+ . On the other hand, [F- ]1, [F+ ]2,
[F+]3 enjoy analytic prolongations to the lower half θ-
plane C- .

Next, we discuss the properties of F± . Due to the
Abel’s identity and tr ( Q ) = 0, we find that the
determinants of I± are constants for all z. From the
boundary conditions (9a) and (9b), we have
　 　 　 　 　 　 　 det F ±= 1, θ ∈ RR (11)
　 　 Introducing another new function A(z,θ)= e-iθΛ z,
then we know that the spectral problem (7a) has two
fundamental matrix solutions F+A and F-A, which are
not independent and are linear associated by a 3 × 3
scattering matrix S(θ):
　 　 　 　 　 F - = F + A·S(θ)A -1, θ ∈ RR (12)
　 　 It follows from (11) and (12) we know that

det S(θ) = 1 (13)
　 　 Moreover, let z→+∞, the 3×3 scattering matrix
S(θ) is defined by

S(θ) = (sij)3×3 = lim
z→+∞

A -1F - A =

　 　 　 　 　 　 　 　 I + ∫+∞

-∞
eiθΛ︿ ξQ1F - dξ, θ ∈ RR (14)

　 　 It follows from the analytic property of F- that s22,
s23,s32 and s33 can be analytically prolonged to C+, s11
allows analytic prolongations to C- . Generally speaking,
s12,s13,s21 and s31 cannot be extended off the real z-axis.

In order to obtain behavior of Jost solutions for a
very large θ, we substitute the asymptotic expansion

F = F0 + F1

θ
+ F2

θ2
+ F3

θ3
+ F4

θ4
+ …, θ → ∞ (15)

into the Eq. (7a) and compare coefficients
O(θ1):i[Λ,F0] = 0 (16a)
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O(θ0):F0,z + i[Λ,F1] - Q1F0 = 0 (16b)
O(θ -1):F1,z + i[Λ,F2] - Q1F1 = 0 (16c)

from O(θ1) and O(θ0) we find
i[Λ,F1] = Q1F0, F0,z = 0 (17)

　 　 To establish the RH problem of the MCNLS
equations, we define another new Jost solution for Eq.
(7a) by

G + = ([F +]1,[F -]2,[F -]3) = 　 　 　 　 　

F + AS + A -1 = F + A
1 s12 s13
0 s22 s23
0 s32 s33

( ) A -1 (18)

which is analytic for θ ∈ C+ and enjoys asymptotic
behavior for very large θ as

G +→ I, θ →+ ∞, θ ∈ C + (19)
　 　 Furthermore, to obtain the analysis of G- in C-

which counterpart is G+, we also need to consider the
adjoint scattering equation of Eq. (7a):

Jz + iθ[Λ,J] = - JQ1 (20)
　 　 Similarly, one can define the inverse matrices F-1

±

as

[F +] -1 =
[F -1

+ ]1

[F -1
+ ]2

[F -1
+ ]3( ) , [F -] -1 =

[F -1
- ]1

[F -1
- ]2

[F -1
- ]3( ) (21)

where [F-1
± ] n represents the n-th row vector of F-1

± , F-1
±

satisfies this adjoint equation (20) . Then we find that
[F-1

+ ]1, [F-1
- ]2 and [F-1

- ]3 enjoy analytic continuations
to C- as well as [F-1

- ]1, [F-1
+ ]2 and [F-1

+ ]3 enjoy
analytic prolongations to the C+ .

Moreover, it is not difficult to see that the inverse
matrices F-1

± admits the following boundary conditions.
F -1

± → I, θ →∓ ∞ (22)
　 　 In addition, we define a matrix function G-

expressed by

G - =
[F -1

+ ]1

[F -1
- ]2

[F -1
- ]3( ) (23)

　 　 With techniques similar to those used above, one
can demonstrate that the adjoint Jost solutions G- are
analytic in C- and

G -→ I, θ →- ∞, θ ∈ C - (24)
　 　 Suppose R(θ)= S-1(θ), we find

F -1
- = AR(θ)A -1F -1

+ (25)
and

G - =
[F -1

+ ]1

[F -1
- ]2

[F -1
- ]3( ) = AR + A -1F -1

+ =

A
1 0 0
r21 r22 r23
r31 r32 r33

( ) A -1F -1
+ (26)

　 　 So far, we have obtained two analytic matrix-value

functions G+( z,θ) and G-( z,θ) for θ in C+ and C-,
respectively. In fact, two matrix functions G+(z,θ) and
G- ( z, θ) can be established by a 3 × 3 special RH
problem as follows

G - (z,θ)G + (z,θ) = T(z,θ), θ ∈ C - (27)
where

T(z,θ) = AR + S + A -1 = 　 　 　 　 　
1 s12e2iθ z s13e2iθ z

r21e
-2iθ z 1 0

r31e
-2iθ z 0 1

( ) , θ ∈ C - (28)

and the identity r11s11+r12s21+r13s31 =1 holds in (28) .
On the other hand, owing to the fact that F- admits

the following equation
F -,t + iθ2[Λ,F -] = Q2F - (29)

we find that
F - A = F + AS, (F + AS) t + iθ2[Λ,F + AS] = Q2F + AS

(30)
assuming that q1 and q2 have sufficient smoothness and
decay as z→∞, we find that Q2 →0 as z→±∞ . Thus
taking the limit z→+∞ of Eq. (30), we arrive at

St = - iθ2[Λ,S] (31)
which means that the scattering data s11,s22,s33,s23,s32
are time independent, and
s12(t,θ) = s12(0,θ)e2iθ2t, s13(t,θ) = s13(0,θ)e2iθ2t,
s21(t,θ) = s21(0,θ)e

-2iθ2t, s31(t,θ) = s31(0,θ)e
-2iθ2t .

3　 The soliton solutions
The definitions of G±, F± admits the scattering
relationship (12) in Section 2, it is not difficulty to see
that

det G + (z,θ) = r11(θ), det G - (z,θ) = s11(θ)
(32)

where r11 =s22s33-s23s32, so the det G+ and r11(θ) have
the same zeros, as det G- and s11(θ) . In fact, since the
scattering data r11 and s11 are time independent, we find
that the roots of r11 = 0 and s11 = 0 are also time
independent. Furthermore, as Q† =σQσ, (σ = diag{1,
-1,1}) . It is easy to know that

F -1
± (z,t,θ) = σF†

±(z,t,θ∗)σ (33)
and

S -1(θ) = σS†(θ∗)σ, G - (z,θ) = σG†
+ (z,θ∗)σ

(34)
　 　 Assuming that r11 enjoys N≥0 feasible zeros in C+

expressed by { θm,1≤m≤N}, and s11 enjoys N≥0
feasible zeros in C- expressed by {θ︿ m,1≤m≤N}, one
can set that all zeros {( θm,θ

︿
m),m = 1,2,…,N} are

simple zeros of r11 and s11 . In this event, each of
Ker G+(θm) only includes a single column vector vm
and each of Ker G-(θ

︿
m) only includes a single row

vector v︿ m . That is to say

891 中国科学技术大学学报 第 51 卷



G + (θm)vm = 0, v︿mG - (θ
︿
m) = 0 (35)

　 　 Since G+ ( θ) is the solution of Eq. (7a), we
suppose that the asymptotic expansion of G+(θ) at large
θ is

G + = I +
G(1)

+

θ
+ O(θ -2), θ → ∞ (36)

substituting this expansion into (7a) and (7b) and
comparing O(1) terms yields
Q1 = i[Λ,G(1)

+ ] = 　 　 　 　 　 　 　 　 　 　 　 　 　
0 - 2i(G(1)

+ )12 - 2i(G(1)
+ )13

2i(G(1)
+ )21 0 0

2i(G(1)
+ )31 0 0

( ) (37)

then the potential functions q1,q2 can be expressed by
q1 = 2(G(1)

+ )21, q2 = 2(G(1)
+ )31 (38)

where G(1)
+ =(G(1)

+ )3×3 and (G(1)
+ ) ij is the (i;j)-entry of

G(1)
+ ,i,j=1,2,3.

To obtain the spatial evolutions for vm(z,t), on the
one hand, from G+ vm = 0 derivativing about z and with
the help of Eq. (7a) yields

G + vm,z + iθmG + Λvm = 0 (39)
thus

vm,z = - iθmΛvm (40)
on the other hand, from G+ vm = 0 derivativing about t
and with the help of Eq. (7b) yields

G + vm,t + iθm
2G + Λvm = 0 (41)

thus
vm,t = - iθm

2Λvm (42)
solving (40) and (42), obtains

vm(z,t) = eiθmΛz-iθ2mΛtvm0,
v︿m(z,t) = v†mσ = v︿m0eiθ∗m Λz+iθ∗2m Λtσ} (43)

　 　 In order to compute multi-soliton solutions for the
MCNLS equations (3), one can choose the jump matrix
T= I, which is a 3×3 unit matrix in (27) . In this case,
the unique solution to this special RH problem has been
solved in Ref. [6], and the result is

G + (θ) = I - ∑
N

m = 1
∑
N

n = 1

vm(P
-1)mnv

︿
n

θ - θ︿ m

(44)

where matrix P=(pmn)N×N is given as

pmn = v︿mvn
θ∗
m - θn

, 1 ≤ m,n ≤ N (45)

Therefore, from (44), we obtain

G(1)
+ = ∑

N

m = 1
∑
N

n = 1
vm(P

-1)mnv
︿
n (46)

we chose vn0 = [1,cn,dn]T, it follows from (46) that
the general N-soliton solution for the MCNLS equations
(3) is

q1 = 2∑
N

m = 1
∑
N

n = 1
cmeτm-τ∗n (P -1)mn (47a)

q2 = 2∑
N

m = 1
∑
N

n = 1
dmeτm-τ∗n (P -1)mn (47b)

and P=(pmn)N×N is defined as

pmn = e -(τ∗m +τn) - (c∗m cn - d∗
m dn)eτ∗m +τn

θ∗
m - θn

,

1 ≤ m,n ≤ N

ü

þ

ý
ïï

ïï
(48)

with τn =-iθnz-iθn
2 t.

As a special example, let N = 1 in (47a) and
(47b) and with (45), one can arrives at the one-soliton
solution expressed as

q1(z,t) = 2c1eτ1-τ∗1 (θ∗
1 - θ1)

e -(τ1+τ∗1 ) - ( | c1 | 2 -| d1 | 2)eτ1+τ∗1

(49a)

q2(z,t) = 2d1eτ1-τ∗1 (θ∗
1 - θ1)

e -(τ1+τ∗1 ) - ( | c1 | 2 -| d1 | 2)eτ1+τ∗1

(49b)
　 　 Let θ1 = θ11 + iθ12, then the one-soliton solution
(49a) and (49b) turn into

q1(z,t) = 2ic1θ12eτ1-τ∗1 -ξ1csch(τ1 + τ∗
1 + ξ1)

(50a)
q2(z,t) = 2id1θ12eτ1-τ∗1 -ξ1csch(τ1 + τ∗

1 + ξ1)
(50b)

where
τ1 - τ∗

1 = - 2iθ11z - 2i(θ11
2 - θ2

12)t,
τ1 + τ∗

1 = 2iθ12z + 4θ11θ12 t,
and ξ1 admits | c1 | 2- |d1 | 2 =e2ξ1 .

As another special example, let N=2 in (47a) and
(47b) and with (45), one can obtain the two-soliton
solution expressed as

q1(z,t) = 2[c1eτ1-τ∗1 (P -1)11 + c1eτ1-τ∗2 (P -1)12 +
c2eτ2-τ∗1 (P -1)21 + c2eτ2-τ∗2 (P -1)22] (51a)

q2(z,t) = 2[d1eτ1-τ∗1 (P -1)11 + d1eτ1-τ∗2 (P -1)12 +
d2eτ2-τ∗1 (P -1)21 + d2eτ2-τ∗2 (P -1)22] (51b)

where P=(pmn)2×2 is defined as

p11 = - 2eξ1

θ∗
1 - θ1

sinh(τ∗
1 + τ1 + ξ1),

p12 = - 2eξ2

θ∗
1 - θ2

sinh(τ∗
1 + τ2 + ξ2),

p21 = - 2eξ∗2

θ∗
2 - θ1

sinh(τ1 + τ∗
2 + ξ∗

2 ),

p22 = - 2eξ3

θ∗
2 - θ2

sinh(τ∗
2 + τ2 + ξ3)

and ξj(j=2,3) admit
e2ξ2 = c∗1 c2 + d∗

1 d2, e2ξ3 = | c2 | 2 +| d2 | 2 .

4　 Discussions and conclusions
As an extension, the integrable Manokov system (2) or
the MCNLS equation ( 3 ) can be extended to the
integrable generalized multi-component NLS system as
follows:
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iqt +
1
2
qzz + 􀆠qq†Ωq = 0,􀆠 = ± 1 (52)

where q= (q1,q2,…,qN)T, Ω = diag(ω1,ω2,…,ωN),
which enjoy the following Lax pair for 􀆠=-1

Φz = ( - iθΛ + iQ)Φ (53a)

Φt = ( - iθ2Λ + iθQ - 1
2
(iΛQ2 - ΛQz))Φ

(53b)
where θ∈C is an iso-spectral parameter and

Λ =
- 1 01×N

0N×1 IN×N
( ) , Q = 0 - q†

q 0N×N
( ) (54)

　 　 Indeed, if all ωi =1, which meets with the focusing
case, if all ωi = -1, which meets with the defocusing
case, or otherwise the mixed case. Accordingly, one
can also examine the N-soliton solutions to the
integrable generalized multi-component NLS system in
the same way in Section 3. But we don’ t study them
here since the procedure is mechanical. However, for
other integrable systems, can we seek their multi-soliton
solutions in the complex θ-plane according to the RH
approach?

Moreover, based on the 3× 3 matrix RH problem
of the MCNLS equations[25], one can examine the
asymptotic properties of the solutions for MCNLS
equations through the Deift-Zhou approach[19] . This two
questions will be solved in our future paper.
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混合耦合非线性 Schrödinger 方程的
Riemann-Hilbert 方法及其孤子解
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摘要: 研究了可积混合耦合的非线性 Schrödinger(MCNLS)方程, 该方程可以用来描述双折射光纤中光脉冲

的传播. 基于 Riemann-Hilbert(RH)方法, 在构造的矩阵 RH 问题的跳跃矩阵为 3 ×3 单位矩阵时, 给出了

MCNLS 方程 N-孤子解的显式表达式, 作为例子说明, 给出了 1-孤子和 2-孤子的显式表达式. 更一般地, 作为

推广,还讨论了可积广义多分量 NLS 系统的线性谱问题.
关键词: Lax 对; Riemann-Hilbert 方法; 混合耦合非线性 Schrödinger 方程; 孤子解; 边界条件
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