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1 Introduction

Given a hyperplane arrangement .7 = {H,,---,H,| in
CP", let M(..2)= CP"\ U H, be the complement of . Z
and b,(.%2) = b,(M) be the n-th Betti number of M.

Dimca and Papadima classified the hyperplane
arrangements in the cases b,(.%2) = 1 or2 "', The

purpose of this paper is to extend their results to the
cases b,(.%) = 3,4 or 5 using the deletion-restriction
method.

We use [x,,-:-,x,] to denote the coordinates in
CP". For each hyperplane H,, let /, denote its reduced
defining equation.

Theorem 1.1 Let.Z be a hyperplane arrangement
in CP" and b,(.7) be its n-th Betti number of its
complement.

@ b,(.#) = 3 if and only if it is one of the
following cases, up to a change of coordinates and
reordering of the hyperplanes:

() l(x)= x,for0<i<n, [, (x)= x +x +
X,

() I(x)= x,forO0<i<n,l,(x)= x +x,,
l,.,(x)= ayx, +x, witha, #0,1.

@b,(.#) = 4 if and only if it is one of the
following cases, up to a change of coordinates and
reordering of the hyperplanes:

() l(x)= x,forO0<i<n,l,(x)= x, +x, +
Xy t x5,

() I(x)= x,forO0<i<n,l,(x)= x +x,,
lin(x) = =y + 2,

() L(x) = x,for0<i<n, [, (x)= x, +x,,
Lo(x)= x, +x,.

(iv) l;(x) = x,forO0<i<n,l,,
l,,(x)= apx, +x,and !l ,;(x)= byx, +x, witha,,b, #
0,1 and a, # b,.

@ b,(.#) = 5if and only if it is one of the
following cases, up to a change of coordinates and
reordering of the hyperplanes:

() l(x)= x,forO0<i<n,l,(x)= x, +x, +
b . N s

(i) I(x)= x,forO0<i<n,[,(x)= x, +x, +
%y, Lo(x)= ayx, +x, +x,witha, #0,L.

(ili) I,(x) = «,for0 < i <n,

ln+1(x) = X0 +x1 ’ ln+2(x) = QyXg +xl ’

()= & +x,,

Lis(x) = byxg + 2y, Loy(2) = cong + .
Here a,,b,,c, # 0,1 and «,,b, and ¢, are all different
numbers.

2 Preliminaries

We introduce some definitions and notations as in Ref.
[2]. For .Z a non-empty hyperplane arrangement in
CP", we fix H, € .7 as the hyperplane at infinity. Then
we can define an affine arrangement (.7Z,H,)", where
the total space of (.Z,H,)" is C"= CP"\H, and the
hyperplanes of (.Z,H,)" are { H, N (CP"\H,) | H, #
H,}. Note that the hyperplane arrangements .7 and
(.7,H,)" have the same complement space. It is more
convenient to use the affine arrangement (.Z,H,)“ to
compute the Betti number b,(.Z). In the rest of the
paper, we always assume the infinity hyperplane H, is
defined by x, = 0 and abuse our language to identify the
hyperplane arrangements.Z with (.2 ,H,)“. When we say
two hyperplanes are parallel to each another, we mean
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that they are parallel in the affine space C"= CP"\H,.
For any hyperplane in .7, say H, , we can use it to

define two hyperplane arangements.2'; = .Z\{H, | and
A" = {HN H #@| H# H, | in H,, which are called
deleted arrangement and restricted arrangement

respectively. Then (.72, 4", 2") is called a triple of
arrangements  with respect to the distinguished
hyperplane H,. Note that such triples (.Z,.2", #Z") are
very useful in proofs by induction, both arrangements
%" and .Z" have less hyperplanes than .Z. This method
is so called the deletion-restriction method"*’.

Dimca and Papadima classified hyperplane
arrangements .4 when b, (.2) = 1 or 2. We recall the
related results here.

Lemma 2. 1" “°"¥*/  With the above notations
and assumptions, we have the following:

Db,(A)= b(A) +b, (. A".

@b,(.#) > 0if and only if . Z is essential.

@ Ifb,(.#) >0,thend <n+b,(.#) - 1.

Lemma 2.2 Perestion U 1f 7 s an arrangement
in C?, then b,(.2) = Y, n,(k — 1), where n, denotes

k=2
the number of k-fold intersection points.

Theorem 2. 1'" ©“"¥*) et . Z be a hyperplane
arrangement in CP".

@b,(.#)= 1if and only if d = n and up to a
linear coordinate change we have [,(x) = «x, for all0 <
1< n.

@b,(.#)= 2ifand only ifd= n+1and up to a
linear coordinate change and reordering of the
hyperplanes we have [,(x) = x, for 0 < i < n and

L. (x)= x, +2x,.
3 Proof of Theorem 1.1

By Lemma 2.1®), we know thatd <n + b,(.7) — 1.
On the other hand, b,(.2) > 0implies rank (.2)= n,
so d = n. To classify the hyperplane arrangements when
b (%) = 3,4 or5, we analysis all the hyperplane
arrangements withn < d < n + 4.

3.1 Two formulas of top degree Betti number

In this subsection, we compute the top degree Betti
number of hyperplane arrangement complement for d =
n,n+1,n+2.

M Ifd = nand rank (.2)= n, thenb (.7)=
Since b,(.7) = 1 implies d < n, the converse statement
is also true. Hence up to a coordinate change, there is
only one case when b,(.7) = 1.

d= nand(x)= xforall0 <

@ Whend = n + 1, after a change of coordinate

we may assume [(x) = «;, for 0 < i < n and
Li(2) = agxy + -+ +a,x,

Theorem 3.1 Let.Zbe a hyperplane arrangement

as above, then b (.72) = #{a,| a, # 0}.

1< n.

Proof After a coordinate change, we may write

n+,(x) ayx, + - +a,x, witha;, #0for0 <i < mand
= Ofori > m. Itis easy to see M(.2)= M(.%,) X
(C )", where
A= 1 1(x)= x,for0<i<m,

lm+l(x)_ QyXg T +amxm%'
Hence b,(.2) = b,(.7,) by Kiinneth formula, so
we only need to compute b,(.Z, ). Using hyperplane

{x, = 0} to produce a triple of arrangement, we get
b (A,)= 1+b, (A2, ), where
A = {l(x)= x,for0<i<m-1,
L(x)= apx, + -+ +a, x, |-
Clearly .7, _, has the same type of .-Z, , so we can
continue the induction. Note that b,(.Z,) = 3 by

Lemma 2.2, hence b,(.7,)= m + 1.

@ For a hyperplane arrangement with d = n + 2
and b,(.7) > 0, up to a change of coordinates we
assume

A= {l(x)= x,for0 <i<n,
Lin(x) = agxy + -+ +ax,,
Lo(x)= boxy + - +b,x, 1.
It is easy to see after another coordinate change,

_ (aga,
we may write as

by-+-b,
r, T, r, N t w
1--- 1 1.1 -+ 1+-1 11 00 0---0
(kl"'kl kyeeoky oo ke k 000 1---1 0...0) ’

where all k, are different nonzero numbers andr;, =r, =
c=r.Setu=r tr, et
Theorem 3. 2 For the above hyperplane
arrangement, we have
b, ()= Z rrbu st o+ tu + s
1<i<j<v

By convention, ifv = Oor 1, then Z r;r; is 0.
I<si<jsv

Proof We first introduce some notations. For m
< n, set

A= {l(x)= x,forl <i<m,
an+](x) = aO + alxl oo t amxm ’
lm+2(x> = b() + blxl + -t bmxm} ’

where a,,-*-,a, ,b,,
in the above matrix.

For hyperplane arrangement .7, ,
hyperplane {x, = 0} to produce triple of arrangement.
For .7, ", if b, # 0, then we can find a coordinate
change B,, such that x,,---,x,_, being fixed and /,,,(x)
becoming x,. If a, # 0, let A denote the similar
coordinate change for [ , (x).

Since M(.7) M(2,..._) x (C)",
Kiinneth formula we get b,(.#2) = b, (A uirio))-
Hence we can eliminate the last w coordinates.

For .Z! using coordinate change B

---,b, are exactly the fixed elements

we always use

does

uts+t—19 uts+i—1
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not change the equation of /., ,,(x). Note that/,, , (x)
has s + u coefficients being non-zero. Then by Theorem
3.1 we geth,,.,, (A ,.,_,)= s+u Since 42", . =
A visi-2 » DY induction we have
b,(A)= (s+u)t +b,, (Ay).
Using a similar argument for s we get
b ()= st +i+su+b,_(A,_).
For .7’ after using A,_, the new equation of
Ly(x) is

!
u

u-1» u—1

(ky — k) + (k) —k)x; + -+ +
(ko = k1,’)xrl+~~~+rl;,]—1 + ko,
By Theorem 3.1 we know b,_,(.2!_ )= r, + - +r_, +
1. We can repeat this argument and use induction to
compute b,_,(.2"_,) . Note that when we eliminate the
lastr, + -+ +r, coordinates, {1 +x, + -+ +x,_, = 0}
and {k, + kx, + - + kx,_, = 0} give the same
hyperplane. By Theorem 3.1, the corresponding (r,—1)-
th Betti number is r,. Hence we have
b (A )= (rp++r_ +1)r, +- +
(ry + Dry +1, =

z rir].+ iriz 2 rir].+u.
i=1

1<i<j<v 1<i<j<v

This com]pletes our proof. ]
3.2 (lassification of hyperplane arrangements when

b,(.7)<5
In this subsection, we use Theorems 3. 1 and 3. 2 to
prove Theorem 1. 1. In the rest of paper, we always
assume /,(x) = x,for0 <i < n.

Whend = norn + 1, the conclusion is clear.

When d = n +2 we use Theorem 3.2 to find out all
hyperplane arrangements with b (.Z2) < 5. We use the
same notations as in Theorem 3.2. Note that u = v. If
v =73, then b,(.7) = 6. So we only need to analysis
hyperplane arrangements with v < 2.

(D The case v = 2.

If r, = 2, then there is only one case satisfying
b,(A) <5:

(1) b,(.2)= 5,1,,,(x)= x, +x, +x,and [ ,,(x)
= agx, tx, tx,, ayp 7 0,1.

Ifr,=r,= lands +¢ = 2, then b,(.2) =1.
Hence there are only two cases under this condition

(i) b,(2) = 5, L(x) = % +x +x and
l.,(x)= ayx, +x,,a, 70,1, which is equivalent to the
case (1) after a coordinate change.

(i) b,(A2)= 3,1, (x)= x, +x,and [ ,,(x) =
agx, +x,,a, #0,1.

) The casev = 1.

Ifu=3,thenb (.7) =6 fu= 2ands +t =2,
then we also have b,(..2) = 6.

Since hyperplanes /,,,(x) and [, ,,(x) are different
under the conditions v = 1 and u = 2 there is only one
case;

r-1

r-1

(i) b,(.2) = 4, 1,,,(x) = x, + x, + x, and
lLin(x) = =y + 2y

Since hyperplanes [ ,,(x) and [ ,(x) are not
coordinate hyperplanes, then we haves = 1 andt =1 if
u= 1. Ifs=2ort =2, then b,(.%2) = 6. Hence we
must haves = 1 = ¢ .

(iii") b,(.2)= 4, 1,.,(x)= x, +x and [,,,(x)=
x, *+x,. It easy to see after a change of coordinate this is
equivalent to (iii).

@ The case v = 0.

Whenv = 0 we must haves = 2 = ¢ .

(V) b,(2)= 4, 1, (x)= x, +x and [, ,(x) =
Xy t x5,

Note that in Case (iii) there exists a point which
has exactly n hyperplanes passing through it, but in this
case there is no such points. Hence Cases (iii) and
(iv) are not projective equivalent.

We now analyze hyperplane arrangements with d =
n +3. To have b (.Z) <35, the deleted arrangement . 2’
with respect to /,,,(x) is a hyperplane arrangement with
n + 2 hyperplanes. Note that b, (.2') < 5 by Lemma
2.1(D. Hence there are only three possible cases for. 7’
by the above discussion. For Case (iii) or (iv), we
can use the hyperplane [ ,,(x) to produce a triple of
arrangement. The coordinate hyperplanes restricting to
l,.;(x) contributes at least n — 1 hyperplanes. If this
number is n, then by Theorem 3. 1 we have b, (.7) =6.
If this number isn — 1, then/,,,(x) must have the form
ax; +x,. But in this case /,,,(x) and /,,,(x) contributes
at least another hyperplane for the restricted
arrangement, so we always have b, (.2) = 6. For Case
(ii), ifl,,5(x) is not parallel to {x, = O} , then up to a
coordinate change we can reduce it to the above
discussion. Hence the only possibility is Case (ii) with
l,,,(x) being parallel to {x, = 0}

(V)b (A)= dandd=n+3,1,,(x)= x, +x,,
Lo(x)= apxy +x,, ,,5(x)= byx, +x,,a,,b, #0,1,
a, # b,.

For the hyperplane arrangements withd = n +4 and
b,(.#) < 5, using a similar argument as above
discussion we get that there is only one possible case :

(vi) b,(.2)= Sandd = n +4,

() = xg + 2y, L,,(x) = apx, +x,

Lis(x) = boxy +2x,, L, ,(x)= cyxy + x,.
Here a,,b,,c, # 0,1 and q,,b, and ¢, are all different
numbers.

Putting all these results together, Theorem 1. 1
follows.
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