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Abstract: An SEIQR epidemic model with the saturation incidence rate and hybrid strategies was
proposed, and the stability of the model was analyzed theoretically and numerically. Firstly, the basic
reproduction number R0 was derived, which determines whether the disease was extinct or not.
Secondly, through LaSalle’ s invariance principle, it was proved that the disease-free equilibrium is
globally asymptotically stable and the disease generally dies out when R0<1. By Routh-Hurwitz criterion
theory, it was proved that the disease-free equilibrium is unstable and the unique endemic equilibrium is
locally asymptotically stable when R0>1. Thirdly, according to the periodic orbit stability theory and the
second additive compound matrix, it was proved that the unique endemic equilibrium is globally
asymptotically stable and the disease persists at this endemic equilibrium if it initially exists when R0>1.
Finally, some numerical simulations were carried out to illustrate the results.
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1　 Introduction
Epidemiology is the study of hot spots of the spread of
infectious disease, with the objective to trace factors that
contribute to their occurrence. For a long time,
mathematical models describing the population dynamics
of infectious diseases have been playing an important
role in a better understanding of the disease control and
epidemic patterns. In order to predict the spread of
infectious diseases among the areas, the transmission
dynamics of infectious diseases is studied by many
epidemic models in host populations. However, many
infectious diseases, such as pertussis, diphtheria,
SARS, viral hepatitis and so on, incubate inside the
population for a period of time before becoming
infectious. Therefore, the systems that are more general
than SIR or SIRS types need to study the role of
incubation in the spread of infectious diseases. It may
be assumed that a susceptible individual first goes
through a latent period before becoming infectious. The
present model is of SEIR or SEIRS class, depending on
whether the adaptive immunity is permanent or
otherwise[1-4] .

Incidence rate plays a very important role in the

research of epidemic models. Incidence rate should be

written as C(N) S
N
I, where N is the total population

size. In many epidemic models, the bilinear incidence

rate βSI and the standard incidence rate β S
N
I are

frequently used. The bilinear incidence rate is based on
the law of mass actions. The incidence rate is
proportional to the total population in the environment
for the contact rate, that is, it is appropriate when the
population is small. However, when the population is
large, the standard incidence rate is usually used. The
standard incidence rate assumes that the contact rate is a
constant. This assumption is in line with reality,
because the greater the number of susceptible people,
the greater the chance of contact between the infected
and susceptible, and the greater the infectious power.
That is, it is more suitable when the population is large.
But under certain circumstances, such assumptions are
also unreasonable. For example, in the actual infection
process, no matter how many people are susceptible,
the contact rate of a patient with others is also limited
per unit time. Therefore, it has been proposed that for
the saturation incidence rate, which should generally be



written as aSI
1 + bI

, where aI measures the infection force

of the disease and 1
1 + bI

measures the inhibition effect

from the behavioral change of the susceptible individuals
when their number increases or from the crowding effect
of the infective individuals. This saturation rate can not
only reflect the trend of strengthening control measures
as the number of infected people increases, but also
reflect the changes in the alertness and self-protection of
susceptible people as the number of the infected
increases. This incidence can also avoid the
unboundedness of an infected person producing new
infections per unit time. Therefore, compared with the
bilinear incidence rate and the standard incidence rate,
saturation incidence rate may be more suitable for our
real world. Epidemic models with the saturation incidence
rate have been studied by several researchers[5-7] .

Infectious diseases have a tremendous influence on
human life. Every year, millions of people died of
various infectious diseases. In recent years, the control
of infectious diseases has become an increasingly
complex issue in every country. Three effective
strategies of quarantine, vaccination and elimination are
usually used to control and prevent the spread of
infectious diseases. Quarantine is a common control
measure to reduce the transmission of human diseases
such as leprosy, plague, cholera, etc. The strategy can
also be used to tackle animal diseases, such as
rinderpest, foot and mouth disease, psittacosis and so
on. It is a very meaningful job to study infectious
disease models with quarantine[8-11] . Vaccination is
considered to be the most successful intervention policy
as well as a cost-effective strategy to reduce the
morbidity and mortality of individuals. It has been used
to control diseases, such as measles, rubella,
diphtheria, influenza, etc. Recently, many researchers
have paid great attention to research on infectious
models with vaccination strategies[12-16] . Elimination is
an important measure to remove the infectious source by
sacrificing the discovered infected individuals. This
measure has been used to address diseases derived from
animals or are spread in animals, such as avian
influenza, tuberculosis, tetanus and rotavirus infection
and so on. Therefore, some works have studied the
infectious disease models that involved elimination
strategy[17-18] . However, these models only study a
single prevention and control strategy and do not discuss
the hybrid case of these strategies.

In this paper, motivated by the work of Refs. [8-
18], we are concerned with the combined effects of a
saturation incidence rate and quarantine, vaccination and
elimination hybrid strategies on the dynamics of
infectious disease transmission. To this end, we

establish an SEIQR model with the saturation incidence
rate and hybrid strategies. We study the stability of the
model by means of both theoretical and numerical ways.

2　 Model formulation
We assume that the total population is divided into five
distinct epidemiological subclasses of individuals which
are susceptible, latent, infectious, quarantine, and
recovered ( removed ) with sizes denoted by S(t),
E(t), I(t), Q(t) and R(t), respectively. The total
population size at time t is denoted by N(t),with N(t)=
S(t) + E(t) + I(t) + Q(t) + R(t) . We establish the
following SEIQR epidemic model of ordinary
differential equations:

dS(t)
dt

= Λ - aSI
1 + bI

- d + p( ) S,

dE(t)
dt

= aSI
1 + bI

- d + α1 + k1 + ε( ) E,

dI(t)
dt

= εE - d + α2 + k2 + k + γ( ) I,

dQ(t)
dt

= kI - d + α3 + ω( ) Q,

dR(t)
dt

= pS + γI + ωQ - dR.

ì

î

í

ï
ï
ï
ï
ï
ï

ï
ï
ï
ï
ïï

(1)

Here Λ is the recruitment rate of the population, aSI
1 + bI

is the saturation incidence rate of disease, d is the
natural death rate of the population, α1 is the disease-
related death rate of the latent class, α2 is the disease-
related death rate of the infectious class, α3 is the
disease-related death rate of the quarantine class, k1 is
the elimination rate of the latent class, k2 is the
elimination rate of the infective class, k is the quarantine
rate of the infective class, γ is the natural recovery rate
of the infective class, ω is the natural recovery rate of
the quarantine class, p is the vaccination rate of the
susceptible class, ε is the removed rate from the latent
class to the infectious class. Assume that Λ, a, b, d,
α1, α2, α3, k1, k2, k, γ, ω, p and ε are normal.

Summing up the five equations of system (1) and
having

N′(t) = Λ - dN - (α1 + k1)E -
(α2 + k2)I - α3Q ≤ Λ - dN.

By solving the formula of N′(t), we obtain

N(t) ≤ N(0)e -dt + Λ
d

1 - e -dt( ) ,

Thus

lim
t→+∞

sup N(t)( ) = Λ
d
.

　 　 From biological considerations, we study system
(1) in the following feasible region

D = {(S,E,I,Q,R) ∈ R5
+ | S ≥0,E ≥0,I ≥0,
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Q ≥0,R ≥0,S + E + I + Q + R ≤ Λ
d
},

where R5
+ denotes the non-negative cone and its lower

dimensional faces, D can be shown to be positively
invariant with respect to system (1) .

3　 Stability analysis of the disease-free equilibrium
Set the right sides of system (1) equal zero, that is,

Λ - aSI
1 + bI

- d + p( ) S = 0,

aSI
1 + bI

- d + α1 + k1 + ε( ) E = 0,

εE - d + α2 + k2 + k + γ( ) I = 0,
kI - d + α3 + ω( ) Q = 0,
pS + γI + ωQ - dR = 0

ì

î

í

ï
ï
ï
ï

ï
ï
ï
ï

(2)

　 　 By calculating Equation(2), system (1) always has a disease-free equilibrium P0
Λ

d + p
,0,0,0, Λp

d(d + p)( ) .
Further, if εaΛ > (d + p)(d + α1 + k1 + ε)(d + α2 + k2 + k + γ), system (1) admits a unique endemic equilibrium
P∗(S∗,E∗,I∗,Q∗,R∗), where

I∗ = b + a
d + p( )

-1 εaΛ
(d + p)(μ + α1 + k1 + ε)(μ + α2 + k2 + k + γ)

- 1( ) ,

S∗ = Λ(1 + bI∗)
d + p + (a + db + pb)I∗

, E∗ = d + α2 + k2 + k + γ
ε

I∗,

Q∗ = δ
d + α3 + ω

I∗, R∗ = pS∗ + γI∗ + ωQ∗

d
.

　 　 Define

R0 = εaΛ
(d + p)(d + α1 + k1 + ε)(d + α2 + k2 + k + γ)

.

　 　 The R0 is called the basic reproduction number of system (1) . It is easy to obtain the following theorem.
Theorem 3. 1　 For system (1), there is always a disease-free equilibrium P0, and there is also a unique endemic

equilibrium P∗when R0 > 1.
Theorem 3. 2　 If R0 < 1, the disease-free equilibrium P0of system (1) is locally asymptotically stable. If R0 >

1, the disease-free equilibrium P0 is unstable.

Proof　 The Jacobian matrix of system (1) at the disease-free equilibrium P0
Λ

d + p
,0,0,0, Λp

d d + p( )( ) is

J P0( ) =

- d + p( ) 0 - aΛ
d + p

0 0

0 - d + α1 + k1 + ε( )
aΛ

d + p
0 0

0 ε - d + α2 + k2 + k + γ( ) 0 0
0 0 k - d + α3 + ω( ) 0
p 0 γ ω - d

æ

è

ç
ç
ç
ç
ç
ç
çç

ö

ø

÷
÷
÷
÷
÷
÷
÷÷

.

　 　 The three eigenvalues of matrix J(P0) are
λ1 = - d, λ2 = - d + p( ) , λ3 = - d + α3 + ω( ) .

　 　 The other two eigenvalues are also the roots of the following equation:
λ2 + a1λ + a2 = 0,

where
a1 = d + α1 + k1 + ε( ) + d + α2 + k2 + k + γ( ) ,

a2 = d + α1 + k1 + ε( ) a + α2 + k2 + k + γ( ) 1 - R0( ) .
　 　 Obviously, if R0 < 1,we have the relation a2 > 0. Therefore, all eigenvalues of matrix J(P0) have negative real
parts. Hence, the disease-free equilibrium P0 is locally asymptotically stable. If R0 > 1, we get the relation a2 < 0.
Therefore, the matrix J(P0) has at least an eigenvalue with positive real part. Thus, the disease-free equilibrium P0 is
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unstable.
Theorem 3. 3　 If R0 < 1, the disease-free equilibrium P0of system (1) is globally asymptotically stable.
Proof　 Consider the following Lyapunov function:

V(t) = E(t) + d + α1 + k1 + ε
ε

I(t) .

　 　 Calculating the derivative of V(t) along the positive solution of system (1), it follows that
dV
dt (1)

= aSI
1 + bI

- d + α1 + k1 + ε( ) d + α2 + k2 + k + γ( )

ε
I ≤

aΛ
d + p

- d + α1 + k1 + ε( ) d + α2 + k2 + k + γ( )

ε( ) I - a E + I + Q + R( ) I
1 + bI

=

d + α1 + k1 + ε( ) d + α2 + k2 + k + γ( )

ε
R0 - 1( ) I - a E + I + Q + R( ) I

1 + bI
≤0.

　 　 Furthermore, V(t) = 0 only if I(t) = 0. The maximum invariant set in {(S,E,I,Q,R) | I(t) = 0} is the
singleton P0 . The global asymptotical stability of the disease-free equilibrium P0 follows from LaSalle’ s invariance
when R0 < 1, that is, the disease-free equilibrium P0of system (1) is globally asymptotically stable.

4　 Local stability analysis of the endemic equilibrium
In this section, we study the local stability of the endemic equilibrium P∗ S∗,E∗,I∗,Q∗,R∗( ) of system (1) by
Routh-Hurwitz criterion theory.

Theorem 4. 1　 If R0 > 1, the endemic equilibrium P∗of system (1) is locally asymptotically stable.
Proof　 The Jacobian matrix of system (1) at the endemic equilibrium P∗ is

J(P∗) =

- d + p( ) - aI∗

1 + bI∗
0 - aS∗

1 + bI∗( ) 2 0 0

aI∗

1 + bI∗
- m aS∗

1 + bI∗( ) 2 0 0

0 ε - n 0 0
0 0 k - d + α3 + ω( ) 0
p 0 γ ω - d

æ

è

ç
ç
ç
ç
ç
ç
çç

ö

ø

÷
÷
÷
÷
÷
÷
÷÷

,

where
m = d + α1 + k1 + ε, n = d + α2 + k2 + k + γ.

　 　 The two eigenvalues of matrix J(P∗) are
λ1 = - d < 0, λ2 = - d + α3 + ω( ) < 0.

　 　 The other three eigenvalues are also the roots of the
following equation:

λ3 + b1λ2 + b2λ + b3 = 0,
where

b1 = m + n + d + p + aI∗

1 + bI∗
> 0,

b2 = d + p + aI∗

1 + bI∗( ) m + n( ) +

mn 1 - 1
1 + bI∗( ) > 0,

b3 = d + p( ) mn 1 - 1
1 + bI∗( ) + aI∗

1 + bI∗
mn > 0.

　 　 By calculation, we have

b1b2 - b3 = mn 1 - 1
1 + bI∗( ) m + n + aI∗

1 + bI∗( ) +

m2 + n2 + mn( ) d + p + aI∗

1 + bI∗( ) +

d + p( ) mn + m + n( )·

d + p + aI∗

1 + bI∗( ) 2d + 2p + aI∗

1 + bI∗( ) > 0.

　 　 Therefore, all the five eigenvalues have negative
real parts. According to the Routh-Hurwitz criterion
theory, the endemic equilibrium P∗ of system (1) is
locally asymptotically stable in D when R0 > 1.

5　 The permanence of model and global
stability of the endemic equilibrium

In this section, we study the global stability of the
endemic equilibrium P∗of system (1) by means of the
periodic orbit stability theory and second additive
compound matrix.

Since the first three equations of system (1) do not
contain Q and R, using the theory of limit differential
equations, system (1) is reduced to the following three-
dimensional system:

dS t( )

dt
= Λ - aSI

1 + bI
- d + p( ) S,

dE t( )

dt
= aSI

1 + bI
- d + α1 + k1 + ε( ) E,

dI t( )

dt
= εE - d + α2 + k2 + k + γ( ) I

ì

î

í

ï
ï
ï

ï
ï
ï

(3)
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　 　 Summing up the three equations of system (3) and
denoting

M = M(t) = S(t) + E(t) + I(t),
having

M′(t) = Λ - dM - pS - (α1 + k1)E -
(α2 + k2 + k + γ)I ≤ Λ - dM.

　 　 From the formula of M′(t), we obtain that the
feasible region T = {(S,E,I) ∈ R3

+ | 0 ≤ S + E + I ≤
Λ
d
} is a positive invariant set with respect to system

(3) .
Lemma 5. 1[19,20] 　 Let X be the distance space and

X1 ⊂ X be the closed positive invariant set of the
continuous half-flow Φ, and there is α > 0, so that the
half-flow Φ is a bit dissipative on {X:x ∈ X,d(x,∂X1)

≤ α} ∩ X1

0
. Suppose:

① N is the largest closed invariant subset of the
half-flow Φ on ∂X1;

② Nα{ } α∈Ais the non-cyclic coverage of N ;
③ N ⊂ ∂X1 is the union of some isolated closed

invariant sets;
④ any compact subset of ∂X1 contains a finite

number of sets of Nα{ } α∈Aat most.
Then, the necessary and sufficient condition for the

half-flow Φ to be uniformly permanent is

W+ (Nα) ∩ {X:x ∈ X,d(x,∂X1) ≤ ε} ∩ X1

0
= ϕ,

where W+ (Nα) = {y ∈ X,ω(y) ⊂ Nα} .
Theorem 5. 1　 If R0 > 1, system (3) is uniformly

permanent.
Proof　 Because T is the positive invariant set of

system ( 3 ), there is always the only disease-free

equilibrium Λ
d + p

,0,0( ) on the boundary ∂T of T. From

Theorem 3. 2, the disease-free equilibrium Λ
d + p

,0,0( )
is unstable when R0 > 1. In T, all the trajectories except

the S-axis will approach Λ
d + p

,0,0( ) along the S-axis,

while the other trajectories starting near Λ
d + p

,0,0( )
will be far away from Λ

d + p
,0,0( ) . Let G =

Λ
d + p

,0,0( ){ } , then G becomes the only largest

invariant set Nα{ } α∈A = Λ
d + p

,0,0( ){ } on ∂T, so

W+ (Nα) ∩ {T:x ∈ T,d(x,∂T) ≤ ε} = ϕ.
According to Lemma 5. 1, system (3) is uniformly
permanent about T when R0 > 1.

In order to study the global asymptotic stability of
the endemic equilibrium (S∗,E∗,I∗) of system (3),
we first introduce the following lemmas.

Lemma 5. 2[19] 　 Let D ⊂ Rn be an open set, and
let x → f(x) ∈ Rn be C1 function defined in D. We
consider the autonomous system in Rn .

x′ = f x( ) (4)
　 　 Assume that the following conditions hold:

① there is a tightly attractive subset K⊂D and the
only equilibrium x in D;

② x is locally asymptotically stable in D ;
③ system ( 4 ) satisfies a Poincare-Bendixson

criterion;
④ a periodic orbit of system ( 4 ) is orbitally

asymptotically stable.
Then the only equilibrium x is globally

asymptotically stable in D.
Suppose x = P(t) is a periodic solution of system

(4), O(x) = P(t) 0 ≤ t ≤ θ{ } is a periodic orbit. θ
is period of P(t) .

Lemma 5. 3[19] 　 Consider the following system:

Z′(t) = ∂f 2[ ]

∂x
P(t)( ) Z(t) (5)

where system ( 5 ) is called the second compound

equation of system ( 4 ) and ∂f 2[ ]

∂x
is the second

compound matrix of the Jacobian matrix ∂f
∂x
. If the zero

solution of system (5) is asymptotically stable, then the
periodic orbit O(x) of system ( 5 ) is uniformly
asymptotically stable.

Lemma 5. 4 　 When R0 > 1, the disease-free

equilibrium Λ
d + p

,0,0( ) of system (3) is the unique

ω -limit point on ∂T which is not any trajectory from T
0
,

system(3) is uniformly persistent in T
0
, where ∂T and T

0

are the boundary and the interior of T respectively.
Proof 　 It is easy to see that the trajectory of

system (3) from ∂T (except the S-axis) must enter T
0
or

remain on ∂T, while the S-axis is the invariant set of

system ( 3 ) . On the S-axis, there is dS
dt

= Λ -

d + p( ) S, when t →+ ∞, S t( ) → Λ
d + p

, that is, the

disease-free equilibrium Λ
d + p

,0,0( ) is the only ω -limit

point on ∂T.
Consider the following Lyapunov function:
L(t) = εE(t) + d + α1 + k1 + ε( ) I(t) .

Calculating the derivative of L(t) along the positive
solution of system (3), it follows that
L′(t) (3) = 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　
εaSI
1 + bI

- d + α1 + k1 + ε( ) d + α2 + k2 + k + γ( ) I =
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εaΛ
d + p

d + p( ) S
Λ

1
1 + bI

- 1
R0

( ) I .
Furthermore, when I ≠0, S,E,I( ) is sufficiently close

to Λ
d + p

,0,0( ) , there is L′(t) > 0, that is, there is a

neighborhood U of Λ
d + p

,0,0( ) , so that all the

trajectories starting from U∩T
0
must run out of U. Thus,

the disease-free equilibrium Λ
d + p

,0,0( ) is not the

ω-limit point of any trajectory starting from T
0
.

Lemma 5. 5　 System (3) is competitive in T, any

nonempty compact ω -limit set in T
0
is a closed orbit or

the equilibrium S∗,E∗,I∗( ) .
Proof　 The Jacobian matrix of system (3) at the

disease-free equilibrium P = S,E,I( ) ∈ T is

J P( ) =

- Λ + p( ) - aI
1 + bI

0 - aS
1 + bI( ) 2

aI
1 + bI

- Λ + α1 + k1 + ε( )
aS

1 + bI( ) 2

0 ε - Λ + α2 + k2 + k + γ( )

æ

è

ç
ç
ç
ç
ç

ö

ø

÷
÷
÷
÷
÷

.

　 　 Select the diagonal matrix H = diag 1, - 1,1( ) , having

HJ P( ) H =

- Λ + p( ) - aI
1 + bI

0 - aS
1 + bI( ) 2

- aI
1 + bI

- Λ + α1 + k1 + ε( ) - aS
1 + bI( ) 2

0 - ε - Λ + α2 + k2 + k + γ( )

æ

è

ç
ç
ç
ç
ç

ö

ø

÷
÷
÷
÷
÷

.

　 　 For any S,E,I( ) ∈ T, all off-diagonal elements
with HJ P( ) H are non-positive, so system ( 3 ) is
competitive in the area T.

Let Ω is a ω -limit set of system (3) in T
0
. If

S∗,E∗,I∗( ) ∉ Ω, because S∗,E∗,I∗( ) is the only

balance point in T
0
, then Ω is a closed trajectory. If

S∗,E∗,I∗( ) ∈ Ω, because S∗,E∗,I∗( ) is locally
asymptotically stable, if any trajectory is close enough
to S∗,E∗,I∗( ) , it must tend to S∗,E∗,I∗( ) , that is
Ω = S∗,E∗,I∗( ) .

Lemma 5. 6 　 If p(t) = S(t),E(t),I(t)( ) is a
non-constant periodic solution of system (3), p(t) is
asymptotically stable with an asymptotic phase orbit.

Proof　 Suppose that T∗(T∗ > 0) is the period of
p t( ) , and calculate the second additive compound
matrix of system (3) at p t( ) :

J[2](P) =

- b1 - aI
1 + bI

aS
1 + bI( ) 2

aS
1 + bI( ) 2

ε - b2 - aI
1 + bI

0

0 aI
1 + bI

- b3

æ

è

ç
ç
ç
ç
ç
ç

ö

ø

÷
÷
÷
÷
÷
÷

,

where
b1 = d + p + m = 2d + p + α1 + k1 + ε,

b2 = d + p + n = 2d + p + α2 + k2 + k + γ,
b3 = m + n = 2d + α1 + k1 + α2 + k2 + ε + k + γ.

　 　 So as to get the second-order composite system of

system (3):
dX(t)
dt

= - b1 + aI
1 + bI( ) X + aS

(1 + bI)2(Y + Z),

dY(t)
dt

= εX - b2 + aI
1 + bI( ) Y,

dZ(t)
dt

= aI
1 + bI

Y - b3Z

ì

î

í

ï
ï
ïï

ï
ï
ï

(6)
　 　 Next, we prove the asymptotic stability of the zero
solution of the system (6) .

Define the norm in R3 ‖ x(t),y(t),z(t)( ) ‖ =
sup x(t) , y(t) + z(t){ } , consider the following
function

L(t) = sup X(t) ,E(t)
I(t)

Y(t) + Z(t)( ){ } .

　 　 From Theorem 5. 1, there is a certain distance
between the periodic solution p(t) = (S(t),E(t),
I(t)) and boundary ∂T, so there must be k > 0, such
that

L(t) ≥ ksup X(t) , Y(t) + Z(t){ } .
　 　 According to the relevant theory of the lower right
derivative of Dini

D+ X(t) ≤- b1 + aI
1 + bI( ) X(t) +

aS
(1 + bI)2( Y(t) + Z(t) ) =

- b1 + aI
1 + bI( ) X(t) +
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aS
E(1 + bI)2

E
I

Y(t) + Z(t)( )( ) ,

D+ Y(t) ≤ ε X(t) - b2 + aI
1 + bI( ) Y(t) ,

D+ Z(t) ≤ aI
1 + bI

Y(t) - b3 Z(t) .

To get

D+
E(t)
I(t)

Y(t) + Z(t)( ) =

E′
E

- I′
I( ) E

I
Y(t) + Z(t)( ) +

E
I
D+ Y(t) + Z(t)( ) ≤

E′
E

- I′
I( ) E

I
Y(t) + Z(t)( ) +

E
I (ε X(t) -

b2 + aI
1 + bI( ) Y(t) + aI

1 + bI
Y(t) - b3 Z(t) ) ≤

εE
I

X(t) + E′
E

- I′
I

- 2d - α2 - k2 - k - γ( )·
E
I

Y(t) + Z(t)( ) .

　 　 Therefore
D+ L(t) ≤ sup g1(t),g2(t){ } L(t),

where

g1(t) = - b1 + aI
1 + bI( ) + aSI

E(1 + bI)2,

g2(t) = εE
I

+ E′
E

- I′
I

- 2d - α2 - k2 - k - γ( ) .
　 　 Obtained by the system (3)

E′
E

= aSI
E(1 + bI)

- d + α1 + k1 + ε( ) ,

I′
I

= εE
I

- d + α2 + k2 + k + γ( ) .

So

g1(t) ≤- b1 + aSI
E(1 + bI)

=

- b1 + E′
E

+ d + α1 + k1 + ε( ) =

E′
E

- d - p ≤ E′
E

- d,

g2(t) = εE
I

+ (E′
E

- εE
I

+ (d + α2 + k2 + k + γ) -

2d - α2 - k2 - k - γ) = E′
E

- μ.

That is

sup g1(t),g2(t){ } ≤ E′
E

- d (7)

D+ L(t) ≤ E′
E

- d( ) L(t) (8)

∫T
∗

0
sup g1(t),g2(t){ } dt ≤

∫T
∗

0

E′
E

- d( ) dt =

lnE(t) T∗
0 - dT∗ = - dT∗ < 0 (9)

　 　 From Equations(7), (8) and (9), when t→+∞,
there is L(t)→0. Therefore, the zero solution of system
(6) is asymptotically stable. From Lemma 5. 3, p(t) is
asymptotically stable with an asymptotic phase orbit.

By Lemmas 5. 3-5. 6, we know that system (3) is
satisfied with every condition of Lemma 5. 2. According
to Lemma 5. 2, we can obtain the following theorem.

Theorem 5. 2　 If R0 > 1, the endemic equilibrium
S∗,E∗,I∗( ) of system (3) is globally asymptotically

stable.
Theorem 5. 3　 If R0 > 1, the endemic equilibrium

P∗ S∗,E∗,I∗,Q∗,R∗( ) of system ( 1 ) is globally
asymptotically stable.

Proof　 By Theorem 5. 2, S(t),E(t),I(t)( ) →
(S∗,E∗,I∗), since the first three equations of system
(1) do not contain Q and R, we obtain the following
limit system of system (1):

dQ
dt

= kI∗ - d + α3 + ω( ) Q,

dR
dt

= ωQ + γI∗ + pS∗ - dR.

ì

î

í

ï
ï

ï
ï

By calculation, having
Q(t) = Q(0) + kI∗∫t

0
e(d+α3+ω)sds( ) e -(d+α3+ω) t,

R(t) = R(0) + ∫t
0
eds ωQ(s) + γI∗ + pS∗( ) ds( ) e -dt .

When t →+ ∞, there is

Q(t) → γI∗
d + α3 + ω

= Q∗,

R(t) → ωQ∗ + γI∗ + pS∗

d
= R∗ .

Therefore, the endemic equilibrium P∗(S∗,E∗,I∗,
Q∗,R∗) of system (1) is globally attractive in the
region D [21] . According to Theorem 4. 1 , when R0 >
1, the endemic equilibrium P∗ S∗,E∗,I∗,Q∗,R∗( ) of
system (1) is globally asymptotically stable.

6　 Example and numerical simulation
In this section, we illustrate the above-mentioned main
theoretical results through numerical simulation.

In system (1), let
Λ = 0.28, d = 0.02, ε = 0.07, α1 = 0.08, α2 = 0.1,
k1 = 0.04, k2 = 0.08, k = 0.03, γ = 0.04, p = 0.03.
When a = 0. 08, b = 0. 1, by computing, we derive
R0 = 0. 5531 < 1 and system (1) has a disease-free
equilibrium P0(5. 6,0,0,0,8. 4) . And we set eight
initial conditions (2. 6,5,2. 6,1. 5,2. 3), (0. 1,0. 6,
0. 9,5. 4,7), (2,1,1. 8,3. 7,5. 5), (0. 5,3. 4,1,2. 1,
8), (2. 5,1. 5,5. 2,1. 8,3), (2. 6,3. 2,1. 5, 2. 5,4. 2),
(1. 6,0. 6,2. 1,3. 2,6. 5), (5,2. 7,0. 6,4. 2,1. 5),
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Figure 1. Variational curves of S,E,I,Q and R with time t when R0 = 0. 5531 < 1.

(1,4. 1,0. 1,0. 3,8. 5), (4. 3,0. 7,1. 5,2. 7,4. 8),
(3. 5,1. 8,3. 1,4. 8,0. 8) and (3. 9,4,4. 4,1. 2,0. 5),
the numerical simulation is shown in Figure 1. From
Theorem 3. 3, it follows that P0 is globally asymp-
totically stable. Figure 1 shows the dynamic behaviors
of system (1) .

Let
Λ = 0.8, d = 0.05, ε = 0.07, α1 = 0.08, α2 = 0.1,
k1 = 0.04, k2 = 0.08, γ = 0.04, p = 0.03, k = 0.03.
When a = 0. 2, b = 0. 15, by computing, we derive
R0 = 2. 3334 > 1 and system (1) has an endemic
equilibrium P∗ 5. 418,1. 527,0. 358,0. 103,3. 579( ) .

And we set the same initial conditions as in Figure 1,
the numerical simulation is shown in Figure 2. From
Theorem 5. 3, we notice that P∗ is globally
asymptotically stable. Numerical simulation illustrates
this fact in Figure 2.

From the expression of the basic reproduction
number R0, we see that the R0depends on the prevention
and control coefficients p, k, k1 and k2, and is a
monotonically decreasing function of the coefficients p,
k, k1 and k2 ( see Figure 3) . Therefore, vaccination,
elimination and quarantine strategies are the effective
methods to control the prevalence of infectious diseases.
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Figure 2. Variational curves of S,E,I,Q and R with time t when R0 = 2. 3334 > 1.

From the expression of the R0, we also see that the R0 is
a monotonically decreasing function of the coefficient γ,
but the R0 is independent of the coefficient ω. Therefore,
it is also important to strengthen the non-quarantine
treatment to prevent the spread of infectious diseases.

7　 Conclusions
In this paper, we formulated an SEIQR model with
saturation incidence rate and hybrid strategies, and
presented a complete mathematical analysis for the
global stability problem at the equilibriums of the model
by means of both theoretical and numerical ways. For

this model, we defined the basic reproduction number
R0 which represents the average number of secondary
infections from a single exposed host and infectious
host. When R0 < 1, as is shown in Theorem 3. 3, the
disease-free equilibrium is globally asymptotically stable
by Lyapunov function (see Figure 1), and the disease
dies out eventually. When R0 > 1, Theorem 5. 3 tells us
that the unique endemic equilibrium is globally
asymptotically stable by means of the periodic orbit
stability theory and second additive compound matrix
(see Figure 2), and the disease persists at the endemic
equilibrium level if it is initially present. Finally, some
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Figure 3. Variational curves of the basic reproduction number R0with the prevention and control coefficients p, k, k1and k2, respectively.

numerical simulations were performed to illustrate the
results.

Interestingly, the stability of the equilibrium of the
model is under the influence of saturation incidence rate
and hybrid control strategies. We believe that our study
approaches can be applied to solve global stability
problems in many other epidemic models. However, the
limitation of system (1) is that it does not consider the
infectious force in the latent and recovered period.
However, for malaria and some other infectious
diseases, the latent period and recovered period may be
infectious. We leave this concern for future work.
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具有饱和发生率与混合控制策略的 SEIQR 模型的全局动力学

马艳丽∗,褚正清,李红菊
安徽新华学院通识教育部,安徽合肥 230088
∗通讯作者. E-mail:linda-mayanli@163. com

摘要: 建立了一个具有饱和接触率和混合控制策略的 SEIQR 传染病模型,从理论和数值模拟方面分析了模型

的稳定性. 首先,得到了疾病灭绝与否的阈值———基本再生数 R0;其次,当 R0<1 时,利用 LaSalle 不变集原理证

明了无病平衡点是全局渐近稳定的,疾病最终消亡. 当 R0>1 时,根据 Routh-Hurwitz 判据定理证明了地方病平

衡点局部渐近稳定;然后, 当 R0>1 时,运用周期轨道稳定性理论和第二加性复合矩阵证明了地方病平衡点全

局渐近稳定,疾病持续存在;最后,利用计算机仿真,进一步证实理论分析的正确性.
关键词: 基本再生数;平衡点;稳定性;饱和发生率
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