[1] |
Fox J W, Serrano S M. Exploring snake venom proteomes: multifaceted analyses for complex toxin mixtures[J]. Proteomics, 2008,8(4): 909-920.
|
[2] |
Pahari S, Mackessy S P, Kini R M. The venom gland transcriptome of the Desert Massasauga rattlesnake (Sistrurus catenatus edwardsii): towards an understanding of venom composition among advanced snakes (Superfamily Colubroidea)[J]. BMC Mol Biol, 2007,8: 115.
|
[3] |
Moura-da-Silva A M, Butera D, Tanjoni I. Importance of snake venom metalloproteinases in cell biology: effects on platelets, inflammatory and endothelial cells[J]. Curr Pharm Des, 2007,13(28): 2 893-2 905.
|
[4] |
Bjarnason J B, Fox J W. Hemorrhagic metalloproteinases from snake venoms[J]. Pharmacol Ther, 1994,62(3): 325-372.
|
[5] |
Fox J W, Serrano S M. Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases[J]. Toxicon, 2005,45(8): 969-985.
|
[6] |
Gomis-Ruth F X, Kress L F, Kellermann J, et al. Refined 2.0 A X-ray crystal structure of the snake venom zinc-endopeptidase adamalysin II. Primary and tertiary structure determination, refinement, molecular structure and comparison with astacin, collagenase and thermolysin[J]. J Mol Biol, 1994,239(4): 513-544.
|
[7] |
Zhang D, Botos I, Gomis-Rueth F X, et al. Structural interaction of natural and synthetic inhibitors with the venom metalloproteinase, atrolysin C (form d)[J]. Proc Natl Acad Sci U S A, 1994,91(18): 8 447-8 451.
|
[8] |
Kumasaka T, Yamamoto M, Moriyama H, et al. Crystal structure of H2-proteinase from the venom of Trimeresurus flavoviridis[J]. J Biochem, 1996,119(1): 49-57.
|
[9] |
Zhu X, Teng M, Niu L. Structure of acutolysin-C, a haemorrhagic toxin from the venom of Agkistrodon acutus, providing further evidence for the mechanism of the pH-dependent proteolytic reaction of zinc metalloproteinases[J]. Acta Crystallogr D Biol Crystallogr, 1999,55(Pt 11): 1 834-1 841.
|
[10] |
Huang K F, Chiou S H, Ko T P, et al. The 1.35 A structure of cadmium-substituted TM-3, a snake-venom metalloproteinase from Taiwan habu: elucidation of a TNFalpha-converting enzyme-like active-site structure with a distorted octahedral geometry of cadmium[J]. Acta Crystallogr D Biol Crystallogr, 2002,58(Pt 7): 1 118-1 128.
|
[11] |
Watanabe L, Shannon J D, Valente R H, et al. Amino acid sequence and crystal structure of BaP1, a metalloproteinase from Bothrops asper snake venom that exerts multiple tissue-damaging activities[J]. Protein Sci, 2003,12(10): 2 273-2 281.
|
[12] |
Lou Z, Hou J, Liang X, et al. Crystal structure of a non-hemorrhagic fibrin(ogen)olytic metalloproteinase complexed with a novel natural tri-peptide inhibitor from venom of Agkistrodon acutus[J]. J Struct Biol, 2005,152(3): 195-203.
|
[13] |
Bode W, Gomis-Ruth F X, Stockler W. Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the ‘metzincins’[J]. FEBS Lett, 1993,331(1-2): 134-140.
|
[14] |
Gong W, Zhu X, Liu S, et al. Crystal structures of acutolysin A, a three-disulfide hemorrhagic zinc metalloproteinase from the snake venom of Agkistrodon acutus[J]. J Mol Biol, 1998,283(3): 657-668.
|
[15] |
Takeda S, Igarashi T, Mori H, et al. Crystal structures of VAP1 reveal ADAMs MDC domain architecture and its unique C-shaped scaffold[J]. EMBO J, 2006,25(11): 2 388-2 396.
|
[16] |
Igarashi T, Araki S, Mori H, et al. Crystal structures of catrocollastatin/VAP2B reveal a dynamic, modular architecture of ADAM/adamalysin/reprolysin family proteins[J]. FEBS Lett, 2007,581(13): 2 416-2 422.
|
[17] |
Takeda S, Igarashi T, Mori H. Crystal structure of RVV-X: an example of evolutionary gain of specificity by ADAM proteinases[J]. FEBS Lett, 2007,581(30): 5 859-5 864.
|
[18] |
Zang J, Zhu Z, Yu Y, et al. Purification, partial characterization and crystallization of acucetin, a protein containing both disintegrin-like and cysteine-rich domains released by auto-proteolysis of a P-III-type metalloproteinase AaH-IV from Agkistrodon acutus venom[J]. Acta Crystallogr D Biol Crystallogr, 2003,59(Pt 12): 2 310-2 312.
|
[19] |
Braud S, Bon C, Wisner A. Snake venom proteins acting on hemostasis[J]. Biochimie, 2000,82(9-10): 851-859.
|
[20] |
Matsui T, Fujimura Y, Titani K. Snake venom proteases affecting hemostasis and thrombosis[J]. Biochim Biophys Acta, 2000,1477(1-2): 146-156.
|
[21] |
Parry M A, Jacob U, Huber R, et al. The crystal structure of the novel snake venom plasminogen activator TSV-PA: a prototype structure for snake venom serine proteinases[J]. Structure, 1998,6(9): 1 195-1 206.
|
[22] |
Pirkle H. Thrombin-like enzymes from snake venoms: an updated inventory. Scientific and Standardization Committees Registry of Exogenous Hemostatic Factors[J]. Thromb Haemost, 1998,79(3): 675-683.
|
[23] |
Zhang Y, Wisner A, Xiong Y, et al. A novel plasminogen activator from snake venom. Purification, characterization, and molecular cloning[J]. J Biol Chem, 1995,270(17): 10 246-10 255.
|
[24] |
Braud S, Le Bonniec B F, Bon C, et al. The stratagem utilized by the plasminogen activator from the snake Trimeresurus stejnegeri to escape serpins[J]. Biochemistry, 2002,41(26): 8 478-8 484.
|
[25] |
Braud S, Parry M A, Maroun R, et al. The contribution of residues 192 and 193 to the specificity of snake venom serine proteinases[J]. J Biol Chem, 2000,275(3): 1 823-1 828.
|
[26] |
Zhang Y, Wisner A, Maroun R C, et al. Trimeresurus stejnegeri snake venom plasminogen activator. Site-directed mutagenesis and molecular modeling[J]. J Biol Chem, 1997,272(33): 20 531-20 537.
|
[27] |
Zhu Z, Gong P, Teng M, et al. Purification, N-terminal sequencing, partial characterization, crystallization and preliminary crystallographic analysis of two glycosylated serine proteinases from Agkistrodon acutus venom[J]. Acta Crystallogr D Biol Crystallogr, 2003,59(Pt 3): 547-550.
|
[28] |
Zhu Z, Liang Z, Zhang T, et al. Crystal structures and amidolytic activities of two glycosylated snake venom serine proteinases[J]. J Biol Chem, 2005,280(11): 10 524-10 529.
|
[29] |
Murakami M T, Arni R K. Thrombomodulin-independent activation of protein C and specificity of hemostatically active snake venom serine proteinases: Crystal structures of native and inhibited Agkistrodon contortrix contortrix protein C activator[J]. J Biol Chem, 2005,280(47): 39 309-39 315.
|
[30] |
Kisiel W, Kondo S, Smith K J, et al. Characterization of a protein C activator from Agkistrodon contortrix contortrix venom[J]. J Biol Chem, 1987,262(26): 12 607-12 613.
|
[31] |
Dennis E A. The growing phospholipase A2 superfamily of signal transduction enzymes[J]. Trends Biochem Sci, 1997,22(1): 1-2.
|
[32] |
Schaloske R H, Dennis E A. The phospholipase A2 superfamily and its group numbering system[J]. Biochim Biophys Acta, 2006,1761(11): 1 246-1 259.
|
[33] |
Murakami M T, Kuch U, Betzel C, et al. Crystal structure of a novel myotoxic Arg49 phospholipase A2 homolog (zhaoermiatoxin) from Zhaoermia mangshanensis snake venom: insights into Arg49 coordination and the role of Lys122 in the polarization of the C-terminus[J]. Toxicon, 2008,51(5): 723-735.
|
[34] |
Kini R M, Evans H J. A model to explain the pharmacological effects of snake venom phospholipases A2[J]. Toxicon, 1989,27(6): 613-635.
|
[35] |
da Silva Giotto M T, Garratt R C, Oliva G, et al. Crystallographic and spectroscopic characterization of a molecular hinge: conformational changes in bothropstoxin I, a dimeric Lys49-phospholipase A2 homologue[J]. Proteins, 1998,30(4): 442-454.
|
[36] |
Lomonte B, Angulo Y, Calderon L. An overview of lysine-49 phospholipase A2 myotoxins from crotalid snake venoms and their structural determinants of myotoxic action[J]. Toxicon, 2003,42(8): 885-901.
|
[37] |
Brunie S, Bolin J, Gewirth D, et al. The refined crystal structure of dimeric phospholipase A2 at 2.5 A. Access to a shielded catalytic center[J]. J Biol Chem, 1985,260(17): 9 742-9 749.
|
[38] |
Wang X Q, Yang J, Gui L, et al. Crystal structure of an acidic phospholipase A2 from the venom of Agkistrodon halys pallas at 2.0 A resolution[J]. J Mol Biol, 1996,255(5): 669-676.
|
[39] |
Scott D L, White S P, Otwinowski Z, et al. Interfacial catalysis: the mechanism of phospholipase A2[J]. Science, 1990,250(4 987): 1 541-1 546.
|
[40] |
Rigden D J, Hwa L W, Marangoni S, et al. The structure of the D49 phospholipase A2 piratoxin III from Bothrops pirajai reveals unprecedented structural displacement of the calcium-binding loop: Possible relationship to cooperative substrate binding[J]. Acta Crystallogr D Biol Crystallogr, 2003,59(Pt 2): 255-262.
|
[41] |
Xu S, Gu L, Jiang T, et al. Structures of cadmium-binding acidic phospholipase A2 from the venom of Agkistrodon halys Pallas at 1.9A resolution[J]. Biochem Biophys Res Commun, 2003,300(2): 271-277.
|
[42] |
Lok S M, Gao R, Rouault M, et al. Structure and function comparison of Micropechis ikaheka snake venom phospholipase A2 isoenzymes[J]. FEBS J, 2005,272(5): 1 211-1 220.
|
[43] |
Ambrosio A L, Nonato M C, de Araujo H S S, et al. A molecular mechanism for Lys49-phospholipase A2 activity based on ligand-induced conformational change[J]. J Biol Chem, 2005,280(8): 7 326-7 335.
|
[44] |
Lee W H, da Silva Giotto M T, Marangoni S, et al. Structural basis for low catalytic activity in Lys49 phospholipases A2--a hypothesis: the crystal structure of piratoxin II complexed to fatty acid[J]. Biochemistry, 2001,40(1): 28-36.
|
[45] |
Singh G, Jasti J, Saravanan K, et al. Crystal structure of the complex formed between a group I phospholipase A2 and a naturally occurring fatty acid at 2.7 A resolution[J]. Protein Sci, 2005,14(2): 395-400.
|
[46] |
Jabeen T, Singh N, Singh R K, et al. Crystal structure of a heterodimer of phospholipase A2 from Naja naja sagittifera at 2.3 A resolution reveals the presence of a new PLA2-like protein with a novel cys 32-Cys 49 disulphide bridge with a bound sugar at the substrate-binding site[J]. Proteins, 2006,62(2): 329-337.
|
[47] |
Hu P, Sun L, Zhu Z Q, et al. Crystal structure of Natratoxin, a novel snake secreted phospholipaseA2 neurotoxin from Naja atra venom inhibiting A-type K(+) currents[J]. Proteins, 2008,72(2): 673-683.
|
[48] |
Chandra V, Jasti J, Kaur P, et al. Crystal structure of a complex formed between a snake venom phospholipase A(2) and a potent peptide inhibitor Phe-Leu-Ser-Tyr-Lys at 1.8 A resolution[J]. J Biol Chem, 2002,277(43): 41 079-41 085.
|
[49] |
Singh R K, Ethayathulla A S, Jabeen T, et al. Aspirin induces its anti-inflammatory effects through its specific binding to phospholipase A2: crystal structure of the complex formed between phospholipase A2 and aspirin at 1.9 angstroms resolution[J]. J Drug Target, 2005,13(2): 113-119.
|
[50] |
Chandra V, Jasti J, Kaur P, et al. Structural basis of phospholipase A2 inhibition for the synthesis of prostaglandins by the plant alkaloid aristolochic acid from a 1.7 A crystal structure[J]. Biochemistry, 2002,41(36): 10 914-10 919.
|
[51] |
Chandra V, Jasti J, Kaur P, et al. First structural evidence of a specific inhibition of phospholipase A2 by alpha-tocopherol (vitamin E) and its implications in inflammation: crystal structure of the complex formed between phospholipase A2 and alpha-tocopherol at 1.8 A resolution[J]. J Mol Biol, 2002,320(2): 215-222.
|
[52] |
Murakami M T, Arruda E Z, Melo P A, et al. Inhibition of myotoxic activity of Bothrops asper myotoxin II by the anti-trypanosomal drug suramin[J]. J Mol Biol, 2005,350(3): 416-426.
|
[53] |
Petrova T P A. Protein crystallography at subatomic resolution[J]. Reports on Progress In Physics, 2004,67(9): 1 565-1 605.
|
[54] |
Liu Q, Huang Q, Teng M, et al. The crystal structure of a novel, inactive, lysine 49 PLA2 from Agkistrodon acutus venom: an ultrahigh resolution, AB initio structure determination[J]. J Biol Chem, 2003,278(42): 41 400-41 408.
|
[55] |
Schreiber M C, Karlo J C, Kovalick G E. A novel cDNA from Drosophila encoding a protein with similarity to mammalian cysteine-rich secretory proteins, wasp venom antigen 5, and plant group 1 pathogenesis-related proteins[J]. Gene, 1997,191(2): 135-141.
|
[56] |
Olson J H, Xiang X, Ziegert T, et al. Allurin, a 21-kDa sperm chemoattractant from Xenopus egg jelly, is related to mammalian sperm-binding proteins[J]. Proc Natl Acad Sci U S A, 2001,98(20): 11 205-11 210.
|
[57] |
Ookuma S, Fukuda M, Nishida E. Identification of a DAF-16 transcriptional target gene, scl-1, that regulates longevity and stress resistance in Caenorhabditis elegans[J]. Curr Biol, 2003,13(5): 427-431.
|
[58] |
Mochca-Morales J, Martin B M, Possani L D. Isolation and characterization of helothermine, a novel toxin from Heloderma horridum horridum (Mexican beaded lizard) venom[J]. Toxicon, 1990,28(3): 299-309.
|
[59] |
Milne T J, Abbenante G, Tyndall J D A, et al. Isolation and characterization of a cone snail protease with homology to CRISP proteins of the pathogenesis-related protein superfamily[J]. J Biol Chem, 2003,278(33): 31 105-31 110.
|
[60] |
Morrissette J, Kratzschmar J, Haendler B, et al. Primary structure and properties of helothermine, a peptide toxin that blocks ryanodine receptors[J]. Biophys J, 1995,68(6): 2 280-2 288.
|
[61] |
Yamazaki Y, Koike H, Sugiyama Y, et al. Cloning and characterization of novel snake venom proteins that block smooth muscle contraction[J]. Eur J Biochem, 2002,269(11): 2 708-2 715.
|
[62] |
Brown R L, Haley T L, West K A, et al. Pseudechetoxin: a peptide blocker of cyclic nucleotide-gated ion channels[J]. Proc Natl Acad Sci U S A, 1999,96(2): 754-759.
|
[63] |
Wang J, Shen B, Guo M, et al. Blocking effect and crystal structure of natrin toxin, a cysteine-rich secretory protein from Naja atra venom that targets the BKCa channel[J]. Biochemistry, 2005,44(30): 10 145-10 152.
|
[64] |
Wang F, Li H, Liu M N, et al. Structural and functional analysis of natrin, a venom protein that targets various ion channels[J]. Biochem Biophys Res Commun, 2006,351(2): 443-448.
|
[65] |
Guo M, Teng M, Niu L, et al. Crystal structure of the cysteine-rich secretory protein stecrisp reveals that the cysteine-rich domain has a K+ channel inhibitor-like fold[J]. J Biol Chem, 2005,280(13): 12 405-12 412.
|
[66] |
Shikamoto Y, Suto K, Yamazaki Y, et al. Crystal structure of a CRISP family Ca2+ -channel blocker derived from snake venom[J]. J Mol Biol, 2005,350(4): 735-743.
|
[67] |
Pungercar J, Krizaj I. Understanding the molecular mechanism underlying the presynaptic toxicity of secreted phospholipases A2[J]. Toxicon, 2007,50(7): 871-892.
|
[68] |
Tsetlin V I, Karlsson E, Utkin Y N, et al. Interaction surfaces of neurotoxins and acetylcholine receptor[J]. Toxicon, 1982,20(1): 83-93.
|
[69] |
Martin B M, Chibber B A, Maelicke A. The sites of neurotoxicity in alpha-cobratoxin[J]. J Biol Chem, 1983,258(14): 8 714-8 722.
|
[70] |
Juan H F, Hung C C, Wang K T, et al. Comparison of three classes of snake neurotoxins by homology modeling and computer simulation graphics[J]. Biochem Biophys Res Commun, 1999,257(2): 500-510.
|
[71] |
Tsernoglou D, Petsko G A. The crystal structure of a post-synaptic neurotoxin from sea snake at A resolution[J]. FEBS Lett, 1976,68(1): 1-4.
|
[72] |
Low B W, Preston H S, Sato A, et al. Three dimensional structure of erabutoxin b neurotoxic protein: inhibitor of acetylcholine receptor[J]. Proc Natl Acad Sci U S A, 1976,73(9): 2 991-2 994.
|
[73] |
Bourne Y, Talley T T, Hansen S B, et al. Crystal structure of a Cbtx-AChBP complex reveals essential interactions between snake alpha-neurotoxins and nicotinic receptors[J]. EMBO J, 2005,24(8): 1 512-1 522.
|
[74] |
Lou X, Liu Q, Tu X, et al. The atomic resolution crystal structure of atratoxin determined by single wavelength anomalous diffraction phasing[J]. J Biol Chem, 2004,279(37): 39 094-39 104.
|
[75] |
Lou X, Tu X, Pan G, et al. Purification, N-terminal sequencing, crystallization and preliminary structural determination of atratoxin-b, a short-chain alpha-neurotoxin from Naja atra venom[J]. Acta Crystallogr D Biol Crystallogr, 2003,59(Pt 6): 1 038-1 042.
|
[76] |
Tu X, Huang Q, Lou X, et al. Purification, N-terminal sequencing, crystallization and preliminary X-ray diffraction analysis of atratoxin, a new short-chain alpha-neurotoxin from the venom of Naja naja atra[J]. Acta Crystallogr D Biol Crystallogr, 2002,58(Pt 5): 839-842.
|
[77] |
Xu G, Ulrichts H, Vauterin S, et al. How does agkicetin-C bind on platelet glycoprotein Ibalpha and achieve its platelet effects[J]. Toxicon, 2005,45(5): 561-570.
|
[78] |
Zhang H, Yang Q, Sun M, et al. Hydrogen peroxide produced by two amino acid oxidases mediates antibacterial actions[J]. J Microbiol, 2004,42(4): 336-339.
|
[79] |
Xu G, Teng M, Niu L, et al. Purification, characterization, crystallization and preliminary X-ray crystallographic analysis of two novel C-type lectin-like proteins: Aall-A and Aall-B from Deinagkistrodon acutus venom[J]. Acta Crystallogr D Biol Crystallogr, 2004,60(Pt 11): 2 035-2 037.
|
[80] |
Zang J, Teng M, Niu L. Purification, crystallization and preliminary crystallographic analysis of AHP IX-bp, a zinc ion and pH-dependent coagulation factor IX binding protein from Agkistrodon halys Pallas venom[J]. Acta Crystallogr D Biol Crystallogr, 2003,59(Pt 4): 730-733.
|
[81] |
Liu S, Zhu Z, Sun J, et al. Purification, crystallization and preliminary X-ray crystallographic analysis of agkaggregin, a C-type lectin-like protein from Agkistrodon acutus venom[J]. Acta Crystallogr D Biol Crystallogr, 2002,58(Pt 4): 675-678.
|
[82] |
Rong H, Li Y, Lou X, et al. Purification, partial characterization, crystallization and preliminary X-ray diffraction of a novel cardiotoxin-like basic protein from Naja naja atra (South Anhui) venom[J]. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2007,63(Pt 2): 130-134.
|
[83] |
Zhang H, Teng M, Niu L, et al. Purification, partial characterization, crystallization and structural determination of AHP-LAAO, a novel L-amino-acid oxidase with cell apoptosis-inducing activity from Agkistrodon halys pallas venom[J]. Acta Crystallogr D Biol Crystallogr, 2004,60(Pt 5): 974-977.
|
[84] |
Shikamoto Y, Morita T, Fujimoto Z, et al. Crystal structure of Mg2+- and Ca2+-bound Gla domain of factor IX complexed with binding protein[J]. J Biol Chem, 2003,278(26): 24 090-24 094.
|
[85] |
Fukuda K, Doggett T, Laurenzi I J, et al. The snake venom protein botrocetin acts as a biological brace to promote dysfunctional platelet aggregation[J]. Nat Struct Mol Biol, 2005,12(2): 152-159.
|
[1] |
Fox J W, Serrano S M. Exploring snake venom proteomes: multifaceted analyses for complex toxin mixtures[J]. Proteomics, 2008,8(4): 909-920.
|
[2] |
Pahari S, Mackessy S P, Kini R M. The venom gland transcriptome of the Desert Massasauga rattlesnake (Sistrurus catenatus edwardsii): towards an understanding of venom composition among advanced snakes (Superfamily Colubroidea)[J]. BMC Mol Biol, 2007,8: 115.
|
[3] |
Moura-da-Silva A M, Butera D, Tanjoni I. Importance of snake venom metalloproteinases in cell biology: effects on platelets, inflammatory and endothelial cells[J]. Curr Pharm Des, 2007,13(28): 2 893-2 905.
|
[4] |
Bjarnason J B, Fox J W. Hemorrhagic metalloproteinases from snake venoms[J]. Pharmacol Ther, 1994,62(3): 325-372.
|
[5] |
Fox J W, Serrano S M. Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases[J]. Toxicon, 2005,45(8): 969-985.
|
[6] |
Gomis-Ruth F X, Kress L F, Kellermann J, et al. Refined 2.0 A X-ray crystal structure of the snake venom zinc-endopeptidase adamalysin II. Primary and tertiary structure determination, refinement, molecular structure and comparison with astacin, collagenase and thermolysin[J]. J Mol Biol, 1994,239(4): 513-544.
|
[7] |
Zhang D, Botos I, Gomis-Rueth F X, et al. Structural interaction of natural and synthetic inhibitors with the venom metalloproteinase, atrolysin C (form d)[J]. Proc Natl Acad Sci U S A, 1994,91(18): 8 447-8 451.
|
[8] |
Kumasaka T, Yamamoto M, Moriyama H, et al. Crystal structure of H2-proteinase from the venom of Trimeresurus flavoviridis[J]. J Biochem, 1996,119(1): 49-57.
|
[9] |
Zhu X, Teng M, Niu L. Structure of acutolysin-C, a haemorrhagic toxin from the venom of Agkistrodon acutus, providing further evidence for the mechanism of the pH-dependent proteolytic reaction of zinc metalloproteinases[J]. Acta Crystallogr D Biol Crystallogr, 1999,55(Pt 11): 1 834-1 841.
|
[10] |
Huang K F, Chiou S H, Ko T P, et al. The 1.35 A structure of cadmium-substituted TM-3, a snake-venom metalloproteinase from Taiwan habu: elucidation of a TNFalpha-converting enzyme-like active-site structure with a distorted octahedral geometry of cadmium[J]. Acta Crystallogr D Biol Crystallogr, 2002,58(Pt 7): 1 118-1 128.
|
[11] |
Watanabe L, Shannon J D, Valente R H, et al. Amino acid sequence and crystal structure of BaP1, a metalloproteinase from Bothrops asper snake venom that exerts multiple tissue-damaging activities[J]. Protein Sci, 2003,12(10): 2 273-2 281.
|
[12] |
Lou Z, Hou J, Liang X, et al. Crystal structure of a non-hemorrhagic fibrin(ogen)olytic metalloproteinase complexed with a novel natural tri-peptide inhibitor from venom of Agkistrodon acutus[J]. J Struct Biol, 2005,152(3): 195-203.
|
[13] |
Bode W, Gomis-Ruth F X, Stockler W. Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the ‘metzincins’[J]. FEBS Lett, 1993,331(1-2): 134-140.
|
[14] |
Gong W, Zhu X, Liu S, et al. Crystal structures of acutolysin A, a three-disulfide hemorrhagic zinc metalloproteinase from the snake venom of Agkistrodon acutus[J]. J Mol Biol, 1998,283(3): 657-668.
|
[15] |
Takeda S, Igarashi T, Mori H, et al. Crystal structures of VAP1 reveal ADAMs MDC domain architecture and its unique C-shaped scaffold[J]. EMBO J, 2006,25(11): 2 388-2 396.
|
[16] |
Igarashi T, Araki S, Mori H, et al. Crystal structures of catrocollastatin/VAP2B reveal a dynamic, modular architecture of ADAM/adamalysin/reprolysin family proteins[J]. FEBS Lett, 2007,581(13): 2 416-2 422.
|
[17] |
Takeda S, Igarashi T, Mori H. Crystal structure of RVV-X: an example of evolutionary gain of specificity by ADAM proteinases[J]. FEBS Lett, 2007,581(30): 5 859-5 864.
|
[18] |
Zang J, Zhu Z, Yu Y, et al. Purification, partial characterization and crystallization of acucetin, a protein containing both disintegrin-like and cysteine-rich domains released by auto-proteolysis of a P-III-type metalloproteinase AaH-IV from Agkistrodon acutus venom[J]. Acta Crystallogr D Biol Crystallogr, 2003,59(Pt 12): 2 310-2 312.
|
[19] |
Braud S, Bon C, Wisner A. Snake venom proteins acting on hemostasis[J]. Biochimie, 2000,82(9-10): 851-859.
|
[20] |
Matsui T, Fujimura Y, Titani K. Snake venom proteases affecting hemostasis and thrombosis[J]. Biochim Biophys Acta, 2000,1477(1-2): 146-156.
|
[21] |
Parry M A, Jacob U, Huber R, et al. The crystal structure of the novel snake venom plasminogen activator TSV-PA: a prototype structure for snake venom serine proteinases[J]. Structure, 1998,6(9): 1 195-1 206.
|
[22] |
Pirkle H. Thrombin-like enzymes from snake venoms: an updated inventory. Scientific and Standardization Committees Registry of Exogenous Hemostatic Factors[J]. Thromb Haemost, 1998,79(3): 675-683.
|
[23] |
Zhang Y, Wisner A, Xiong Y, et al. A novel plasminogen activator from snake venom. Purification, characterization, and molecular cloning[J]. J Biol Chem, 1995,270(17): 10 246-10 255.
|
[24] |
Braud S, Le Bonniec B F, Bon C, et al. The stratagem utilized by the plasminogen activator from the snake Trimeresurus stejnegeri to escape serpins[J]. Biochemistry, 2002,41(26): 8 478-8 484.
|
[25] |
Braud S, Parry M A, Maroun R, et al. The contribution of residues 192 and 193 to the specificity of snake venom serine proteinases[J]. J Biol Chem, 2000,275(3): 1 823-1 828.
|
[26] |
Zhang Y, Wisner A, Maroun R C, et al. Trimeresurus stejnegeri snake venom plasminogen activator. Site-directed mutagenesis and molecular modeling[J]. J Biol Chem, 1997,272(33): 20 531-20 537.
|
[27] |
Zhu Z, Gong P, Teng M, et al. Purification, N-terminal sequencing, partial characterization, crystallization and preliminary crystallographic analysis of two glycosylated serine proteinases from Agkistrodon acutus venom[J]. Acta Crystallogr D Biol Crystallogr, 2003,59(Pt 3): 547-550.
|
[28] |
Zhu Z, Liang Z, Zhang T, et al. Crystal structures and amidolytic activities of two glycosylated snake venom serine proteinases[J]. J Biol Chem, 2005,280(11): 10 524-10 529.
|
[29] |
Murakami M T, Arni R K. Thrombomodulin-independent activation of protein C and specificity of hemostatically active snake venom serine proteinases: Crystal structures of native and inhibited Agkistrodon contortrix contortrix protein C activator[J]. J Biol Chem, 2005,280(47): 39 309-39 315.
|
[30] |
Kisiel W, Kondo S, Smith K J, et al. Characterization of a protein C activator from Agkistrodon contortrix contortrix venom[J]. J Biol Chem, 1987,262(26): 12 607-12 613.
|
[31] |
Dennis E A. The growing phospholipase A2 superfamily of signal transduction enzymes[J]. Trends Biochem Sci, 1997,22(1): 1-2.
|
[32] |
Schaloske R H, Dennis E A. The phospholipase A2 superfamily and its group numbering system[J]. Biochim Biophys Acta, 2006,1761(11): 1 246-1 259.
|
[33] |
Murakami M T, Kuch U, Betzel C, et al. Crystal structure of a novel myotoxic Arg49 phospholipase A2 homolog (zhaoermiatoxin) from Zhaoermia mangshanensis snake venom: insights into Arg49 coordination and the role of Lys122 in the polarization of the C-terminus[J]. Toxicon, 2008,51(5): 723-735.
|
[34] |
Kini R M, Evans H J. A model to explain the pharmacological effects of snake venom phospholipases A2[J]. Toxicon, 1989,27(6): 613-635.
|
[35] |
da Silva Giotto M T, Garratt R C, Oliva G, et al. Crystallographic and spectroscopic characterization of a molecular hinge: conformational changes in bothropstoxin I, a dimeric Lys49-phospholipase A2 homologue[J]. Proteins, 1998,30(4): 442-454.
|
[36] |
Lomonte B, Angulo Y, Calderon L. An overview of lysine-49 phospholipase A2 myotoxins from crotalid snake venoms and their structural determinants of myotoxic action[J]. Toxicon, 2003,42(8): 885-901.
|
[37] |
Brunie S, Bolin J, Gewirth D, et al. The refined crystal structure of dimeric phospholipase A2 at 2.5 A. Access to a shielded catalytic center[J]. J Biol Chem, 1985,260(17): 9 742-9 749.
|
[38] |
Wang X Q, Yang J, Gui L, et al. Crystal structure of an acidic phospholipase A2 from the venom of Agkistrodon halys pallas at 2.0 A resolution[J]. J Mol Biol, 1996,255(5): 669-676.
|
[39] |
Scott D L, White S P, Otwinowski Z, et al. Interfacial catalysis: the mechanism of phospholipase A2[J]. Science, 1990,250(4 987): 1 541-1 546.
|
[40] |
Rigden D J, Hwa L W, Marangoni S, et al. The structure of the D49 phospholipase A2 piratoxin III from Bothrops pirajai reveals unprecedented structural displacement of the calcium-binding loop: Possible relationship to cooperative substrate binding[J]. Acta Crystallogr D Biol Crystallogr, 2003,59(Pt 2): 255-262.
|
[41] |
Xu S, Gu L, Jiang T, et al. Structures of cadmium-binding acidic phospholipase A2 from the venom of Agkistrodon halys Pallas at 1.9A resolution[J]. Biochem Biophys Res Commun, 2003,300(2): 271-277.
|
[42] |
Lok S M, Gao R, Rouault M, et al. Structure and function comparison of Micropechis ikaheka snake venom phospholipase A2 isoenzymes[J]. FEBS J, 2005,272(5): 1 211-1 220.
|
[43] |
Ambrosio A L, Nonato M C, de Araujo H S S, et al. A molecular mechanism for Lys49-phospholipase A2 activity based on ligand-induced conformational change[J]. J Biol Chem, 2005,280(8): 7 326-7 335.
|
[44] |
Lee W H, da Silva Giotto M T, Marangoni S, et al. Structural basis for low catalytic activity in Lys49 phospholipases A2--a hypothesis: the crystal structure of piratoxin II complexed to fatty acid[J]. Biochemistry, 2001,40(1): 28-36.
|
[45] |
Singh G, Jasti J, Saravanan K, et al. Crystal structure of the complex formed between a group I phospholipase A2 and a naturally occurring fatty acid at 2.7 A resolution[J]. Protein Sci, 2005,14(2): 395-400.
|
[46] |
Jabeen T, Singh N, Singh R K, et al. Crystal structure of a heterodimer of phospholipase A2 from Naja naja sagittifera at 2.3 A resolution reveals the presence of a new PLA2-like protein with a novel cys 32-Cys 49 disulphide bridge with a bound sugar at the substrate-binding site[J]. Proteins, 2006,62(2): 329-337.
|
[47] |
Hu P, Sun L, Zhu Z Q, et al. Crystal structure of Natratoxin, a novel snake secreted phospholipaseA2 neurotoxin from Naja atra venom inhibiting A-type K(+) currents[J]. Proteins, 2008,72(2): 673-683.
|
[48] |
Chandra V, Jasti J, Kaur P, et al. Crystal structure of a complex formed between a snake venom phospholipase A(2) and a potent peptide inhibitor Phe-Leu-Ser-Tyr-Lys at 1.8 A resolution[J]. J Biol Chem, 2002,277(43): 41 079-41 085.
|
[49] |
Singh R K, Ethayathulla A S, Jabeen T, et al. Aspirin induces its anti-inflammatory effects through its specific binding to phospholipase A2: crystal structure of the complex formed between phospholipase A2 and aspirin at 1.9 angstroms resolution[J]. J Drug Target, 2005,13(2): 113-119.
|
[50] |
Chandra V, Jasti J, Kaur P, et al. Structural basis of phospholipase A2 inhibition for the synthesis of prostaglandins by the plant alkaloid aristolochic acid from a 1.7 A crystal structure[J]. Biochemistry, 2002,41(36): 10 914-10 919.
|
[51] |
Chandra V, Jasti J, Kaur P, et al. First structural evidence of a specific inhibition of phospholipase A2 by alpha-tocopherol (vitamin E) and its implications in inflammation: crystal structure of the complex formed between phospholipase A2 and alpha-tocopherol at 1.8 A resolution[J]. J Mol Biol, 2002,320(2): 215-222.
|
[52] |
Murakami M T, Arruda E Z, Melo P A, et al. Inhibition of myotoxic activity of Bothrops asper myotoxin II by the anti-trypanosomal drug suramin[J]. J Mol Biol, 2005,350(3): 416-426.
|
[53] |
Petrova T P A. Protein crystallography at subatomic resolution[J]. Reports on Progress In Physics, 2004,67(9): 1 565-1 605.
|
[54] |
Liu Q, Huang Q, Teng M, et al. The crystal structure of a novel, inactive, lysine 49 PLA2 from Agkistrodon acutus venom: an ultrahigh resolution, AB initio structure determination[J]. J Biol Chem, 2003,278(42): 41 400-41 408.
|
[55] |
Schreiber M C, Karlo J C, Kovalick G E. A novel cDNA from Drosophila encoding a protein with similarity to mammalian cysteine-rich secretory proteins, wasp venom antigen 5, and plant group 1 pathogenesis-related proteins[J]. Gene, 1997,191(2): 135-141.
|
[56] |
Olson J H, Xiang X, Ziegert T, et al. Allurin, a 21-kDa sperm chemoattractant from Xenopus egg jelly, is related to mammalian sperm-binding proteins[J]. Proc Natl Acad Sci U S A, 2001,98(20): 11 205-11 210.
|
[57] |
Ookuma S, Fukuda M, Nishida E. Identification of a DAF-16 transcriptional target gene, scl-1, that regulates longevity and stress resistance in Caenorhabditis elegans[J]. Curr Biol, 2003,13(5): 427-431.
|
[58] |
Mochca-Morales J, Martin B M, Possani L D. Isolation and characterization of helothermine, a novel toxin from Heloderma horridum horridum (Mexican beaded lizard) venom[J]. Toxicon, 1990,28(3): 299-309.
|
[59] |
Milne T J, Abbenante G, Tyndall J D A, et al. Isolation and characterization of a cone snail protease with homology to CRISP proteins of the pathogenesis-related protein superfamily[J]. J Biol Chem, 2003,278(33): 31 105-31 110.
|
[60] |
Morrissette J, Kratzschmar J, Haendler B, et al. Primary structure and properties of helothermine, a peptide toxin that blocks ryanodine receptors[J]. Biophys J, 1995,68(6): 2 280-2 288.
|
[61] |
Yamazaki Y, Koike H, Sugiyama Y, et al. Cloning and characterization of novel snake venom proteins that block smooth muscle contraction[J]. Eur J Biochem, 2002,269(11): 2 708-2 715.
|
[62] |
Brown R L, Haley T L, West K A, et al. Pseudechetoxin: a peptide blocker of cyclic nucleotide-gated ion channels[J]. Proc Natl Acad Sci U S A, 1999,96(2): 754-759.
|
[63] |
Wang J, Shen B, Guo M, et al. Blocking effect and crystal structure of natrin toxin, a cysteine-rich secretory protein from Naja atra venom that targets the BKCa channel[J]. Biochemistry, 2005,44(30): 10 145-10 152.
|
[64] |
Wang F, Li H, Liu M N, et al. Structural and functional analysis of natrin, a venom protein that targets various ion channels[J]. Biochem Biophys Res Commun, 2006,351(2): 443-448.
|
[65] |
Guo M, Teng M, Niu L, et al. Crystal structure of the cysteine-rich secretory protein stecrisp reveals that the cysteine-rich domain has a K+ channel inhibitor-like fold[J]. J Biol Chem, 2005,280(13): 12 405-12 412.
|
[66] |
Shikamoto Y, Suto K, Yamazaki Y, et al. Crystal structure of a CRISP family Ca2+ -channel blocker derived from snake venom[J]. J Mol Biol, 2005,350(4): 735-743.
|
[67] |
Pungercar J, Krizaj I. Understanding the molecular mechanism underlying the presynaptic toxicity of secreted phospholipases A2[J]. Toxicon, 2007,50(7): 871-892.
|
[68] |
Tsetlin V I, Karlsson E, Utkin Y N, et al. Interaction surfaces of neurotoxins and acetylcholine receptor[J]. Toxicon, 1982,20(1): 83-93.
|
[69] |
Martin B M, Chibber B A, Maelicke A. The sites of neurotoxicity in alpha-cobratoxin[J]. J Biol Chem, 1983,258(14): 8 714-8 722.
|
[70] |
Juan H F, Hung C C, Wang K T, et al. Comparison of three classes of snake neurotoxins by homology modeling and computer simulation graphics[J]. Biochem Biophys Res Commun, 1999,257(2): 500-510.
|
[71] |
Tsernoglou D, Petsko G A. The crystal structure of a post-synaptic neurotoxin from sea snake at A resolution[J]. FEBS Lett, 1976,68(1): 1-4.
|
[72] |
Low B W, Preston H S, Sato A, et al. Three dimensional structure of erabutoxin b neurotoxic protein: inhibitor of acetylcholine receptor[J]. Proc Natl Acad Sci U S A, 1976,73(9): 2 991-2 994.
|
[73] |
Bourne Y, Talley T T, Hansen S B, et al. Crystal structure of a Cbtx-AChBP complex reveals essential interactions between snake alpha-neurotoxins and nicotinic receptors[J]. EMBO J, 2005,24(8): 1 512-1 522.
|
[74] |
Lou X, Liu Q, Tu X, et al. The atomic resolution crystal structure of atratoxin determined by single wavelength anomalous diffraction phasing[J]. J Biol Chem, 2004,279(37): 39 094-39 104.
|
[75] |
Lou X, Tu X, Pan G, et al. Purification, N-terminal sequencing, crystallization and preliminary structural determination of atratoxin-b, a short-chain alpha-neurotoxin from Naja atra venom[J]. Acta Crystallogr D Biol Crystallogr, 2003,59(Pt 6): 1 038-1 042.
|
[76] |
Tu X, Huang Q, Lou X, et al. Purification, N-terminal sequencing, crystallization and preliminary X-ray diffraction analysis of atratoxin, a new short-chain alpha-neurotoxin from the venom of Naja naja atra[J]. Acta Crystallogr D Biol Crystallogr, 2002,58(Pt 5): 839-842.
|
[77] |
Xu G, Ulrichts H, Vauterin S, et al. How does agkicetin-C bind on platelet glycoprotein Ibalpha and achieve its platelet effects[J]. Toxicon, 2005,45(5): 561-570.
|
[78] |
Zhang H, Yang Q, Sun M, et al. Hydrogen peroxide produced by two amino acid oxidases mediates antibacterial actions[J]. J Microbiol, 2004,42(4): 336-339.
|
[79] |
Xu G, Teng M, Niu L, et al. Purification, characterization, crystallization and preliminary X-ray crystallographic analysis of two novel C-type lectin-like proteins: Aall-A and Aall-B from Deinagkistrodon acutus venom[J]. Acta Crystallogr D Biol Crystallogr, 2004,60(Pt 11): 2 035-2 037.
|
[80] |
Zang J, Teng M, Niu L. Purification, crystallization and preliminary crystallographic analysis of AHP IX-bp, a zinc ion and pH-dependent coagulation factor IX binding protein from Agkistrodon halys Pallas venom[J]. Acta Crystallogr D Biol Crystallogr, 2003,59(Pt 4): 730-733.
|
[81] |
Liu S, Zhu Z, Sun J, et al. Purification, crystallization and preliminary X-ray crystallographic analysis of agkaggregin, a C-type lectin-like protein from Agkistrodon acutus venom[J]. Acta Crystallogr D Biol Crystallogr, 2002,58(Pt 4): 675-678.
|
[82] |
Rong H, Li Y, Lou X, et al. Purification, partial characterization, crystallization and preliminary X-ray diffraction of a novel cardiotoxin-like basic protein from Naja naja atra (South Anhui) venom[J]. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2007,63(Pt 2): 130-134.
|
[83] |
Zhang H, Teng M, Niu L, et al. Purification, partial characterization, crystallization and structural determination of AHP-LAAO, a novel L-amino-acid oxidase with cell apoptosis-inducing activity from Agkistrodon halys pallas venom[J]. Acta Crystallogr D Biol Crystallogr, 2004,60(Pt 5): 974-977.
|
[84] |
Shikamoto Y, Morita T, Fujimoto Z, et al. Crystal structure of Mg2+- and Ca2+-bound Gla domain of factor IX complexed with binding protein[J]. J Biol Chem, 2003,278(26): 24 090-24 094.
|
[85] |
Fukuda K, Doggett T, Laurenzi I J, et al. The snake venom protein botrocetin acts as a biological brace to promote dysfunctional platelet aggregation[J]. Nat Struct Mol Biol, 2005,12(2): 152-159.
|