[1] |
Trinchieri G, Sher A. Cooperation of Toll-like receptor signals in innate immune defence[J]. Nat Rev Immunol, 2007,7(3):179-190.
|
[2] |
Miyake K. Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors[J]. Semin Immunol, 2007,19 (1):3-10.
|
[3] |
Kawai T, Akira S. TLR signaling[J]. Semin Immunol, 2007,19(1):24-32.
|
[4] |
Moretta L, Bottino C, Pende D, et al. Surface NK receptors and their ligands on tumor cells[J]. Semin Immunol, 2006,18(3):151-158.
|
[5] |
Kabelitz D, Medzhitov R. Innate immunity: Cross-talk with adaptive immunity through pattern recognition receptors and cytokines[J]. Curr Opin Immunol, 2007, 19(1):1-3.
|
[6] |
Moretta L, Moretta A. Unravelling natural killer cell function: Triggering and inhibitory human NK receptors[J]. EMBO J, 2004,23(2): 255-259.
|
[7] |
Zhang C, Zhang J, Wei H, et al. Imbalance of NKG2D and its inhibitory counterparts: How does tumor escape from innate immunity[J]. Int Immunopharmacol, 2005, 5(7-8):1 099-1 111.
|
[8] |
Wu P, Wei H, Zhang C, et al. Regulation of NK cell activation by stimulatory and inhibitory receptors in tumor escape from innate immunity[J]. Front Biosci, 2005,10:3 132-3 142.
|
[9] |
Ljunggren H G, Krre K. In search of the “missing self”: MHC molecules and NK cell recognition[J]. Immunol Today, 1990,11(7):237-244.
|
[10] |
Raulet D H. Roles of the NKG2D immunoreceptor and its ligands[J]. Nat Rev Immunol, 2003,3(10):781-790.
|
[11] |
Watzl C. The NKG2D receptor and its ligands-recognition beyond the “missing self”[J]. Microbes and Infection, 2003,5(1):31-37.
|
[12] |
魏海明,邬鹏,田志刚. NK细胞识别的新模式:压力诱导模式[J]. 中国肿瘤生物治疗杂志,2005,12(2):85-88.
|
[13] |
Long E O, Rajagopalan S. Stress signals activate natural killer cells[J]. J Exp Med, 2002,196(11):1 399-1 402.
|
[14] |
Michalsson J, Teixeira de Matos C, Achour A, et al. A signal peptide derived from hsp60 binds HLA-E and interferes with CD94/NKG2A recognition[J]. J Exp Med, 2002,196(11):1 403-1 414.
|
[15] |
Hamerman J A, Ogasawara K, Lanier L L. Cutting edge: Toll-like receptor signaling in macrophages induces ligands for the NKG2D receptor[J]. J Immunol, 2004,172(4): 2 001-2 005.
|
[16] |
Schreiner B, Voss J, Wischhusen J, et al. Expression of toll-like receptors by human muscle cells in vitro and in vivo: TLR3 is highly expressed in inflammatory and HIV myopathies, mediates IL-8 release and up-regulation of NKG2D-ligands[J]. FASEB J, 2006,20(1):118-120.
|
[17] |
Dong Z, Wei H, Sun R, et al. Involvement of natural killer cells in PolyI:C-induced liver injury[J]. J Hepatol, 2004,41(6):966-973.
|
[18] |
Wang J, Sun R, Wei H, et al. Pre-activation of T lymphocytes by low dose of concanavalin A aggravates toll-like receptor-3 ligand-induced NK cell-mediated liver injury[J]. Int Immunopharmacol, 2006,6(5):800-807.
|
[19] |
Wang J, Sun R, Wei H, et al. Poly I:C prevents T cell-mediated hepatitis via an NK-dependent mechanism[J]. J Hepatol, 2006,44(3):446-454.
|
[20] |
Jiang W, Sun R, Wei H, Tian Z. Toll-like receptor 3 ligand attenuates LPS-induced liver injury by down-regulation of toll-like receptor 4 expression on macrophages[J]. Proc Natl Acad Sci U S A, 2005,102(47):17 077-17 082.
|
[21] |
Radaeva S, Sun R, Jaruga B, et al. Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners[J]. Gastroenterology, 2006,130(2):435-452.
|
[22] |
Chen Y, Sun R, Jiang W, et al. Liver-specific HBsAg transgenic mice are over-sensitive to Poly(I:C)-induced liver injury in NK cell-and IFN-gamma-dependent manner[J]. J Hepatol, 2007,47(2):183-190.
|
[23] |
Zhang J, Sun R, Wei H, et al. Toll-like receptor 3 agonist enhances IFN-gamma and TNF-alpha production by murine uterine NK cells[J]. Int Immunopharmacol, 2007,7(5):588-596.
|
[24] |
Zhang J, Wei H, Wu D, Tian Z. Toll-like receptor 3 agonist induces impairment of uterine vascular remodeling and fetal losses in CBAxDBA/2 mice[J]. J Reprod Immunol, 2007,74(1-2):61-67.
|
[25] |
Zhou R, Wei H, Sun R, et al. NKG2D recognition mediates Toll-like receptor 3 signaling-induced breakdown of epithelial homeostasis in the small intestines of mice[J]. Proc Natl Acad Sci U S A, 2007,104(18):7 512-7 515.
|
[26] |
Zhou R, Wei H, Sun R, Tian Z. Recognition of double-stranded RNA by TLR3 induces severe small intestinal injury in mice[J]. J Immunol, 2007,178(7):4 548-4 556.
|
[27] |
Zhou R, Wei H, Tian Z. NK3-like NK cells are involved in protective effect of polyinosinic-polycytidylic acid on type 1 diabetes in nonobese diabetic mice[J]. J Immunol, 2007,178(4):2 141-2 147.
|
[28] |
Hart OM, Athie-Morales V, OConnor G M, et al. TLR7/8-mediated activation of human NK cells results in accessory cell-dependent IFN-γ production[J]. J Immunol, 2005,175(3):1 636-1 642.
|
[29] |
Sawaki J, Tsutsui H, Hayashi N, et al. Type 1 cytokine/chemokine production by mouse NK cells following activation of their TLR/MyD88-mediated pathways[J]. Int Immunol, 2007,19(3):311-320.
|
[30] |
Newman K C, Riley E M. Whatever turns you on: Accessory-cell-dependent activation of NK cells by pathogens[J]. Nat Rev Immunol, 2007, 7(4):279-291.
|
[31] |
Cooper M A, Fehniger T A, Fuchs A, et al. NK cell and DC interactions[J]. Trends Immunol, 2004, 25(1):47-52.
|
[32] |
Moretta A. Natural killer cells and dendritic cells: Rendezvous in abused tissues[J]. Nat Rev Immunol, 2002,2:957-963.
|
[33] |
Raulet D. Interplay of natural killer cells and their receptors with the adaptive immune responses[J]. Nat Immunol, 2004, 5(10): 996-1 002.
|
[34] |
Zitvogel L. Dendritic and Natural killer cells cooperate in the control/switch of innate immunity[J]. J Exp Med, 2002,195(3):F9-F14.
|
[35] |
Moretta L, Ferlazzo G, Mingari M C, et al. Human natural killer cell function and their interactions with dendritic cells[J]. Vaccine, 2003,21 Suppl 2:S38-42.
|
[36] |
Geldhof A B, Van Ginderachter J A, Liu Y, et al. Antagonistic effect of NK cells on alternatively activated monocytes: a contribution of NK cells to CTL generation[J]. Blood, 2002, 100: 4 049-4 058.
|
[37] |
Kelly J M, Darcy P K, Markby J L, et al. Induction of tumor-specific T cell memory by NK cell-mediated tumor rejection[J]. Nat Immunol, 2002, 3(1):83-90.
|
[38] |
Wilcox R A, Tamada K, Strome S E, et al. Signaling through NK cell-associated CD137 promotes both helper function for CD8+ cytolytic T cells and responsiveness to IL-2 but not cytolytic activity[J]. J Immunol, 2002,169(8):4 230-4 236.
|
[39] |
Assarsson E, Kambayashi T, Schatzle J D, et al. NK cells stimulate proliferation of T and NK cells through 2B4/CD48 interactions[J]. J Immunol, 2004,173:174-180.
|
[40] |
Zingoni A, Sornasse T, Cocks B G, et al. NK cell regulation of T cell-mediated responses[J]. Mol Immunol, 2005, 42:451-454.
|
[41] |
Hanna J, Gonen-Gross T, Fitchett J, et al. Novel APC-like properties of human NK cells directly regulate T cell activation[J]. J Clin Invest, 2004, 114:1 612-1 623.
|
[42] |
Zhang R, Zheng X, Li B, et al. Human NK cells positively regulate gammadelta T cells in response to Mycobacterium tuberculosis[J]. J Immunol, 2006, 176(4):2 610-2 616.
|
[43] |
Della Chiesa M, Vitale M, Carlomagno S, et al. The natural killer cell-mediated killing of autologous dendritic cells is confined to a cell subset expressing CD94/NKG2A, but lacking inhibitory killer Ig-like receptors[J]. Eur J Immunol, 2003, 33: 1 657-1 666.
|
[44] |
Trivedi P P, Roberts P C, Wolf N A, et al. NK cells inhibit T cell proliferation via p21-mediated cell cycle arrest[J]. J Immunol, 2005,174(8):4 590-4 597.
|
[45] |
Takeda K, Hayakawa Y, Van Kaer L, et al. Critical contribution of liver natural killer T cells to a murine model of hepatitis[J]. Proc Natl Acad Sci U S A, 2000, 97(10):5 498-5 503.
|
[46] |
Chen Y, Wei H, Sun R, et al. Increased susceptibility to liver injury in hepatitis B virus transgenic mice involves NKG2D-ligand interaction and natural killer cells[J]. Hepatology, 2007,46(3):706-715.
|
[47] |
Dong Z, Zhang J, Sun R, et al. Impairment of liver regeneration correlates with activated hepatic NKT cells in HBV transgenic mice[J]. Hepatology, 2007, 45(6):1 400-1 412.
|
[48] |
Li B, Sun R, Wei H, et al. Interleukin-15 prevents concanavalin A-induced liver injury in mice via NKT cell-dependent mechanism[J]. Hepatology, 2006, 43(6):1 211-1 219.
|
[49] |
Chen Q, Wei H, Sun R, et al. Therapeutic RNA silencing of Cys-X3-Cys chemokine ligand 1 gene prevents mice from adenovirus vector-induced acute liver injury[J]. Hepatology, 2008, 47(2):648-658.
|
[50] |
Gao B, Jeong W I, Tian Z. Liver: An organ with predominant innate immunity[J]. Hepatology, 2008, 47(2):729-736.
|
[51] |
Dong Z, Wei H, Sun R, Tian Z. The roles of innate immune cells in liver injury and regeneration[J]. Cell Mol Immunol, 2007, 4(4):241-252.
|
[52] |
Xu W, Fazekas G, Hara H, et al. Mechanism of natural killer (NK) cell regulatory role in experimental autoimmune encephalomyelitis[J]. J Neuroimmunol, 2005,163(1-2):24-30.
|
[53] |
Takahashi K, Aranami T, Endoh M, et al. The regulatory role of natural killer cells in multiple sclerosis[J]. Brain, 2004,127(Pt 9):1 917-1 927.
|
[54] |
Cooper M A, Fehniger T A, Caligiuri M A, et al. The biology of human natural killer-cell subsets[J]. Trends Immunol, 2001, 22: 633-640.
|
[55] |
Jacobs R, Hintzen G, Kemper A, et al. CD56bright cells differ in their KIR repertoire and cytotoxic features from CD56dim NK cells[J]. Eur J Immunol, 2001, 31: 3 121-3 126.
|
[56] |
Zheng X, Wang Y, Wei H, et al. Bcl-xL is associated with the anti-apoptotic effect of IL-15 on the survival of CD56dim natural killer cells[J]. Mol Immunol 2008(in press).
|
[57] |
Bauernhofer T, Kuss I, Henderson B, et al. Preferential apoptosis of CD56dim natural killer cell subset in patients with cancer[J]. Eur J Immunol, 2003, 33:119-124.
|
[58] |
Koopman L A, Kopcow H D, Rybalov B, et al. Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential[J]. J Exp Med, 2003, 198(8):1 201-1 212.
|
[59] |
Eidukaite A, Siaurys A, Tamosiunas V. Differential expression of KIR/NKAT2 and CD94 molecules on decidual and peripheral blood CD56bright and CD56dim natural killer cell subsets[J]. Fertility and Sterility, 2004, 81(suppl.1):863-868.
|
[60] |
田志刚,孙汭. NK细胞的免疫学调节功能[J]. 国外医学肿瘤学分册,1997, 24(3):136-138.
|
[61] |
田志刚. NK细胞的免疫学调节功能:“NKh1/NKh2假说”的提出[J]. 细胞与分子免疫学杂志,2000, 16(5): 371.
|
[62] |
Peritt D, Robertson S, Gri G, et al. Cutting Edge: Differentiation of human NK cells into NK1 and NK2 subsets[J]. J Immunol, 1998, 161:5 821-5 824.
|
[63] |
Deniz G, Akdis M, Aktas E, et al. Human NK1 and NK2 subsets determined by purification of IFN-γ-secreting and IFN-γ-nonsecreting NK cells[J]. Eur J Immunol, 2002, 32: 879-884.
|
[64] |
Loza M J, Perussia B. Final steps of natural killer cell maturation: A model for type1-type2 differentiation[J]. Nat Immunol, 2001,2:917-921.
|
[65] |
Wei H, Zhang J, Xiao W, et al. Involvement of human natural killer cells in asthma pathogenesis: Natural killer cell 2 cells in type 2 cytokine predominance[J]. J Allergy Clin Immunol, 2005, 115(4):841-847.
|
[66] |
Zhang C, Zhang J, Tian Z. The regulatory effect of natural killer cells: Do “NK-reg cells” exist?[J]. Cell Mol Immunol, 2006,3(4):241-254.
|
[1] |
Trinchieri G, Sher A. Cooperation of Toll-like receptor signals in innate immune defence[J]. Nat Rev Immunol, 2007,7(3):179-190.
|
[2] |
Miyake K. Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors[J]. Semin Immunol, 2007,19 (1):3-10.
|
[3] |
Kawai T, Akira S. TLR signaling[J]. Semin Immunol, 2007,19(1):24-32.
|
[4] |
Moretta L, Bottino C, Pende D, et al. Surface NK receptors and their ligands on tumor cells[J]. Semin Immunol, 2006,18(3):151-158.
|
[5] |
Kabelitz D, Medzhitov R. Innate immunity: Cross-talk with adaptive immunity through pattern recognition receptors and cytokines[J]. Curr Opin Immunol, 2007, 19(1):1-3.
|
[6] |
Moretta L, Moretta A. Unravelling natural killer cell function: Triggering and inhibitory human NK receptors[J]. EMBO J, 2004,23(2): 255-259.
|
[7] |
Zhang C, Zhang J, Wei H, et al. Imbalance of NKG2D and its inhibitory counterparts: How does tumor escape from innate immunity[J]. Int Immunopharmacol, 2005, 5(7-8):1 099-1 111.
|
[8] |
Wu P, Wei H, Zhang C, et al. Regulation of NK cell activation by stimulatory and inhibitory receptors in tumor escape from innate immunity[J]. Front Biosci, 2005,10:3 132-3 142.
|
[9] |
Ljunggren H G, Krre K. In search of the “missing self”: MHC molecules and NK cell recognition[J]. Immunol Today, 1990,11(7):237-244.
|
[10] |
Raulet D H. Roles of the NKG2D immunoreceptor and its ligands[J]. Nat Rev Immunol, 2003,3(10):781-790.
|
[11] |
Watzl C. The NKG2D receptor and its ligands-recognition beyond the “missing self”[J]. Microbes and Infection, 2003,5(1):31-37.
|
[12] |
魏海明,邬鹏,田志刚. NK细胞识别的新模式:压力诱导模式[J]. 中国肿瘤生物治疗杂志,2005,12(2):85-88.
|
[13] |
Long E O, Rajagopalan S. Stress signals activate natural killer cells[J]. J Exp Med, 2002,196(11):1 399-1 402.
|
[14] |
Michalsson J, Teixeira de Matos C, Achour A, et al. A signal peptide derived from hsp60 binds HLA-E and interferes with CD94/NKG2A recognition[J]. J Exp Med, 2002,196(11):1 403-1 414.
|
[15] |
Hamerman J A, Ogasawara K, Lanier L L. Cutting edge: Toll-like receptor signaling in macrophages induces ligands for the NKG2D receptor[J]. J Immunol, 2004,172(4): 2 001-2 005.
|
[16] |
Schreiner B, Voss J, Wischhusen J, et al. Expression of toll-like receptors by human muscle cells in vitro and in vivo: TLR3 is highly expressed in inflammatory and HIV myopathies, mediates IL-8 release and up-regulation of NKG2D-ligands[J]. FASEB J, 2006,20(1):118-120.
|
[17] |
Dong Z, Wei H, Sun R, et al. Involvement of natural killer cells in PolyI:C-induced liver injury[J]. J Hepatol, 2004,41(6):966-973.
|
[18] |
Wang J, Sun R, Wei H, et al. Pre-activation of T lymphocytes by low dose of concanavalin A aggravates toll-like receptor-3 ligand-induced NK cell-mediated liver injury[J]. Int Immunopharmacol, 2006,6(5):800-807.
|
[19] |
Wang J, Sun R, Wei H, et al. Poly I:C prevents T cell-mediated hepatitis via an NK-dependent mechanism[J]. J Hepatol, 2006,44(3):446-454.
|
[20] |
Jiang W, Sun R, Wei H, Tian Z. Toll-like receptor 3 ligand attenuates LPS-induced liver injury by down-regulation of toll-like receptor 4 expression on macrophages[J]. Proc Natl Acad Sci U S A, 2005,102(47):17 077-17 082.
|
[21] |
Radaeva S, Sun R, Jaruga B, et al. Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners[J]. Gastroenterology, 2006,130(2):435-452.
|
[22] |
Chen Y, Sun R, Jiang W, et al. Liver-specific HBsAg transgenic mice are over-sensitive to Poly(I:C)-induced liver injury in NK cell-and IFN-gamma-dependent manner[J]. J Hepatol, 2007,47(2):183-190.
|
[23] |
Zhang J, Sun R, Wei H, et al. Toll-like receptor 3 agonist enhances IFN-gamma and TNF-alpha production by murine uterine NK cells[J]. Int Immunopharmacol, 2007,7(5):588-596.
|
[24] |
Zhang J, Wei H, Wu D, Tian Z. Toll-like receptor 3 agonist induces impairment of uterine vascular remodeling and fetal losses in CBAxDBA/2 mice[J]. J Reprod Immunol, 2007,74(1-2):61-67.
|
[25] |
Zhou R, Wei H, Sun R, et al. NKG2D recognition mediates Toll-like receptor 3 signaling-induced breakdown of epithelial homeostasis in the small intestines of mice[J]. Proc Natl Acad Sci U S A, 2007,104(18):7 512-7 515.
|
[26] |
Zhou R, Wei H, Sun R, Tian Z. Recognition of double-stranded RNA by TLR3 induces severe small intestinal injury in mice[J]. J Immunol, 2007,178(7):4 548-4 556.
|
[27] |
Zhou R, Wei H, Tian Z. NK3-like NK cells are involved in protective effect of polyinosinic-polycytidylic acid on type 1 diabetes in nonobese diabetic mice[J]. J Immunol, 2007,178(4):2 141-2 147.
|
[28] |
Hart OM, Athie-Morales V, OConnor G M, et al. TLR7/8-mediated activation of human NK cells results in accessory cell-dependent IFN-γ production[J]. J Immunol, 2005,175(3):1 636-1 642.
|
[29] |
Sawaki J, Tsutsui H, Hayashi N, et al. Type 1 cytokine/chemokine production by mouse NK cells following activation of their TLR/MyD88-mediated pathways[J]. Int Immunol, 2007,19(3):311-320.
|
[30] |
Newman K C, Riley E M. Whatever turns you on: Accessory-cell-dependent activation of NK cells by pathogens[J]. Nat Rev Immunol, 2007, 7(4):279-291.
|
[31] |
Cooper M A, Fehniger T A, Fuchs A, et al. NK cell and DC interactions[J]. Trends Immunol, 2004, 25(1):47-52.
|
[32] |
Moretta A. Natural killer cells and dendritic cells: Rendezvous in abused tissues[J]. Nat Rev Immunol, 2002,2:957-963.
|
[33] |
Raulet D. Interplay of natural killer cells and their receptors with the adaptive immune responses[J]. Nat Immunol, 2004, 5(10): 996-1 002.
|
[34] |
Zitvogel L. Dendritic and Natural killer cells cooperate in the control/switch of innate immunity[J]. J Exp Med, 2002,195(3):F9-F14.
|
[35] |
Moretta L, Ferlazzo G, Mingari M C, et al. Human natural killer cell function and their interactions with dendritic cells[J]. Vaccine, 2003,21 Suppl 2:S38-42.
|
[36] |
Geldhof A B, Van Ginderachter J A, Liu Y, et al. Antagonistic effect of NK cells on alternatively activated monocytes: a contribution of NK cells to CTL generation[J]. Blood, 2002, 100: 4 049-4 058.
|
[37] |
Kelly J M, Darcy P K, Markby J L, et al. Induction of tumor-specific T cell memory by NK cell-mediated tumor rejection[J]. Nat Immunol, 2002, 3(1):83-90.
|
[38] |
Wilcox R A, Tamada K, Strome S E, et al. Signaling through NK cell-associated CD137 promotes both helper function for CD8+ cytolytic T cells and responsiveness to IL-2 but not cytolytic activity[J]. J Immunol, 2002,169(8):4 230-4 236.
|
[39] |
Assarsson E, Kambayashi T, Schatzle J D, et al. NK cells stimulate proliferation of T and NK cells through 2B4/CD48 interactions[J]. J Immunol, 2004,173:174-180.
|
[40] |
Zingoni A, Sornasse T, Cocks B G, et al. NK cell regulation of T cell-mediated responses[J]. Mol Immunol, 2005, 42:451-454.
|
[41] |
Hanna J, Gonen-Gross T, Fitchett J, et al. Novel APC-like properties of human NK cells directly regulate T cell activation[J]. J Clin Invest, 2004, 114:1 612-1 623.
|
[42] |
Zhang R, Zheng X, Li B, et al. Human NK cells positively regulate gammadelta T cells in response to Mycobacterium tuberculosis[J]. J Immunol, 2006, 176(4):2 610-2 616.
|
[43] |
Della Chiesa M, Vitale M, Carlomagno S, et al. The natural killer cell-mediated killing of autologous dendritic cells is confined to a cell subset expressing CD94/NKG2A, but lacking inhibitory killer Ig-like receptors[J]. Eur J Immunol, 2003, 33: 1 657-1 666.
|
[44] |
Trivedi P P, Roberts P C, Wolf N A, et al. NK cells inhibit T cell proliferation via p21-mediated cell cycle arrest[J]. J Immunol, 2005,174(8):4 590-4 597.
|
[45] |
Takeda K, Hayakawa Y, Van Kaer L, et al. Critical contribution of liver natural killer T cells to a murine model of hepatitis[J]. Proc Natl Acad Sci U S A, 2000, 97(10):5 498-5 503.
|
[46] |
Chen Y, Wei H, Sun R, et al. Increased susceptibility to liver injury in hepatitis B virus transgenic mice involves NKG2D-ligand interaction and natural killer cells[J]. Hepatology, 2007,46(3):706-715.
|
[47] |
Dong Z, Zhang J, Sun R, et al. Impairment of liver regeneration correlates with activated hepatic NKT cells in HBV transgenic mice[J]. Hepatology, 2007, 45(6):1 400-1 412.
|
[48] |
Li B, Sun R, Wei H, et al. Interleukin-15 prevents concanavalin A-induced liver injury in mice via NKT cell-dependent mechanism[J]. Hepatology, 2006, 43(6):1 211-1 219.
|
[49] |
Chen Q, Wei H, Sun R, et al. Therapeutic RNA silencing of Cys-X3-Cys chemokine ligand 1 gene prevents mice from adenovirus vector-induced acute liver injury[J]. Hepatology, 2008, 47(2):648-658.
|
[50] |
Gao B, Jeong W I, Tian Z. Liver: An organ with predominant innate immunity[J]. Hepatology, 2008, 47(2):729-736.
|
[51] |
Dong Z, Wei H, Sun R, Tian Z. The roles of innate immune cells in liver injury and regeneration[J]. Cell Mol Immunol, 2007, 4(4):241-252.
|
[52] |
Xu W, Fazekas G, Hara H, et al. Mechanism of natural killer (NK) cell regulatory role in experimental autoimmune encephalomyelitis[J]. J Neuroimmunol, 2005,163(1-2):24-30.
|
[53] |
Takahashi K, Aranami T, Endoh M, et al. The regulatory role of natural killer cells in multiple sclerosis[J]. Brain, 2004,127(Pt 9):1 917-1 927.
|
[54] |
Cooper M A, Fehniger T A, Caligiuri M A, et al. The biology of human natural killer-cell subsets[J]. Trends Immunol, 2001, 22: 633-640.
|
[55] |
Jacobs R, Hintzen G, Kemper A, et al. CD56bright cells differ in their KIR repertoire and cytotoxic features from CD56dim NK cells[J]. Eur J Immunol, 2001, 31: 3 121-3 126.
|
[56] |
Zheng X, Wang Y, Wei H, et al. Bcl-xL is associated with the anti-apoptotic effect of IL-15 on the survival of CD56dim natural killer cells[J]. Mol Immunol 2008(in press).
|
[57] |
Bauernhofer T, Kuss I, Henderson B, et al. Preferential apoptosis of CD56dim natural killer cell subset in patients with cancer[J]. Eur J Immunol, 2003, 33:119-124.
|
[58] |
Koopman L A, Kopcow H D, Rybalov B, et al. Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential[J]. J Exp Med, 2003, 198(8):1 201-1 212.
|
[59] |
Eidukaite A, Siaurys A, Tamosiunas V. Differential expression of KIR/NKAT2 and CD94 molecules on decidual and peripheral blood CD56bright and CD56dim natural killer cell subsets[J]. Fertility and Sterility, 2004, 81(suppl.1):863-868.
|
[60] |
田志刚,孙汭. NK细胞的免疫学调节功能[J]. 国外医学肿瘤学分册,1997, 24(3):136-138.
|
[61] |
田志刚. NK细胞的免疫学调节功能:“NKh1/NKh2假说”的提出[J]. 细胞与分子免疫学杂志,2000, 16(5): 371.
|
[62] |
Peritt D, Robertson S, Gri G, et al. Cutting Edge: Differentiation of human NK cells into NK1 and NK2 subsets[J]. J Immunol, 1998, 161:5 821-5 824.
|
[63] |
Deniz G, Akdis M, Aktas E, et al. Human NK1 and NK2 subsets determined by purification of IFN-γ-secreting and IFN-γ-nonsecreting NK cells[J]. Eur J Immunol, 2002, 32: 879-884.
|
[64] |
Loza M J, Perussia B. Final steps of natural killer cell maturation: A model for type1-type2 differentiation[J]. Nat Immunol, 2001,2:917-921.
|
[65] |
Wei H, Zhang J, Xiao W, et al. Involvement of human natural killer cells in asthma pathogenesis: Natural killer cell 2 cells in type 2 cytokine predominance[J]. J Allergy Clin Immunol, 2005, 115(4):841-847.
|
[66] |
Zhang C, Zhang J, Tian Z. The regulatory effect of natural killer cells: Do “NK-reg cells” exist?[J]. Cell Mol Immunol, 2006,3(4):241-254.
|