ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Astronomy 12 October 2024

On joint analysing XMM-NuSTAR spectra of active galactic nuclei

Cite this:
https://doi.org/10.52396/JUSTC-2023-0160
More Information
  • Author Bio:

    Jialai Kang is currently a Ph.D. student under the supervision of Professor Junxian Wang at the University of Science and Technology of China. His research mainly focuses on active galactic nuclei

    Junxian Wang is currently a Professor at the University of Science and Technology of China (USTC). He received his Ph.D. degree from USTC in 2001. His research mainly focuses on active galactic nuclei and high redshift galaxies

  • Corresponding author: E-mail: ericofk@mail.ustc.edu.cn; E-mail: jxw@ustc.edu.cn
  • Received Date: 27 November 2023
  • Accepted Date: 28 February 2024
  • Available Online: 12 October 2024
  • A recently released XMM-Newton note revealed a significant calibration issue between nuclear spectroscopic telescope array (NuSTAR) and XMM-Newton European Photon Imaging Camera (EPIC) and provided an empirical correction to the EPIC effective area. To quantify the bias caused by the calibration issue in the joint analysis of XMM-NuSTAR spectra and verify the effectiveness of the correction, in this work, we perform joint-fitting of the NuSTAR and EPIC-pn spectra for a large sample of 104 observation pairs of 44 X-ray bright active galactic nuclei (AGN). The spectra were extracted after requiring perfect simultaneity between the XMM-Newton and NuSTAR exposures (merging good time intervals (GTIs) from two missions) to avoid bias due to the rapid spectral variability of the AGN. Before the correction, the EPIC-pn spectra are systematically harder than the corresponding NuSTAR spectra by $\Delta \varGamma \sim 0.1 $, subsequently yielding significantly underestimated cutoff energy Ecut and the strength of reflection component R when performing joint-fitting. We confirm that the correction is highly effective and can commendably erase the discrepancy in best-fit Γ, Ecut, and R. We thus urge the community to apply the correction when joint-fitting XMM-NuSTAR spectra, but note that the correction is limited to 3–12 keV and therefore not applicable when the soft X-ray band data are included. Besides, we show that as merging GTIs from two missions would cause severe loss of NuSTAR net exposure time, in many cases, joint-fitting yields no advantage compared with utilizing NuSTAR data alone. Finally, We present a technical note on filtering periods of high background flares for XMM-Newton EPIC-pn exposures in the small window (SW) mode.
    Γ, Ecut , and R derived through fitting the NuSTAR spectra alone versus joint-fitting XMM-NuSTAR spectra (before/after the ARF correction).
    A recently released XMM-Newton note revealed a significant calibration issue between nuclear spectroscopic telescope array (NuSTAR) and XMM-Newton European Photon Imaging Camera (EPIC) and provided an empirical correction to the EPIC effective area. To quantify the bias caused by the calibration issue in the joint analysis of XMM-NuSTAR spectra and verify the effectiveness of the correction, in this work, we perform joint-fitting of the NuSTAR and EPIC-pn spectra for a large sample of 104 observation pairs of 44 X-ray bright active galactic nuclei (AGN). The spectra were extracted after requiring perfect simultaneity between the XMM-Newton and NuSTAR exposures (merging good time intervals (GTIs) from two missions) to avoid bias due to the rapid spectral variability of the AGN. Before the correction, the EPIC-pn spectra are systematically harder than the corresponding NuSTAR spectra by $\Delta \varGamma \sim 0.1 $, subsequently yielding significantly underestimated cutoff energy Ecut and the strength of reflection component R when performing joint-fitting. We confirm that the correction is highly effective and can commendably erase the discrepancy in best-fit Γ, Ecut, and R. We thus urge the community to apply the correction when joint-fitting XMM-NuSTAR spectra, but note that the correction is limited to 3–12 keV and therefore not applicable when the soft X-ray band data are included. Besides, we show that as merging GTIs from two missions would cause severe loss of NuSTAR net exposure time, in many cases, joint-fitting yields no advantage compared with utilizing NuSTAR data alone. Finally, We present a technical note on filtering periods of high background flares for XMM-Newton EPIC-pn exposures in the small window (SW) mode.
    • In this work, we perform joint-fitting of NuSTAR and EPIC-pn spectra for a large sample of 104 observation pairs of 44 X-ray bright AGN. EPIC-pn spectra are systematically harder than those of NuSTAR (∆Γ ~ 0.1), leading to an underestimated of the cutoff energy Ecut and the reflection component R when performing joint-fitting before correcting the calibration issue.
    • The empirical correction of the effective area implemented in latest XMM-Newton calibration files (but would not be applied by default) is highly effective and could commendably erase the discrepancy in the derived best-fit Γ, Ecut, and R.
    • For this sample, requiring perfect simultaneity between the NuSTAR and EPIC-pn spectra leads to severse loss of the net exposure time of NuSTAR. Consequently, fitting NuSTAR spectra jointly with simultaneous EPIC-pn data does not always improve the constraints on the key spectral parameters.
    • For XMM-Newton EPIC-pn observations in small window (SW) mode, insufficient filtering of high background flares could bias the spectral fitting results due to the background vignetting effect, which is no longer negligible in case of background flares. A threshold of 0.05 counts/s to filter background flares appears appropriate for EPIC-pn SW mode.

  • loading
  • [1]
    Harrison F A, Craig W W, Christensen F E, et al. The Nuclear Spectroscopic Telescope Array ( NuSTAR) high-energy X-ray mission. The Astrophysical Journal, 2013, 770: 103. doi: 10.1088/0004-637x/770/2/103
    [2]
    Haardt F, Maraschi L. A two-phase model for the X-ray emission from Seyfert galaxies. The Astrophysical Journal, 1991, 380: L51. doi: 10.1086/186171
    [3]
    Haardt F, Maraschi L. X-ray spectra from two-phase accretion disks. The Astrophysical Journal, 1993, 413: 507. doi: 10.1086/173020
    [4]
    Brenneman L W, Madejski G, Fuerst F, et al. The broad-band X-ray spectrum of IC 4329a from a joint NuSTAR/Suzaku observation. The Astrophysical Journal, 2014, 788: 61. doi: 10.1088/0004-637x/788/1/61
    [5]
    Matt G, Baloković M, Marinucci A, et al. The hard X-ray spectrum of NGC 5506 as seen by NuSTAR. Monthly Notices of the Royal Astronomical Society, 2015, 447: 3029–3033. doi: 10.1093/mnras/stu2653
    [6]
    Fabian A C, Lohfink A, Kara E, et al. Properties of AGN coronae in the NuSTAR era. Monthly Notices of the Royal Astronomical Society, 2015, 451: 4375–4383. doi: 10.1093/mnras/stv1218
    [7]
    Kamraj N, Harrison F, Baloković M, et al. Coronal properties of Swift/BAT-selected Seyfert 1 AGNs observed with NuSTAR. The Astrophysical Journal, 2018, 886: 124. doi: 10.3847/1538-4357/aadd0d
    [8]
    Baloković M, Harrison F A, Madejski G, et al. NuSTAR survey of obscured Swift/BAT-selected active galactic nuclei. II. Median high-energy cutoff in Seyfert II hard X-ray spectra. The Astrophysical Journal, 2020, 905: 41. doi: 10.3847/1538-4357/abc342
    [9]
    Kang J L, Wang J X. The X-ray coronae in NuSTAR bright active galactic nuclei. The Astrophysical Journal, 2022, 929: 141. doi: 10.3847/1538-4357/ac5d49
    [10]
    Parker M L, Wilkins D R, Fabian A C, et al. The NuSTAR spectrum of Mrk 335: extreme relativistic effects within two gravitational radii of the event horizon. Monthly Notices of the Royal Astronomical Society, 2014, 443: 1723–1732. doi: 10.1093/mnras/stu1246
    [11]
    Kara E, Zoghbi A, Marinucci A, et al. Iron K and Compton hump reverberation in SWIFT J2127.4+5654 and NGC 1365 revealed by NuSTAR and XMM–Newton. Monthly Notices of the Royal Astronomical Society, 2015, 446: 737–749. doi: 10.1093/mnras/stu2136
    [12]
    Wilkins D R, Gallo L C. Driving extreme variability: The evolving corona and evidence for jet launching in Markarian 335. Monthly Notices of the Royal Astronomical Society, 2015, 449: 129–146. doi: 10.1093/mnras/stv162
    [13]
    Panagiotou C, Walter R. Reflection geometries in absorbed and unabsorbed AGN. Astronomy & Astrophysics, 2019, 626: A40. doi: 10.1051/0004-6361/201935052
    [14]
    Jansen F, Lumb D, Altieri B, et al. XMM-Newton observatory. Astronomy & Astrophysics, 2001, 365: L1–L6. doi: 10.1051/0004-6361:20000036
    [15]
    Cappi M, De Marco B, Ponti G, et al. Anatomy of the AGN in NGC 5548 VIII. XMM-Newton’s EPIC detailed view of an unexpected variable multilayer absorber. Astronomy & Astrophysics, 2016, 592: A27. doi: 10.1051/0004-6361/201628464
    [16]
    Ponti G, Bianchi S, Muños-Darias T, et al. NuSTAR + XMM-Newton monitoring of the neutron star transient AX J1745.6-2901. Monthly Notices of the Royal Astronomical Society, 2018, 473: 2304–2323. doi: 10.1093/mnras/stx2425
    [17]
    Middei R, Bianchi S, Petrucci P O, et al. High-energy monitoring of NGC 4593 II. Broad-band spectral analysis: testing the two-corona model. Monthly Notices of the Royal Astronomical Society, 2019, 483: 4695–4705. doi: 10.1093/mnras/sty3379
    [18]
    Rani P, Stalin C S, Goswami K D. Study of X-ray variability and coronae of Seyfert galaxies using NuSTAR. Monthly Notices of the Royal Astronomical Society, 2019, 484: 5113–5128. doi: 10.1093/mnras/stz275
    [19]
    Kang J, Wang J, Kang W. NuSTAR hard X-ray spectra of radio galaxies. The Astrophysical Journal, 2020, 901: 111. doi: 10.3847/1538-4357/abadf5
    [20]
    Panagiotou C, Walter R. NuSTAR view of Swift/BAT AGN: The R–Γ correlation. Astronomy & Astrophysics, 2020, 640: A31. doi: 10.1051/0004-6361/201937390
    [21]
    Akylas A, Georgantopoulos I. Distribution of the coronal temperature in Seyfert 1 galaxies. Astronomy & Astrophysics, 2021, 655: A60. doi: 10.1051/0004-6361/202141186
    [22]
    Pal I, Stalin C S. Search for coronal temperature variation in Seyfert galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 518: 2529–2545. doi: 10.1093/mnras/stac3254
    [23]
    Marinucci A, Matt G, Kara E, et al. Simultaneous NuSTAR and XMM–Newton 0.5–80 keV spectroscopy of the narrow-line Seyfert 1 galaxy SWIFT J2127.4+5654. Monthly Notices of the Royal Astronomical Society, 2014, 440: 2347–2356. doi: 10.1093/mnras/stu404
    [24]
    Tortosa A, Bianchi S, Marinucci A, et al. A NuSTAR census of coronal parameters in Seyfert galaxies. Astronomy & Astrophysics, 2018, 614: A37. doi: 10.1051/0004-6361/201732382
    [25]
    Zhang J X, Wang J X, Zhu F F. On measuring the variation of high-energy cutoff in active galactic nuclei. The Astrophysical Journal, 2018, 863: 71. doi: 10.3847/1538-4357/aacf92
    [26]
    Molina M, Malizia A, Bassani L, et al. Swift/XRT– NuSTAR spectra of type 1 AGN: Confirming INTEGRAL results on the high-energy cut-off. Monthly Notices of the Royal Astronomical Society, 2019, 484: 2735–2746. doi: 10.1093/mnras/stz156
    [27]
    Hinkle J T, Mushotzky R. Fundamental X-ray corona parameters of Swift/BAT AGN. Monthly Notices of the Royal Astronomical Society, 2021, 506: 4960–4978. doi: 10.1093/mnras/stab1976
    [28]
    Kamraj N, Brightman M, Harrison F A, et al. X-ray coronal properties of Swift/BAT-selected Seyfert 1 active galactic nuclei. The Astrophysical Journal, 2022, 927: 42. doi: 10.3847/1538-4357/ac45f6
    [29]
    Pal I, Stalin C S, Parker M L, et al. X-ray spectral and timing analysis of the Compton Thick Seyfert 2 galaxy NGC 1068. Monthly Notices of the Royal Astronomical Society, 2022, 517: 3341–3353. doi: 10.1093/mnras/stac2736
    [30]
    Madsen K K, Forster K, Grefenstette B W, et al. Measurement of the absolute crab flux with NuSTAR. The Astrophysical Journal, 2017, 841: 56. doi: 10.3847/1538-4357/aa6970
    [31]
    Madsen K K, Forster K, Grefenstette B, et al. Effective area calibration of the Nuclear Spectroscopic Telescope Array. Journal of Astronomical Telescopes, Instruments, and Systems, 2022, 8: 034003. doi: 10.1117/1.jatis.8.3.034003
    [32]
    Oh K, Koss M, Markwardt C B, et al. The 105-month Swift-BAT all-sky hard X-ray survey. The Astrophysical Journal Supplement Series, 2018, 235: 4. doi: 10.3847/1538-4365/aaa7fd
    [33]
    Strüder L, Briel U, Dennerl K, et al. The European Photon Imaging Camera on XMM-Newton: The pn-CCD camera. Astronomy & Astrophysics, 2001, 365: L18–L26. doi: 10.1051/0004-6361:20000066
    [34]
    Turner M J L, Abbey A, Arnaud M, et al. The European photon imaging camera on XMM-Newton: The MOS cameras. Astronomy and Astrophysics, 2001, 365: L27–L35. doi: 10.1051/0004-6361:20000087
    [35]
    Read A M, Ponman T J. The XMM-Newton EPIC background: Production of background maps and event files. Astronomy & Astrophysics, 2003, 409: 395–410. doi: 10.1051/0004-6361:20031099
    [36]
    Carter J A, Read A M. The XMM-Newton EPIC background and the production of background blank sky event files. Astronomy & Astrophysics, 2007, 464: 1155–1166. doi: 10.1051/0004-6361:20065882
    [37]
    Wu Y J, Wang J X, Cai Z Y, et al. More than softer-when-brighter: The X-ray powerlaw spectral variability in NGC 4051. Science China Physics, Mechanics & Astronomy, 2020, 63: 129512. doi: 10.1007/s11433-020-1611-7
    [38]
    Arnaud K A. XSPEC: The first ten years. In: Jacoby G H, Barnes J, editors. Astronomical Data Analysis Software and Systems V, Volume 101 of Astronomical Society of the Pacific Conference Series. San Francisco, USA: Astronomical Society of the Pacific, 1996 : 17.
    [39]
    Madsen K K, Harrison F A, Markwardt C B, et al. Calibration of the NuSTAR high-energy focusing X-ray telescope. The Astrophysical Journal Supplement Series, 2015, 220: 8. doi: 10.1088/0067-0049/220/1/8
    [40]
    Magdziarz P, Zdziarski A A. Angle-dependent Compton reflection of X-rays and gamma-rays. Monthly Notices of the Royal Astronomical Society, 1995, 273: 837–848. doi: 10.1093/mnras/273.3.837
    [41]
    Shu X W, Yaqoob T, Wang J X. The cores of the Fe Kα lines in active galactic nuclei: An extended Chandra high energy grating sample. The Astrophysical Journal Supplement Series, 2010, 187: 581. doi: 10.1088/0067-0049/187/2/581
    [42]
    Feigelson E D, Nelson P I. Statistical methods for astronomical data with upper limits. I: Univariate distributions. The Astrophysical Journal, 1985, 293: 192–206. doi: 10.1086/163225
    [43]
    Kang J L, Wang J X, Kang W Y. Distinct high-energy cutoff variation patterns in two Seyfert galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 502 (1): 80–88. doi: 10.1093/mnras/stab039
    [44]
    Kang J L, Wang J X. Hidden biases in flux-resolved X-ray spectroscopy. Monthly Notices of the Royal Astronomical Society, 2023, 519: 3635–3642. doi: 10.1093/mnras/stac3598
    [45]
    Lanzuisi G, Perna M, Comastri A, et al. NuSTAR reveals the extreme properties of the super-Eddington accreting supermassive black hole in PG 1247+267. Astronomy & Astrophysics, 2016, 590: A77. doi: 10.1051/0004-6361/201628325
    [46]
    Lanzuisi G, Gilli R, Cappi M, et al. NuSTAR measurement of coronal temperature in two luminous, high-redshift quasars. The Astrophysical Journal Letters, 2019, 875: L20. doi: 10.3847/2041-8213/ab15dc
    [47]
    Tortosa A, Ricci C, Tombesi F, et al. The extreme properties of the nearby hyper-Eddington accreting active galactic nucleus in IRAS 04416+1215. Monthly Notices of the Royal Astronomical Society, 2021, 509: 3599–3615. doi: 10.1093/mnras/stab3152
    [48]
    Risaliti G, Harrison F A, Madsen K K, et al. A rapidly spinning supermassive black hole at the centre of NGC 1365. Nature, 2013, 494: 449–451. doi: 10.1038/nature11938
    [49]
    Porquet D, Done C, Reeves J N, et al. A deep X-ray view of the bare AGN Ark 120. Astronomy & Astrophysics, 2019, 623: A11. doi: 10.1051/0004-6361/201834448
    [50]
    Jiang J, Abdikamalov A B, Bambi C, et al. Black hole spin measurements based on a thin disc model with finite thickness: I. An example study of MCG−06-30-15. Monthly Notices of the Royal Astronomical Society, 2022, 514: 3246–3259. doi: 10.1093/mnras/stac1369
    [51]
    Marchesi S, Zhao X, Torres-Albà N, et al. Compton-thick AGN in the NuSTAR era. VIII. A joint NuSTAR–XMM-Newton monitoring of the changing-look Compton-thick AGN NGC 1358. The Astrophysical Journal, 2022, 935: 114. doi: 10.3847/1538-4357/ac80be
    [52]
    Silver R, Torres-Albà N, Zhao X, et al. Compton-thick AGN in the NuSTAR era. IX. A joint NuSTAR and XMM-Newton analysis of four local AGN. The Astrophysical Journal, 2022, 940: 148. doi: 10.3847/1538-4357/ac9bf8
    [53]
    Sengupta D, Marchesi S, Vignali C, et al. Compton-thick AGN in the NuSTAR era X: analysing seven local CT-AGN candidates. Astronomy & Astrophysics, 2023, 676: A103. doi: 10.1051/0004-6361/202245646
    [54]
    Kuntz K D, Snowden S L. The EPIC-MOS particle-induced background spectra. Astronomy & Astrophysics, 2008, 478: 575–596. doi: 10.1051/0004-6361:20077912
    [55]
    De Luca A, Molendi S. The 2–8 keV cosmic X-ray background spectrum as observed with XMM-Newton. Astronomy & Astrophysics, 2004, 419: 837–848. doi: 10.1051/0004-6361:20034421
    [56]
    Nandra K, O’Neill P M, George I M, et al. An XMM–Newton survey of broad iron lines in Seyfert galaxies. Monthly Notices of the Royal Astronomical Society, 2007, 382: 194–228. doi: 10.1111/j.1365-2966.2007.12331.x
    [57]
    Dauser T, Wilms J, Reynolds C S, et al. Broad emission lines for a negatively spinning black hole. Monthly Notices of the Royal Astronomical Society, 2010, 409: 1534–1540. doi: 10.1111/j.1365-2966.2010.17393.x
    [58]
    García J, Dauser T, Lohfink A, et al. Improved reflection models of black hole accretion disks: Treating the angular distribution of X-rays. The Astrophysical Journal, 2014, 782: 76. doi: 10.1088/0004-637x/782/2/76
    [59]
    Chiang J, Reynolds C S, Blaes O M, et al. Simultaneous EUVE/ ASCA/ RXTE observations of NGC 5548. The Astrophysical Journal, 2000, 528: 292–305. doi: 10.1086/308178
    [60]
    Mantovani G, Nandra K, Ponti G. Relativistic Fe Kα line study in Seyfert 1 galaxies observed with Suzaku. Monthly Notices of the Royal Astronomical Society, 2016, 458: 4198–4209. doi: 10.1093/mnras/stw596
  • 加载中

Catalog

    Figure  1.  An example (XMM-Newton ObsID 0741330101) of the adopted regions when processing the XMM-Newton EPIC-pn data in SW mode. The image is extracted at 3–10 keV with evselect and plotted in logarithmic scale with ds9. The green circle is the source region, which is optimally determined by eregionanalyse, while the two white circles with a radius of 40 arcsec are the background regions. Note that part of the source region is outside the FOV (often the case for the SW mode), which will be automatically corrected by arfgen. Outside the red circle with a radius of 100 arcsec is the source-free region, used to filter intervals with a flaring background.

    Figure  2.  Usable fraction of the GTI after filtering the periods showing flaring background with different thresholds, for the 85 XMM-Newton exposures in the SW mode.

    Figure  3.  Example NuSTAR FPMA 3–78 keV (ObsID: 60501049002) and XMM-Newton EPIC-pn 3–10 keV (ObsID: 0852210101) light curves (with a time bin of 500 s) of Mrk 1383, to illustrate the merge of NuSTAR and EPIC-pn GTIs. The grey shades represent the dropped time intervals for each instrument, mainly due to the Earth occultation for NuSTAR, and flaring background for EPIC-pn. The blue dots represent the remaining data after merging the GTIs, while the red open circles mark the data dropped due to the merging of GTI. For EPIC-pn (lower panel), we over-plot the background rate curve (grey stars) used to filter the intervals with flaring background, and the corresponding data points filtered out from the source light curve (grey circles). The duration of the exposures and net exposure time (before/after merging GTIs) are labelled, respectively.

    Figure  4.  The left panel: photon index $ \varGamma $ of the NuSTAR spectra versus those of the EPIC-pn spectra before (red square) or after (blue circle) correcting the effective area (corresponding to $ \varGamma^{\rm Nu} $, $ \varGamma^{\rm pn} $, and $ \varGamma^{\rm pn-Cor} $ in Table 1, respectively). The colored solid lines show the linear regression results (in comparison with the black 1∶1 line), with the shadows showing the 1$ \sigma $ uncertainty derived through bootstrapping the sample. The middle and right panels show the case for observations before/after 2017-01-01.

    Figure  5.  Absorption column density $ N_{\rm H} $ of the NuSTAR spectra versus those of the EPIC-pn spectra before (red square) or after (blue circle) correcting the effective area. The colored solid lines show the linear regression results derived by asurv (in comparison with the black 1∶1 line), with the shadows showing the 1$ \sigma $ uncertainty derived through bootstrapping the sample.

    Figure  6.  $ \varGamma $, $ E_{{\rm{cut}}} $, and $ R $ derived through fitting the NuSTAR spectra alone versus joint-fitting with EPIC-pn spectra. For $ E_{{\rm{cut}}} $ and $ R $, we perform linear regression in logarithmic space with asurv[42] to handle the censored data points (as hollow markers). The colored solid lines show the linear regression results (in comparison with the black 1∶1 line), with the shadow showing the 1$ \sigma $ uncertainty derived through bootstrapping the sample.

    Figure  7.  The photon index $ \varGamma $ (y-axis) derived using the effective area corrected XMM-Newton EPIC-pn spectra, after filtering the periods showing flaring background with a threshold of 0.05 counts/s (blue squares) or 0.4 counts/s (brown circles), versus those derived using NuSTAR spectra (x-axis), for the 33 observation pairs with significant flaring background. The colored solid lines show the linear regression results (in comparison with the black 1∶1 line), with the shadow showing the 1$ \sigma $ uncertainty derived through bootstrapping the sample.

    Figure  8.  Lost fraction of the NuSTAR net exposure after requiring a perfect simultaneity between NuSTAR and XMM-Newton data.

    Figure  9.  The distribution of the relative errors of $ \varGamma $, $ R $, and $ E_{\rm cut} $, with the detection fraction of $ R $ and $ E_{\rm cut} $ provided in the legend. The top panels show the distributions of $ \log_{10}\left( {\rm {upper\_error}/{value}} \right) $ of the three parameters, while the bottom panels show those of $ \log_{10}\left( {\rm{lower\_error}/{value}} \right) $. Blue boxes show the results of the joint-fitting of NuSTAR and EPIC-pn, while the orange boxes show the result of fitting the NuSTAR spectra only (from the whole NuSTAR exposure without matching EPIC-pn GTI).

    [1]
    Harrison F A, Craig W W, Christensen F E, et al. The Nuclear Spectroscopic Telescope Array ( NuSTAR) high-energy X-ray mission. The Astrophysical Journal, 2013, 770: 103. doi: 10.1088/0004-637x/770/2/103
    [2]
    Haardt F, Maraschi L. A two-phase model for the X-ray emission from Seyfert galaxies. The Astrophysical Journal, 1991, 380: L51. doi: 10.1086/186171
    [3]
    Haardt F, Maraschi L. X-ray spectra from two-phase accretion disks. The Astrophysical Journal, 1993, 413: 507. doi: 10.1086/173020
    [4]
    Brenneman L W, Madejski G, Fuerst F, et al. The broad-band X-ray spectrum of IC 4329a from a joint NuSTAR/Suzaku observation. The Astrophysical Journal, 2014, 788: 61. doi: 10.1088/0004-637x/788/1/61
    [5]
    Matt G, Baloković M, Marinucci A, et al. The hard X-ray spectrum of NGC 5506 as seen by NuSTAR. Monthly Notices of the Royal Astronomical Society, 2015, 447: 3029–3033. doi: 10.1093/mnras/stu2653
    [6]
    Fabian A C, Lohfink A, Kara E, et al. Properties of AGN coronae in the NuSTAR era. Monthly Notices of the Royal Astronomical Society, 2015, 451: 4375–4383. doi: 10.1093/mnras/stv1218
    [7]
    Kamraj N, Harrison F, Baloković M, et al. Coronal properties of Swift/BAT-selected Seyfert 1 AGNs observed with NuSTAR. The Astrophysical Journal, 2018, 886: 124. doi: 10.3847/1538-4357/aadd0d
    [8]
    Baloković M, Harrison F A, Madejski G, et al. NuSTAR survey of obscured Swift/BAT-selected active galactic nuclei. II. Median high-energy cutoff in Seyfert II hard X-ray spectra. The Astrophysical Journal, 2020, 905: 41. doi: 10.3847/1538-4357/abc342
    [9]
    Kang J L, Wang J X. The X-ray coronae in NuSTAR bright active galactic nuclei. The Astrophysical Journal, 2022, 929: 141. doi: 10.3847/1538-4357/ac5d49
    [10]
    Parker M L, Wilkins D R, Fabian A C, et al. The NuSTAR spectrum of Mrk 335: extreme relativistic effects within two gravitational radii of the event horizon. Monthly Notices of the Royal Astronomical Society, 2014, 443: 1723–1732. doi: 10.1093/mnras/stu1246
    [11]
    Kara E, Zoghbi A, Marinucci A, et al. Iron K and Compton hump reverberation in SWIFT J2127.4+5654 and NGC 1365 revealed by NuSTAR and XMM–Newton. Monthly Notices of the Royal Astronomical Society, 2015, 446: 737–749. doi: 10.1093/mnras/stu2136
    [12]
    Wilkins D R, Gallo L C. Driving extreme variability: The evolving corona and evidence for jet launching in Markarian 335. Monthly Notices of the Royal Astronomical Society, 2015, 449: 129–146. doi: 10.1093/mnras/stv162
    [13]
    Panagiotou C, Walter R. Reflection geometries in absorbed and unabsorbed AGN. Astronomy & Astrophysics, 2019, 626: A40. doi: 10.1051/0004-6361/201935052
    [14]
    Jansen F, Lumb D, Altieri B, et al. XMM-Newton observatory. Astronomy & Astrophysics, 2001, 365: L1–L6. doi: 10.1051/0004-6361:20000036
    [15]
    Cappi M, De Marco B, Ponti G, et al. Anatomy of the AGN in NGC 5548 VIII. XMM-Newton’s EPIC detailed view of an unexpected variable multilayer absorber. Astronomy & Astrophysics, 2016, 592: A27. doi: 10.1051/0004-6361/201628464
    [16]
    Ponti G, Bianchi S, Muños-Darias T, et al. NuSTAR + XMM-Newton monitoring of the neutron star transient AX J1745.6-2901. Monthly Notices of the Royal Astronomical Society, 2018, 473: 2304–2323. doi: 10.1093/mnras/stx2425
    [17]
    Middei R, Bianchi S, Petrucci P O, et al. High-energy monitoring of NGC 4593 II. Broad-band spectral analysis: testing the two-corona model. Monthly Notices of the Royal Astronomical Society, 2019, 483: 4695–4705. doi: 10.1093/mnras/sty3379
    [18]
    Rani P, Stalin C S, Goswami K D. Study of X-ray variability and coronae of Seyfert galaxies using NuSTAR. Monthly Notices of the Royal Astronomical Society, 2019, 484: 5113–5128. doi: 10.1093/mnras/stz275
    [19]
    Kang J, Wang J, Kang W. NuSTAR hard X-ray spectra of radio galaxies. The Astrophysical Journal, 2020, 901: 111. doi: 10.3847/1538-4357/abadf5
    [20]
    Panagiotou C, Walter R. NuSTAR view of Swift/BAT AGN: The R–Γ correlation. Astronomy & Astrophysics, 2020, 640: A31. doi: 10.1051/0004-6361/201937390
    [21]
    Akylas A, Georgantopoulos I. Distribution of the coronal temperature in Seyfert 1 galaxies. Astronomy & Astrophysics, 2021, 655: A60. doi: 10.1051/0004-6361/202141186
    [22]
    Pal I, Stalin C S. Search for coronal temperature variation in Seyfert galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 518: 2529–2545. doi: 10.1093/mnras/stac3254
    [23]
    Marinucci A, Matt G, Kara E, et al. Simultaneous NuSTAR and XMM–Newton 0.5–80 keV spectroscopy of the narrow-line Seyfert 1 galaxy SWIFT J2127.4+5654. Monthly Notices of the Royal Astronomical Society, 2014, 440: 2347–2356. doi: 10.1093/mnras/stu404
    [24]
    Tortosa A, Bianchi S, Marinucci A, et al. A NuSTAR census of coronal parameters in Seyfert galaxies. Astronomy & Astrophysics, 2018, 614: A37. doi: 10.1051/0004-6361/201732382
    [25]
    Zhang J X, Wang J X, Zhu F F. On measuring the variation of high-energy cutoff in active galactic nuclei. The Astrophysical Journal, 2018, 863: 71. doi: 10.3847/1538-4357/aacf92
    [26]
    Molina M, Malizia A, Bassani L, et al. Swift/XRT– NuSTAR spectra of type 1 AGN: Confirming INTEGRAL results on the high-energy cut-off. Monthly Notices of the Royal Astronomical Society, 2019, 484: 2735–2746. doi: 10.1093/mnras/stz156
    [27]
    Hinkle J T, Mushotzky R. Fundamental X-ray corona parameters of Swift/BAT AGN. Monthly Notices of the Royal Astronomical Society, 2021, 506: 4960–4978. doi: 10.1093/mnras/stab1976
    [28]
    Kamraj N, Brightman M, Harrison F A, et al. X-ray coronal properties of Swift/BAT-selected Seyfert 1 active galactic nuclei. The Astrophysical Journal, 2022, 927: 42. doi: 10.3847/1538-4357/ac45f6
    [29]
    Pal I, Stalin C S, Parker M L, et al. X-ray spectral and timing analysis of the Compton Thick Seyfert 2 galaxy NGC 1068. Monthly Notices of the Royal Astronomical Society, 2022, 517: 3341–3353. doi: 10.1093/mnras/stac2736
    [30]
    Madsen K K, Forster K, Grefenstette B W, et al. Measurement of the absolute crab flux with NuSTAR. The Astrophysical Journal, 2017, 841: 56. doi: 10.3847/1538-4357/aa6970
    [31]
    Madsen K K, Forster K, Grefenstette B, et al. Effective area calibration of the Nuclear Spectroscopic Telescope Array. Journal of Astronomical Telescopes, Instruments, and Systems, 2022, 8: 034003. doi: 10.1117/1.jatis.8.3.034003
    [32]
    Oh K, Koss M, Markwardt C B, et al. The 105-month Swift-BAT all-sky hard X-ray survey. The Astrophysical Journal Supplement Series, 2018, 235: 4. doi: 10.3847/1538-4365/aaa7fd
    [33]
    Strüder L, Briel U, Dennerl K, et al. The European Photon Imaging Camera on XMM-Newton: The pn-CCD camera. Astronomy & Astrophysics, 2001, 365: L18–L26. doi: 10.1051/0004-6361:20000066
    [34]
    Turner M J L, Abbey A, Arnaud M, et al. The European photon imaging camera on XMM-Newton: The MOS cameras. Astronomy and Astrophysics, 2001, 365: L27–L35. doi: 10.1051/0004-6361:20000087
    [35]
    Read A M, Ponman T J. The XMM-Newton EPIC background: Production of background maps and event files. Astronomy & Astrophysics, 2003, 409: 395–410. doi: 10.1051/0004-6361:20031099
    [36]
    Carter J A, Read A M. The XMM-Newton EPIC background and the production of background blank sky event files. Astronomy & Astrophysics, 2007, 464: 1155–1166. doi: 10.1051/0004-6361:20065882
    [37]
    Wu Y J, Wang J X, Cai Z Y, et al. More than softer-when-brighter: The X-ray powerlaw spectral variability in NGC 4051. Science China Physics, Mechanics & Astronomy, 2020, 63: 129512. doi: 10.1007/s11433-020-1611-7
    [38]
    Arnaud K A. XSPEC: The first ten years. In: Jacoby G H, Barnes J, editors. Astronomical Data Analysis Software and Systems V, Volume 101 of Astronomical Society of the Pacific Conference Series. San Francisco, USA: Astronomical Society of the Pacific, 1996 : 17.
    [39]
    Madsen K K, Harrison F A, Markwardt C B, et al. Calibration of the NuSTAR high-energy focusing X-ray telescope. The Astrophysical Journal Supplement Series, 2015, 220: 8. doi: 10.1088/0067-0049/220/1/8
    [40]
    Magdziarz P, Zdziarski A A. Angle-dependent Compton reflection of X-rays and gamma-rays. Monthly Notices of the Royal Astronomical Society, 1995, 273: 837–848. doi: 10.1093/mnras/273.3.837
    [41]
    Shu X W, Yaqoob T, Wang J X. The cores of the Fe Kα lines in active galactic nuclei: An extended Chandra high energy grating sample. The Astrophysical Journal Supplement Series, 2010, 187: 581. doi: 10.1088/0067-0049/187/2/581
    [42]
    Feigelson E D, Nelson P I. Statistical methods for astronomical data with upper limits. I: Univariate distributions. The Astrophysical Journal, 1985, 293: 192–206. doi: 10.1086/163225
    [43]
    Kang J L, Wang J X, Kang W Y. Distinct high-energy cutoff variation patterns in two Seyfert galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 502 (1): 80–88. doi: 10.1093/mnras/stab039
    [44]
    Kang J L, Wang J X. Hidden biases in flux-resolved X-ray spectroscopy. Monthly Notices of the Royal Astronomical Society, 2023, 519: 3635–3642. doi: 10.1093/mnras/stac3598
    [45]
    Lanzuisi G, Perna M, Comastri A, et al. NuSTAR reveals the extreme properties of the super-Eddington accreting supermassive black hole in PG 1247+267. Astronomy & Astrophysics, 2016, 590: A77. doi: 10.1051/0004-6361/201628325
    [46]
    Lanzuisi G, Gilli R, Cappi M, et al. NuSTAR measurement of coronal temperature in two luminous, high-redshift quasars. The Astrophysical Journal Letters, 2019, 875: L20. doi: 10.3847/2041-8213/ab15dc
    [47]
    Tortosa A, Ricci C, Tombesi F, et al. The extreme properties of the nearby hyper-Eddington accreting active galactic nucleus in IRAS 04416+1215. Monthly Notices of the Royal Astronomical Society, 2021, 509: 3599–3615. doi: 10.1093/mnras/stab3152
    [48]
    Risaliti G, Harrison F A, Madsen K K, et al. A rapidly spinning supermassive black hole at the centre of NGC 1365. Nature, 2013, 494: 449–451. doi: 10.1038/nature11938
    [49]
    Porquet D, Done C, Reeves J N, et al. A deep X-ray view of the bare AGN Ark 120. Astronomy & Astrophysics, 2019, 623: A11. doi: 10.1051/0004-6361/201834448
    [50]
    Jiang J, Abdikamalov A B, Bambi C, et al. Black hole spin measurements based on a thin disc model with finite thickness: I. An example study of MCG−06-30-15. Monthly Notices of the Royal Astronomical Society, 2022, 514: 3246–3259. doi: 10.1093/mnras/stac1369
    [51]
    Marchesi S, Zhao X, Torres-Albà N, et al. Compton-thick AGN in the NuSTAR era. VIII. A joint NuSTAR–XMM-Newton monitoring of the changing-look Compton-thick AGN NGC 1358. The Astrophysical Journal, 2022, 935: 114. doi: 10.3847/1538-4357/ac80be
    [52]
    Silver R, Torres-Albà N, Zhao X, et al. Compton-thick AGN in the NuSTAR era. IX. A joint NuSTAR and XMM-Newton analysis of four local AGN. The Astrophysical Journal, 2022, 940: 148. doi: 10.3847/1538-4357/ac9bf8
    [53]
    Sengupta D, Marchesi S, Vignali C, et al. Compton-thick AGN in the NuSTAR era X: analysing seven local CT-AGN candidates. Astronomy & Astrophysics, 2023, 676: A103. doi: 10.1051/0004-6361/202245646
    [54]
    Kuntz K D, Snowden S L. The EPIC-MOS particle-induced background spectra. Astronomy & Astrophysics, 2008, 478: 575–596. doi: 10.1051/0004-6361:20077912
    [55]
    De Luca A, Molendi S. The 2–8 keV cosmic X-ray background spectrum as observed with XMM-Newton. Astronomy & Astrophysics, 2004, 419: 837–848. doi: 10.1051/0004-6361:20034421
    [56]
    Nandra K, O’Neill P M, George I M, et al. An XMM–Newton survey of broad iron lines in Seyfert galaxies. Monthly Notices of the Royal Astronomical Society, 2007, 382: 194–228. doi: 10.1111/j.1365-2966.2007.12331.x
    [57]
    Dauser T, Wilms J, Reynolds C S, et al. Broad emission lines for a negatively spinning black hole. Monthly Notices of the Royal Astronomical Society, 2010, 409: 1534–1540. doi: 10.1111/j.1365-2966.2010.17393.x
    [58]
    García J, Dauser T, Lohfink A, et al. Improved reflection models of black hole accretion disks: Treating the angular distribution of X-rays. The Astrophysical Journal, 2014, 782: 76. doi: 10.1088/0004-637x/782/2/76
    [59]
    Chiang J, Reynolds C S, Blaes O M, et al. Simultaneous EUVE/ ASCA/ RXTE observations of NGC 5548. The Astrophysical Journal, 2000, 528: 292–305. doi: 10.1086/308178
    [60]
    Mantovani G, Nandra K, Ponti G. Relativistic Fe Kα line study in Seyfert 1 galaxies observed with Suzaku. Monthly Notices of the Royal Astronomical Society, 2016, 458: 4198–4209. doi: 10.1093/mnras/stw596

    Article Metrics

    Article views (255) PDF downloads(561)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return