[1] |
Abdolhamidzadeh B, Abbasi T, Rashtchian D, et al. Domino effect in process-industry accidents —An inventory of past events and identification of some patterns. Journal of Loss Prevention in the Process Industries, 2011, 24: 575–593. doi: 10.1016/j.jlp.2010.06.013
|
[2] |
Fang J, Wang J, Tu R, et al. Optical thickness of emissivity for pool fire radiation. International Journal of Thermal Sciences, 2018, 124: 338–343. doi: 10.1016/j.ijthermalsci.2017.10.023
|
[3] |
Sacadura J F. Radiative heat transfer in fire safety science. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 93: 5–24. doi: 10.1016/j.jqsrt.2004.08.011
|
[4] |
Yao Y, Li Y Z, Ingason H, et al. Scale effect of mass loss rates for pool fires in an open environment and in tunnels with wind. Fire Safety Journal, 2019, 105: 41–50. doi: 10.1016/j.firesaf.2019.02.004
|
[5] |
Fernandes C S, Fraga G C, França F H R, et al. Radiative transfer calculations in fire simulations: An assessment of different gray gas models using the software FDS. Fire Safety Journal, 2021, 120: 103103. doi: 10.1016/j.firesaf.2020.103103
|
[6] |
Barlow R S, Karpetis A N, Frank J H, et al. Scalar profiles and NO formation in laminar opposed-flow partially premixed methane/air flames. Combustion and Flame, 2001, 127: 2102–2118. doi: 10.1016/S0010-2180(01)00313-3
|
[7] |
Cassol F, Brittes R, Centeno F R, et al. Evaluation of the gray gas model to compute radiative transfer in non-isothermal, non-homogeneous participating medium containing CO2, H2O, and soot. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2015, 37: 163–172. doi: 10.1007/s40430-014-0168-5
|
[8] |
Hostikka S, Mcgrattan K, Hamins A. Numerical modeling of pool fires using les and finite volume method for radiation. Fire Safety Science, 2003, 7: 383–394. doi: 10.3801/IAFSS.FSS.7-383
|
[9] |
Krishnamoorthy G, Borodai S, Rawat R, et al. Numerical modeling of radiative heat transfer in pool fire simulations. In: Proceedings of ASME 2005 International Mechanical Engineering Congress and Exposition. Orlando, Florida, USA: ASME, 2008: 327–337.
|
[10] |
McGrattan K, McDermott R, Weinschenk C, et al. Fire Dynamics Simulator Users Guide, Sixth Edition, Special Publication (NIST SP). Gaithersburg, MD, USA: National Institute of Standards and Technology, 2013.
|
[11] |
Sung K, Chen J, Bundy M, et al. The characteristics of a 1 m methanol pool fire. Fire Safety Journal, 2021, 120: 103121. doi: 10.1016/j.firesaf.2020.103121
|
[12] |
Grosshandler W L. Radcal: A Narrow-Band Model for Radiation Calculations in a Combustion Environment. Washington, DC: NIST, 2018.
|
[13] |
Rothman L S, Gordon I E, Barber R J, et al. HITEMP, the high-temperature molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111: 2139–2150. doi: 10.1016/j.jqsrt.2010.05.001
|
[14] |
Smith T F, Shen Z F, Friedman J N. Evaluation of coefficients for the weighted sum of gray gases model. Journal of Heat Transfer, 1982, 104: 602–608. doi: 10.1115/1.3245174
|
[15] |
Cassol F, Brittes R, França F H R, et al. Application of the weighted-sum-of-gray-gases model for media composed of arbitrary concentrations of H2O, CO2 and soot. International Journal of Heat and Mass Transfer, 2014, 79: 796–806. doi: 10.1016/j.ijheatmasstransfer.2014.08.032
|
[16] |
Denison M K, Webb B W. The spectral-line weighted-sum-of-gray-gases model for H2O/CO2 mixtures. Journal of Heat Transfer, 1995, 117: 788–792. doi: 10.1115/1.2822652
|
[17] |
Johansson N, Ekholm M. Variation in results due to user effects in a simulation with FDS. Fire Technology, 2018, 54: 97–116. doi: 10.1007/s10694-017-0674-y
|
[18] |
McGrattan K, Hostikka S, McDermott R, et al. Fire Dynamics Simulator Technical Reference Guide Volume 1: Mathematical Model. Washington, DC: NIST, 2013.
|
[19] |
Rehm R G, Baum H R. The equations of motion for thermally driven, buoyant flows. Journal of Research of the National Bureau of Standards, 1978, 83: 297. doi: 10.6028/jres.083.019
|
[20] |
Gottuk D T, White D A. Liquid fuel fires. In: Hurley M J, editor. SFPE Handbook of Fire Protection Engineering. New York: Springer, 2016: 2552−2590.
|
[21] |
Fraga G C, Zannoni L, Centeno F R, et al. Evaluation of different gray gas formulations against line-by-line calculations in two- and three-dimensional configurations for participating media composed by CO2, H2O and soot. Fire Safety Journal, 2019, 108: 102843. doi: 10.1016/j.firesaf.2019.102843
|
[22] |
Dorigon L J, Duciak G, Brittes R, et al. WSGG correlations based on HITEMP2010 for computation of thermal radiation in non-isothermal, non-homogeneous H2O/CO2 mixtures. International Journal of Heat and Mass Transfer, 2013, 64: 863–873. doi: 10.1016/j.ijheatmasstransfer.2013.05.010
|
[23] |
Coelho F R, França F H R. WSGG correlations based on HITEMP2010 for gas mixtures of H2O and CO2 in high total pressure conditions. International Journal of Heat and Mass Transfer, 2018, 127: 105–114. doi: 10.1016/j.ijheatmasstransfer.2018.07.075
|
[24] |
Xu J, Chen R, Meng H. WSGG models for radiative heat transfer calculations in hydrogen and hydrogen-mixture flames at various pressures. International Journal of Hydrogen Energy, 2021, 46: 31452–31466. doi: 10.1016/j.ijhydene.2021.07.040
|
[25] |
da Fonseca R J C, Fraga G C, da Silva R B, et al. Application of the WSGG model to solve the radiative transfer in gaseous systems with nongray boundaries. Journal of Heat Transfer, 2018, 140: 052701. doi: 10.1115/1.4038548
|
[26] |
Hu L, Hu J, de Ris J L. Flame necking-in and instability characterization in small and medium pool fires with different lip heights. Combustion and Flame, 2015, 162: 1095–1103. doi: 10.1016/j.combustflame.2014.10.001
|
[27] |
Bejan A. Predicting the pool fire vortex shedding frequency. Journal of Heat Transfer, 1991, 113: 261–263. doi: 10.1115/1.2910540
|
[28] |
Chen X, Lu S, Wang X, et al. Pulsation behavior of pool fires in a confined compartment with a horizontal opening. Fire Technology, 2016, 52: 515–531. doi: 10.1007/s10694-015-0484-z
|
[29] |
Tieszen S R, O’Hern T J, Schefer R W, et al. Experimental study of the flow field in and around a one meter diameter methane fire. Combustion and Flame, 2002, 129: 378–391. doi: 10.1016/S0010-2180(02)00352-8
|
[30] |
Hottel H C, Sarofim A F. Radiative Transfer. New York: McGraw-hill Book Company, 1967.
|
[1] |
Abdolhamidzadeh B, Abbasi T, Rashtchian D, et al. Domino effect in process-industry accidents —An inventory of past events and identification of some patterns. Journal of Loss Prevention in the Process Industries, 2011, 24: 575–593. doi: 10.1016/j.jlp.2010.06.013
|
[2] |
Fang J, Wang J, Tu R, et al. Optical thickness of emissivity for pool fire radiation. International Journal of Thermal Sciences, 2018, 124: 338–343. doi: 10.1016/j.ijthermalsci.2017.10.023
|
[3] |
Sacadura J F. Radiative heat transfer in fire safety science. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 93: 5–24. doi: 10.1016/j.jqsrt.2004.08.011
|
[4] |
Yao Y, Li Y Z, Ingason H, et al. Scale effect of mass loss rates for pool fires in an open environment and in tunnels with wind. Fire Safety Journal, 2019, 105: 41–50. doi: 10.1016/j.firesaf.2019.02.004
|
[5] |
Fernandes C S, Fraga G C, França F H R, et al. Radiative transfer calculations in fire simulations: An assessment of different gray gas models using the software FDS. Fire Safety Journal, 2021, 120: 103103. doi: 10.1016/j.firesaf.2020.103103
|
[6] |
Barlow R S, Karpetis A N, Frank J H, et al. Scalar profiles and NO formation in laminar opposed-flow partially premixed methane/air flames. Combustion and Flame, 2001, 127: 2102–2118. doi: 10.1016/S0010-2180(01)00313-3
|
[7] |
Cassol F, Brittes R, Centeno F R, et al. Evaluation of the gray gas model to compute radiative transfer in non-isothermal, non-homogeneous participating medium containing CO2, H2O, and soot. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2015, 37: 163–172. doi: 10.1007/s40430-014-0168-5
|
[8] |
Hostikka S, Mcgrattan K, Hamins A. Numerical modeling of pool fires using les and finite volume method for radiation. Fire Safety Science, 2003, 7: 383–394. doi: 10.3801/IAFSS.FSS.7-383
|
[9] |
Krishnamoorthy G, Borodai S, Rawat R, et al. Numerical modeling of radiative heat transfer in pool fire simulations. In: Proceedings of ASME 2005 International Mechanical Engineering Congress and Exposition. Orlando, Florida, USA: ASME, 2008: 327–337.
|
[10] |
McGrattan K, McDermott R, Weinschenk C, et al. Fire Dynamics Simulator Users Guide, Sixth Edition, Special Publication (NIST SP). Gaithersburg, MD, USA: National Institute of Standards and Technology, 2013.
|
[11] |
Sung K, Chen J, Bundy M, et al. The characteristics of a 1 m methanol pool fire. Fire Safety Journal, 2021, 120: 103121. doi: 10.1016/j.firesaf.2020.103121
|
[12] |
Grosshandler W L. Radcal: A Narrow-Band Model for Radiation Calculations in a Combustion Environment. Washington, DC: NIST, 2018.
|
[13] |
Rothman L S, Gordon I E, Barber R J, et al. HITEMP, the high-temperature molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111: 2139–2150. doi: 10.1016/j.jqsrt.2010.05.001
|
[14] |
Smith T F, Shen Z F, Friedman J N. Evaluation of coefficients for the weighted sum of gray gases model. Journal of Heat Transfer, 1982, 104: 602–608. doi: 10.1115/1.3245174
|
[15] |
Cassol F, Brittes R, França F H R, et al. Application of the weighted-sum-of-gray-gases model for media composed of arbitrary concentrations of H2O, CO2 and soot. International Journal of Heat and Mass Transfer, 2014, 79: 796–806. doi: 10.1016/j.ijheatmasstransfer.2014.08.032
|
[16] |
Denison M K, Webb B W. The spectral-line weighted-sum-of-gray-gases model for H2O/CO2 mixtures. Journal of Heat Transfer, 1995, 117: 788–792. doi: 10.1115/1.2822652
|
[17] |
Johansson N, Ekholm M. Variation in results due to user effects in a simulation with FDS. Fire Technology, 2018, 54: 97–116. doi: 10.1007/s10694-017-0674-y
|
[18] |
McGrattan K, Hostikka S, McDermott R, et al. Fire Dynamics Simulator Technical Reference Guide Volume 1: Mathematical Model. Washington, DC: NIST, 2013.
|
[19] |
Rehm R G, Baum H R. The equations of motion for thermally driven, buoyant flows. Journal of Research of the National Bureau of Standards, 1978, 83: 297. doi: 10.6028/jres.083.019
|
[20] |
Gottuk D T, White D A. Liquid fuel fires. In: Hurley M J, editor. SFPE Handbook of Fire Protection Engineering. New York: Springer, 2016: 2552−2590.
|
[21] |
Fraga G C, Zannoni L, Centeno F R, et al. Evaluation of different gray gas formulations against line-by-line calculations in two- and three-dimensional configurations for participating media composed by CO2, H2O and soot. Fire Safety Journal, 2019, 108: 102843. doi: 10.1016/j.firesaf.2019.102843
|
[22] |
Dorigon L J, Duciak G, Brittes R, et al. WSGG correlations based on HITEMP2010 for computation of thermal radiation in non-isothermal, non-homogeneous H2O/CO2 mixtures. International Journal of Heat and Mass Transfer, 2013, 64: 863–873. doi: 10.1016/j.ijheatmasstransfer.2013.05.010
|
[23] |
Coelho F R, França F H R. WSGG correlations based on HITEMP2010 for gas mixtures of H2O and CO2 in high total pressure conditions. International Journal of Heat and Mass Transfer, 2018, 127: 105–114. doi: 10.1016/j.ijheatmasstransfer.2018.07.075
|
[24] |
Xu J, Chen R, Meng H. WSGG models for radiative heat transfer calculations in hydrogen and hydrogen-mixture flames at various pressures. International Journal of Hydrogen Energy, 2021, 46: 31452–31466. doi: 10.1016/j.ijhydene.2021.07.040
|
[25] |
da Fonseca R J C, Fraga G C, da Silva R B, et al. Application of the WSGG model to solve the radiative transfer in gaseous systems with nongray boundaries. Journal of Heat Transfer, 2018, 140: 052701. doi: 10.1115/1.4038548
|
[26] |
Hu L, Hu J, de Ris J L. Flame necking-in and instability characterization in small and medium pool fires with different lip heights. Combustion and Flame, 2015, 162: 1095–1103. doi: 10.1016/j.combustflame.2014.10.001
|
[27] |
Bejan A. Predicting the pool fire vortex shedding frequency. Journal of Heat Transfer, 1991, 113: 261–263. doi: 10.1115/1.2910540
|
[28] |
Chen X, Lu S, Wang X, et al. Pulsation behavior of pool fires in a confined compartment with a horizontal opening. Fire Technology, 2016, 52: 515–531. doi: 10.1007/s10694-015-0484-z
|
[29] |
Tieszen S R, O’Hern T J, Schefer R W, et al. Experimental study of the flow field in and around a one meter diameter methane fire. Combustion and Flame, 2002, 129: 378–391. doi: 10.1016/S0010-2180(02)00352-8
|
[30] |
Hottel H C, Sarofim A F. Radiative Transfer. New York: McGraw-hill Book Company, 1967.
|