[1] |
Shao R, Lan X, Li J, et al. Multi-adversarial discriminative deep domain generalization for face presentation attack detection. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2020 : 10015–10023.
|
[2] |
Ouyang C, Chen C, Li S, et al. Causality-inspired single-source domain generalization for medical image segmentation. IEEE Transactions on Medical Imaging, 2023, 42: 1095–1106. doi: 10.1109/TMI.2022.3224067
|
[3] |
Guo L L, Pfohl S R, Fries J, et al. Evaluation of domain generalization and adaptation on improving model robustness to temporal dataset shift in clinical medicine. Scientific Reports, 2022, 12: 2726. doi: 10.1038/s41598-022-06484-1
|
[4] |
Motiian S, Piccirilli M, Adjeroh D A, et al. Unified deep supervised domain adaptation and generalization. In: 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017 : 5716–5726.
|
[5] |
Li H, Pan S J, Wang S, et al. Domain generalization with adversarial feature learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018 : 5400–5409.
|
[6] |
Li D, Yang Y, Song Y Z, et al. Learning to generalize: Meta-learning for domain generalization. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32 (1). doi: 10.1609/aaai.v32i1.11596
|
[7] |
Mancini M, Bulò S R, Caputo B, et al. Robust place categorization with deep domain generalization. IEEE Robotics and Automation Letters, 2018, 3: 2093–2100. doi: 10.1109/LRA.2018.2809700
|
[8] |
Mancini M, Bulò S R, Caputo B, et al. Best sources forward: Domain generalization through source-specific nets. In: 2018 25th IEEE International Conference on Image Processing (ICIP). Athens, Greece: IEEE, 2018 : 1353–1357.
|
[9] |
Segu M, Tonioni A, Tombari F. Batch normalization embeddings for deep domain generalization. Pattern Recognition, 2023, 135: 109115. doi: 10.1016/j.patcog.2022.109115
|
[10] |
Zhang H, Cisse M, Dauphin Y N, et al. Mixup: Beyond empirical risk minimization. arXiv: 1710.09412, 2017.
|
[11] |
Ding Z, Fu Y. Deep domain generalization with structured low-rank constraint. IEEE Transactions on Image Processing, 2018, 27: 304–313. doi: 10.1109/TIP.2017.2758199
|
[12] |
Nalisnick E, Matsukawa A, Teh Y W, et al. Do deep generative models know what they don’t know? arXiv: 1810.09136, 2019 .
|
[13] |
Li Y, Tian X, Gong M, et al. Deep domain generalization via conditional invariant adversarial networks. In: Ferrari V, Hebert M, Sminchisescu C, editors. Computer Vision–ECCV 2018. Cham: Springer, 2018 , 11219: 647–663.
|
[14] |
Long M, Cao Y, Wang J, et al. Learning transferable features with deep adaptation networks. In: Proceedings of the 32nd International Conference on Machine Learning. New York: ACM, 2015 , 37: 97–105.
|
[15] |
Ganin Y, Lempitsky V. Unsupervised domain adaptation by backpropagation. In: Proceedings of the 32nd International Conference on Machine Learning. New York: ACM, 2015 , 37: 1180–1189.
|
[16] |
Bousmalis K, Silberman N, Dohan D, et al. Unsupervised pixel-level domain adaptation with generative adversarial networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017 : 95–104.
|
[17] |
Xu R, Chen Z, Zuo W, et al. Deep cocktail network: Multi-source unsupervised domain adaptation with category shift. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018 : 3964–3973.
|
[18] |
Zhou K, Yang Y, Hospedales T, et al. Learning to generate novel domains for domain generalization. In: Vedaldi A, Bischof H, Brox T, editors. Computer Vision–ECCV 2020. Cham: Springer, 2020 , 12361: 561–578.
|
[19] |
Bai H, Sun R, Hong L, et al. DecAug: Out-of-distribution generalization via decomposed feature representation and semantic augmentation. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35: 6705–6713. doi: 10.1609/aaai.v35i8.16829
|
[20] |
Chattopadhyay P, Balaji Y, Hoffman J. Learning to balance specificity and invariance for in and out of domain generalization. In: European Conference on Computer Vision. Cham: Springer, 2020 : 301–318.
|
[21] |
Peng X, Bai Q, Xia X, et al. Moment matching for multi-source domain adaptation. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South): IEEE, 2020 : 1406–1415.
|
[22] |
Li D, Zhang J, Yang Y, et al. Episodic training for domain generalization. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South): IEEE, 2020 : 1446–1455.
|
[23] |
S Seo, Y Suh, D Kim, G Kim, J Han, and B Han. Learning to optimize domain specific normalization for domain generalization. In: Vedaldi A, Bischof H, Brox T, et al. editors. Computer Vision─ECCV 2020. Cham: Springer, 2020 : 68–83.
|
[24] |
K Zhou, Y Yang, Y Qiao, et al. Domain generalization with mixstyle. arXiv: 2104.02008, 2021 .
|
[25] |
Cai Q, Wang Y, Pan Y, et al. Joint contrastive learning with infinite possibilities. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. New York: ACM, 2020 : 12638–12648.
|
[26] |
Chen T, Kornblith S, Norouzi M, et al. A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning. New York: ACM, 2020 : 1597–1607.
|
[27] |
Mitrovic J, McWilliams B, Walker J, et al. Representation learning via invariant causal mechanisms. arXiv: 2010.07922, 2020 .
|
[28] |
He K, Fan H, Wu Y, et al. Momentum contrast for unsupervised visual representation learning. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA: IEEE, 2020 : 9726–9735.
|
[29] |
Wu Z, Xiong Y, Yu S X, et al. Unsupervised feature learning via non-parametric instance discrimination. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018 : 3733–3742.
|
[30] |
Yao T, Zhang Y, Qiu Z, et al. SeCo: Exploring sequence supervision for unsupervised representation learning. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35: 10656–10664. doi: 10.1609/aaai.v35i12.17274
|
[31] |
Li D, Yang Y, Song Y Z, et al. Deeper, broader and artier domain generalization. In: 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017 : 5543–5551.
|
[32] |
Carlucci F M, D'Innocente A, Bucci S, et al. Domain generalization by solving jigsaw puzzles. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2020 : 2224–2233.
|
[33] |
Matsuura T, Harada T. Domain generalization using a mixture of multiple latent domains. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34: 11749–11756. doi: 10.1609/aaai.v34i07.6846
|
[34] |
Mahajan D, Tople S, Sharma A. Domain generalization using causal matching. In: Proceedings of the 38th International Conference on Machine Learning. Volume 139 of Proceedings of Machine Learning Research. PMLR, 2021 , 139: 7313–7324.
|
[35] |
Nam H, Lee H, Park J, et al. Reducing domain gap by reducing style bias. arXiv: 1910.11645, 2019.
|
[36] |
Zhou K, Yang Y, Hospedales T, et al. Deep domain-adversarial image generation for domain generalisation. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34: 13025–13032. doi: 10.1609/aaai.v34i07.7003
|
[37] |
Balaji Y, Sankaranarayanan S, Chellappa R. MetaReg: towards domain generalization using meta-regularization. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems. New York: ACM, 2018 : 1006–1016.
|
[38] |
Chattopadhyay P, Balaji Y, Hoffman J. Learning to balance specificity and invariance for in and out of domain generalization. In: Vedaldi A, Bischof H, Brox T, editors. Computer Vision–ECCV 2020. Cham: Springer, 2020 : 301–318.
|
Figure
2.
A causal model underlying our proposed method.
[1] |
Shao R, Lan X, Li J, et al. Multi-adversarial discriminative deep domain generalization for face presentation attack detection. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2020 : 10015–10023.
|
[2] |
Ouyang C, Chen C, Li S, et al. Causality-inspired single-source domain generalization for medical image segmentation. IEEE Transactions on Medical Imaging, 2023, 42: 1095–1106. doi: 10.1109/TMI.2022.3224067
|
[3] |
Guo L L, Pfohl S R, Fries J, et al. Evaluation of domain generalization and adaptation on improving model robustness to temporal dataset shift in clinical medicine. Scientific Reports, 2022, 12: 2726. doi: 10.1038/s41598-022-06484-1
|
[4] |
Motiian S, Piccirilli M, Adjeroh D A, et al. Unified deep supervised domain adaptation and generalization. In: 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017 : 5716–5726.
|
[5] |
Li H, Pan S J, Wang S, et al. Domain generalization with adversarial feature learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018 : 5400–5409.
|
[6] |
Li D, Yang Y, Song Y Z, et al. Learning to generalize: Meta-learning for domain generalization. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32 (1). doi: 10.1609/aaai.v32i1.11596
|
[7] |
Mancini M, Bulò S R, Caputo B, et al. Robust place categorization with deep domain generalization. IEEE Robotics and Automation Letters, 2018, 3: 2093–2100. doi: 10.1109/LRA.2018.2809700
|
[8] |
Mancini M, Bulò S R, Caputo B, et al. Best sources forward: Domain generalization through source-specific nets. In: 2018 25th IEEE International Conference on Image Processing (ICIP). Athens, Greece: IEEE, 2018 : 1353–1357.
|
[9] |
Segu M, Tonioni A, Tombari F. Batch normalization embeddings for deep domain generalization. Pattern Recognition, 2023, 135: 109115. doi: 10.1016/j.patcog.2022.109115
|
[10] |
Zhang H, Cisse M, Dauphin Y N, et al. Mixup: Beyond empirical risk minimization. arXiv: 1710.09412, 2017.
|
[11] |
Ding Z, Fu Y. Deep domain generalization with structured low-rank constraint. IEEE Transactions on Image Processing, 2018, 27: 304–313. doi: 10.1109/TIP.2017.2758199
|
[12] |
Nalisnick E, Matsukawa A, Teh Y W, et al. Do deep generative models know what they don’t know? arXiv: 1810.09136, 2019 .
|
[13] |
Li Y, Tian X, Gong M, et al. Deep domain generalization via conditional invariant adversarial networks. In: Ferrari V, Hebert M, Sminchisescu C, editors. Computer Vision–ECCV 2018. Cham: Springer, 2018 , 11219: 647–663.
|
[14] |
Long M, Cao Y, Wang J, et al. Learning transferable features with deep adaptation networks. In: Proceedings of the 32nd International Conference on Machine Learning. New York: ACM, 2015 , 37: 97–105.
|
[15] |
Ganin Y, Lempitsky V. Unsupervised domain adaptation by backpropagation. In: Proceedings of the 32nd International Conference on Machine Learning. New York: ACM, 2015 , 37: 1180–1189.
|
[16] |
Bousmalis K, Silberman N, Dohan D, et al. Unsupervised pixel-level domain adaptation with generative adversarial networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017 : 95–104.
|
[17] |
Xu R, Chen Z, Zuo W, et al. Deep cocktail network: Multi-source unsupervised domain adaptation with category shift. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018 : 3964–3973.
|
[18] |
Zhou K, Yang Y, Hospedales T, et al. Learning to generate novel domains for domain generalization. In: Vedaldi A, Bischof H, Brox T, editors. Computer Vision–ECCV 2020. Cham: Springer, 2020 , 12361: 561–578.
|
[19] |
Bai H, Sun R, Hong L, et al. DecAug: Out-of-distribution generalization via decomposed feature representation and semantic augmentation. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35: 6705–6713. doi: 10.1609/aaai.v35i8.16829
|
[20] |
Chattopadhyay P, Balaji Y, Hoffman J. Learning to balance specificity and invariance for in and out of domain generalization. In: European Conference on Computer Vision. Cham: Springer, 2020 : 301–318.
|
[21] |
Peng X, Bai Q, Xia X, et al. Moment matching for multi-source domain adaptation. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South): IEEE, 2020 : 1406–1415.
|
[22] |
Li D, Zhang J, Yang Y, et al. Episodic training for domain generalization. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South): IEEE, 2020 : 1446–1455.
|
[23] |
S Seo, Y Suh, D Kim, G Kim, J Han, and B Han. Learning to optimize domain specific normalization for domain generalization. In: Vedaldi A, Bischof H, Brox T, et al. editors. Computer Vision─ECCV 2020. Cham: Springer, 2020 : 68–83.
|
[24] |
K Zhou, Y Yang, Y Qiao, et al. Domain generalization with mixstyle. arXiv: 2104.02008, 2021 .
|
[25] |
Cai Q, Wang Y, Pan Y, et al. Joint contrastive learning with infinite possibilities. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. New York: ACM, 2020 : 12638–12648.
|
[26] |
Chen T, Kornblith S, Norouzi M, et al. A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning. New York: ACM, 2020 : 1597–1607.
|
[27] |
Mitrovic J, McWilliams B, Walker J, et al. Representation learning via invariant causal mechanisms. arXiv: 2010.07922, 2020 .
|
[28] |
He K, Fan H, Wu Y, et al. Momentum contrast for unsupervised visual representation learning. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA: IEEE, 2020 : 9726–9735.
|
[29] |
Wu Z, Xiong Y, Yu S X, et al. Unsupervised feature learning via non-parametric instance discrimination. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018 : 3733–3742.
|
[30] |
Yao T, Zhang Y, Qiu Z, et al. SeCo: Exploring sequence supervision for unsupervised representation learning. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35: 10656–10664. doi: 10.1609/aaai.v35i12.17274
|
[31] |
Li D, Yang Y, Song Y Z, et al. Deeper, broader and artier domain generalization. In: 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017 : 5543–5551.
|
[32] |
Carlucci F M, D'Innocente A, Bucci S, et al. Domain generalization by solving jigsaw puzzles. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2020 : 2224–2233.
|
[33] |
Matsuura T, Harada T. Domain generalization using a mixture of multiple latent domains. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34: 11749–11756. doi: 10.1609/aaai.v34i07.6846
|
[34] |
Mahajan D, Tople S, Sharma A. Domain generalization using causal matching. In: Proceedings of the 38th International Conference on Machine Learning. Volume 139 of Proceedings of Machine Learning Research. PMLR, 2021 , 139: 7313–7324.
|
[35] |
Nam H, Lee H, Park J, et al. Reducing domain gap by reducing style bias. arXiv: 1910.11645, 2019.
|
[36] |
Zhou K, Yang Y, Hospedales T, et al. Deep domain-adversarial image generation for domain generalisation. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34: 13025–13032. doi: 10.1609/aaai.v34i07.7003
|
[37] |
Balaji Y, Sankaranarayanan S, Chellappa R. MetaReg: towards domain generalization using meta-regularization. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems. New York: ACM, 2018 : 1006–1016.
|
[38] |
Chattopadhyay P, Balaji Y, Hoffman J. Learning to balance specificity and invariance for in and out of domain generalization. In: Vedaldi A, Bischof H, Brox T, editors. Computer Vision–ECCV 2020. Cham: Springer, 2020 : 301–318.
|