[1] |
Duan L M, Monroe C. Colloquium: Quantum networks with trapped ions. Reviews of Modern Physics, 2010, 82: 1209–1224. doi: 10.1103/RevModPhys.82.1209
|
[2] |
Ritter S, Nölleke C, Hahn C, et al. An elementary quantum network of single atoms in optical cavities. Nature, 2012, 484: 195–200. doi: 10.1038/nature11023
|
[3] |
Reiserer A, Kalb N, Rempe G, et al. A quantum gate between a flying optical photon and a single trapped atom. Nature, 2014, 508: 237–240. doi: 10.1038/nature13177
|
[4] |
Uphoff M, Brekenfeld M, Rempe G, et al. An integrated quantum repeater at telecom wavelength with single atoms in optical fiber cavities. Applied Physics B, 2016, 122: 46. doi: https://doi.org/10.1007/s00340-015-6299-2
|
[5] |
Paul W, Raether M. Das elektrische massenfilter. Zeitschrift Für Physik, 1955, 140: 262–273. doi: https://doi.org/10.1007/BF01328923
|
[6] |
Paul W. Electromagnetic traps for charged and neutral particles. Reviews of Modern Physics, 1990, 62: 531–540. doi: 10.1103/RevModPhys.62.531
|
[7] |
Wang C X, He R, Li R R, et al. Advances in the study of ion trap structures in quantum computation and simulation. Acta Physica Sinica, 2022, 71: 133701. doi: 10.7498/aps.71.20220224
|
[8] |
Prestage J D, Dick G J, Maleki L. New ion trap for frequency standard applications. Journal of Applied Physics, 1989, 66: 1013–1017. doi: 10.1063/1.343486
|
[9] |
Schmidt-Kaler F, Häffner H, Gulde S, et al. How to realize a universal quantum gate with trapped ions. Applied Physics B, 2003, 77: 789–796. doi: https://doi.org/10.1007/s00340-003-1346-9
|
[10] |
He R, Cui J M, Li R R, et al. An ion trap apparatus with high optical access in multiple directions. Review of Scientific Instruments, 2021, 92: 073201. doi: 10.1063/5.0043985
|
[11] |
Chiaverini J, Blakestad R B, Britton J, et al. Surface-electrode architecture for ion-trap quantum information processing. Quantum Information and Computation, 2005, 5: 419–439. doi: 10.26421/QIC5.6-1
|
[12] |
David Romaszko Z, Hong S, Siegele M, et al. Engineering of microfabricated ion traps and integration of advanced on-chip features. Nature Reviews Physics, 2020, 2: 285–299. doi: 10.1038/s42254-020-0182-8
|
[13] |
Leibfried D, Blatt R, Monroe C, et al. Quantum dynamics of single trapped ions. Reviews of Modern Physics, 2003, 75: 281–324. doi: 10.1103/RevModPhys.75.281
|
[14] |
Mehta K K, Zhang C, Malinowski M, et al. Integrated optical multi-ion quantum logic. Nature, 2020, 586: 533–537. doi: 10.1038/s41586-020-2823-6
|
[15] |
Chou C K, Auchter C, Lilieholm J, et al. Note: Single ion imaging and fluorescence collection with a parabolic mirror trap. Review of Scientific Instruments, 2017, 88: 086101. doi: 10.1063/1.4996506
|
[16] |
Wang Z, Wang B R, Ma Q L, et al. Design of a novel monolithic parabolic-mirror ion-trap to precisely align the RF null point with the optical focus. arXiv: 2004.08845, 2020.
|
[17] |
Law C K, Kimble H J. Deterministic generation of a bit-stream of single-photon pulses. Journal of Modern Optics, 1997, 44: 2067–2074. doi: 10.1080/09500349708231869
|
[18] |
Hunger D, Steinmetz T, Colombe Y, et al. A fiber Fabry-Perot cavity with high finesse. New Journal of Physics, 2010, 12: 065038. doi: 10.1088/1367-2630/12/6/065038
|
[19] |
Schupp J, Krcmarsky V, Krutyanskiy V, et al. Interface between trapped-ion qubits and traveling photons with close-to-optimal efficiency. PRX Quantum, 2021, 2: 020331. doi: 10.1103/PRXQuantum.2.020331
|
[20] |
Krutyanskiy V, Galli M, Krcmarsky V, et al. Entanglement of trapped-ion qubits separated by 230 meters. Physical Review Letters, 2023, 130: 050803. doi: 10.1103/PhysRevLett.130.050803
|
[21] |
Wilk T, Webster S C, Kuhn A, et al. Single-atom single-photon quantum interface. Science, 2007, 317: 488–490. doi: 10.1126/science.1143835
|
[22] |
Daiss S, Langenfeld S, Welte S, et al. A quantum-logic gate between distant quantum-network modules. Science, 2021, 371: 614–617. doi: 10.1126/science.abe3150
|
[23] |
Thomas P, Ruscio L, Morin O, et al. Efficient generation of entangled multiphoton graph states from a single atom. Nature, 2022, 608: 677–681. doi: 10.1038/s41586-022-04987-5
|
[24] |
Brandstätter B, McClung A, Schüppert K, et al. Integrated fiber-mirror ion trap for strong ion-cavity coupling. The Review of Scientific Instruments, 2013, 84: 123104. doi: 10.1063/1.4838696
|
[25] |
Ballance T G, Meyer H M, Kobel P, et al. Cavity-induced backaction in Purcell-enhanced photon emission of a single ion in an ultraviolet fiber cavity. Physical Review A, 2017, 95: 033812. doi: 10.1103/PhysRevA.95.033812
|
[26] |
Lee M, Lee M, Hong S, et al. Microelectromechanical-system-based design of a high-finesse fiber cavity integrated with an ion trap. Physical Review Applied, 2019, 12: 044052. doi: 10.1103/PhysRevApplied.12.044052
|
[27] |
Takahashi H, Kassa E, Christoforou C, et al. Strong coupling of a single ion to an optical cavity. Physical Review Letters, 2020, 124: 013602. doi: 10.1103/PhysRevLett.124.013602
|
[28] |
Teller M, Messerer V, Schüppert K, et al. Integrating a fiber cavity into a wheel trap for strong ion-cavity coupling. AVS Quantum Science, 2023, 5: 012001. doi: 10.1116/5.0121534
|
[29] |
Kumph M, Henkel C, Rabl P, et al. Electric-field noise above a thin dielectric layer on metal electrodes. New Journal of Physics, 2016, 18: 023020. doi: 10.1088/1367-2630/18/2/023020
|
[30] |
Teller M, Fioretto D A, Holz P C, et al. Heating of a trapped ion induced by dielectric materials. Physical Review Letters, 2021, 126: 230505. doi: 10.1103/PhysRevLett.126.230505
|
[31] |
Sterk J D, Luo L, Manning T A, et al. Photon collection from a trapped ion-cavity system. Physical Review A, 2012, 85: 062308. doi: 10.1103/PhysRevA.85.062308
|
JUSTC-2023-0005-Supporting_information.pdf |
Figure
1.
(a) Schematic diagram of the fiber cavity ion trap system. The fiber cavity ion trap is placed in the middle of the vacuum chamber. A single
Figure 2. Diagram of the fiber cavity ion trap system in vacuum. The fiber electrodes are mounted on a fiber mounting base. This system uses a ceramic circuit board to energize the ion trap. The stainless steel base of the device is composed of two spring-connected parts, and the lower part of the stainless steel base is directly connected to the vacuum chamber through grippers.
Figure
5.
Schematic diagram of the interaction between the fiber cavity and the ion. In the presence of an external electric field
Figure
7.
Simulated potential energy. A drive voltage of
Figure 8. Schematic diagram of the connection of the stainless steel base. The figure shows the spring arrangement as seen from the side. The stainless steel base uses a total of ten springs, four of which are used to achieve the connection in the vertical direction, and the remaining six springs are used to achieve the connection in the side.
[1] |
Duan L M, Monroe C. Colloquium: Quantum networks with trapped ions. Reviews of Modern Physics, 2010, 82: 1209–1224. doi: 10.1103/RevModPhys.82.1209
|
[2] |
Ritter S, Nölleke C, Hahn C, et al. An elementary quantum network of single atoms in optical cavities. Nature, 2012, 484: 195–200. doi: 10.1038/nature11023
|
[3] |
Reiserer A, Kalb N, Rempe G, et al. A quantum gate between a flying optical photon and a single trapped atom. Nature, 2014, 508: 237–240. doi: 10.1038/nature13177
|
[4] |
Uphoff M, Brekenfeld M, Rempe G, et al. An integrated quantum repeater at telecom wavelength with single atoms in optical fiber cavities. Applied Physics B, 2016, 122: 46. doi: https://doi.org/10.1007/s00340-015-6299-2
|
[5] |
Paul W, Raether M. Das elektrische massenfilter. Zeitschrift Für Physik, 1955, 140: 262–273. doi: https://doi.org/10.1007/BF01328923
|
[6] |
Paul W. Electromagnetic traps for charged and neutral particles. Reviews of Modern Physics, 1990, 62: 531–540. doi: 10.1103/RevModPhys.62.531
|
[7] |
Wang C X, He R, Li R R, et al. Advances in the study of ion trap structures in quantum computation and simulation. Acta Physica Sinica, 2022, 71: 133701. doi: 10.7498/aps.71.20220224
|
[8] |
Prestage J D, Dick G J, Maleki L. New ion trap for frequency standard applications. Journal of Applied Physics, 1989, 66: 1013–1017. doi: 10.1063/1.343486
|
[9] |
Schmidt-Kaler F, Häffner H, Gulde S, et al. How to realize a universal quantum gate with trapped ions. Applied Physics B, 2003, 77: 789–796. doi: https://doi.org/10.1007/s00340-003-1346-9
|
[10] |
He R, Cui J M, Li R R, et al. An ion trap apparatus with high optical access in multiple directions. Review of Scientific Instruments, 2021, 92: 073201. doi: 10.1063/5.0043985
|
[11] |
Chiaverini J, Blakestad R B, Britton J, et al. Surface-electrode architecture for ion-trap quantum information processing. Quantum Information and Computation, 2005, 5: 419–439. doi: 10.26421/QIC5.6-1
|
[12] |
David Romaszko Z, Hong S, Siegele M, et al. Engineering of microfabricated ion traps and integration of advanced on-chip features. Nature Reviews Physics, 2020, 2: 285–299. doi: 10.1038/s42254-020-0182-8
|
[13] |
Leibfried D, Blatt R, Monroe C, et al. Quantum dynamics of single trapped ions. Reviews of Modern Physics, 2003, 75: 281–324. doi: 10.1103/RevModPhys.75.281
|
[14] |
Mehta K K, Zhang C, Malinowski M, et al. Integrated optical multi-ion quantum logic. Nature, 2020, 586: 533–537. doi: 10.1038/s41586-020-2823-6
|
[15] |
Chou C K, Auchter C, Lilieholm J, et al. Note: Single ion imaging and fluorescence collection with a parabolic mirror trap. Review of Scientific Instruments, 2017, 88: 086101. doi: 10.1063/1.4996506
|
[16] |
Wang Z, Wang B R, Ma Q L, et al. Design of a novel monolithic parabolic-mirror ion-trap to precisely align the RF null point with the optical focus. arXiv: 2004.08845, 2020.
|
[17] |
Law C K, Kimble H J. Deterministic generation of a bit-stream of single-photon pulses. Journal of Modern Optics, 1997, 44: 2067–2074. doi: 10.1080/09500349708231869
|
[18] |
Hunger D, Steinmetz T, Colombe Y, et al. A fiber Fabry-Perot cavity with high finesse. New Journal of Physics, 2010, 12: 065038. doi: 10.1088/1367-2630/12/6/065038
|
[19] |
Schupp J, Krcmarsky V, Krutyanskiy V, et al. Interface between trapped-ion qubits and traveling photons with close-to-optimal efficiency. PRX Quantum, 2021, 2: 020331. doi: 10.1103/PRXQuantum.2.020331
|
[20] |
Krutyanskiy V, Galli M, Krcmarsky V, et al. Entanglement of trapped-ion qubits separated by 230 meters. Physical Review Letters, 2023, 130: 050803. doi: 10.1103/PhysRevLett.130.050803
|
[21] |
Wilk T, Webster S C, Kuhn A, et al. Single-atom single-photon quantum interface. Science, 2007, 317: 488–490. doi: 10.1126/science.1143835
|
[22] |
Daiss S, Langenfeld S, Welte S, et al. A quantum-logic gate between distant quantum-network modules. Science, 2021, 371: 614–617. doi: 10.1126/science.abe3150
|
[23] |
Thomas P, Ruscio L, Morin O, et al. Efficient generation of entangled multiphoton graph states from a single atom. Nature, 2022, 608: 677–681. doi: 10.1038/s41586-022-04987-5
|
[24] |
Brandstätter B, McClung A, Schüppert K, et al. Integrated fiber-mirror ion trap for strong ion-cavity coupling. The Review of Scientific Instruments, 2013, 84: 123104. doi: 10.1063/1.4838696
|
[25] |
Ballance T G, Meyer H M, Kobel P, et al. Cavity-induced backaction in Purcell-enhanced photon emission of a single ion in an ultraviolet fiber cavity. Physical Review A, 2017, 95: 033812. doi: 10.1103/PhysRevA.95.033812
|
[26] |
Lee M, Lee M, Hong S, et al. Microelectromechanical-system-based design of a high-finesse fiber cavity integrated with an ion trap. Physical Review Applied, 2019, 12: 044052. doi: 10.1103/PhysRevApplied.12.044052
|
[27] |
Takahashi H, Kassa E, Christoforou C, et al. Strong coupling of a single ion to an optical cavity. Physical Review Letters, 2020, 124: 013602. doi: 10.1103/PhysRevLett.124.013602
|
[28] |
Teller M, Messerer V, Schüppert K, et al. Integrating a fiber cavity into a wheel trap for strong ion-cavity coupling. AVS Quantum Science, 2023, 5: 012001. doi: 10.1116/5.0121534
|
[29] |
Kumph M, Henkel C, Rabl P, et al. Electric-field noise above a thin dielectric layer on metal electrodes. New Journal of Physics, 2016, 18: 023020. doi: 10.1088/1367-2630/18/2/023020
|
[30] |
Teller M, Fioretto D A, Holz P C, et al. Heating of a trapped ion induced by dielectric materials. Physical Review Letters, 2021, 126: 230505. doi: 10.1103/PhysRevLett.126.230505
|
[31] |
Sterk J D, Luo L, Manning T A, et al. Photon collection from a trapped ion-cavity system. Physical Review A, 2012, 85: 062308. doi: 10.1103/PhysRevA.85.062308
|