[1] |
Syôzi I. Statistics of Kagomé lattice. Progress of Theoretical Physics, 1951, 6 (3): 306–308. doi: 10.1143/ptp/6.3.306
|
[2] |
Mielke A. Ferromagnetic ground states for the Hubbard model on line graphs. Journal of Physics A: Mathematical and General, 1991, 24: L73. doi: 10.1088/0305-4470/24/2/005
|
[3] |
Tasaki H. Ferromagnetism in the Hubbard models with degenerate single-electron ground states. Physical Review Letters, 1992, 69: 1608. doi: 10.1103/PhysRevLett.69.1608
|
[4] |
Sachdev S. Kagomé- and triangular-lattice Heisenberg antiferromagnets: Ordering from quantum fluctuations and quantum-disordered ground states with unconfined bosonic spinons. Physical Review B, 1992, 45: 12377. doi: 10.1103/PhysRevB.45.12377
|
[5] |
Tang E, Mei J W, Wen X G. High-temperature fractional quantum Hall states. Physical Review Letters, 2011, 106: 236802. doi: 10.1103/PhysRevLett.106.236802
|
[6] |
Cao Y, Fatemi V, Fang S, et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 2018, 556: 43–50. doi: 10.1038/nature26160
|
[7] |
Balents L, Dean C R, Efetov D K, et al. Superconductivity and strong correlations in moiré flat bands. Nature Physics, 2020, 16: 725–733. doi: 10.1038/s41567-020-0906-9
|
[8] |
Aoki H. Theoretical possibilities for flat band superconductivity. Journal of Superconductivity and Novel Magnetism, 2020, 33: 2341–2346. doi: 10.1007/s10948-020-05474-6
|
[9] |
Heikkilä T T, Volovik G E. Flat bands as a route to high-temperature superconductivity in graphite. In: Esquinazi P, editor. Basic Physics of Functionalized Graphite. Cham: Springer International Publishing, 2016: 123–143.
|
[10] |
Jiang K, Wu T, Yin J X, et al. Kagome superconductors AV3Sb5 (A = K, Rb, Cs). National Science Review, 2022, 10 (2): nwac199. doi: 10.1093/nsr/nwac199
|
[11] |
Nie L, Sun K, Ma W, et al. Charge-density-wave-driven electronic nematicity in a kagome superconductor. Nature, 2022, 604: 59–64. doi: 10.1038/s41586-022-04493-8
|
[12] |
Jiang Y X, Yin J X, Denner M M, et al. Unconventional chiral charge order in kagome superconductor KV3Sb5. Nature Materials, 2021, 20: 1353–1357. doi: 10.1038/s41563-021-01034-y
|
[13] |
Teng X, Chen L, Ye F, et al. Discovery of charge density wave in a kagome lattice antiferromagnet. Nature, 2022, 609: 490–495. doi: 10.1038/s41586-022-05034-z
|
[14] |
Kang M, Ye L, Fang S, et al. Dirac fermions and flat bands in the ideal kagome metal FeSn. Nature Materials, 2020, 19: 163–169. doi: 10.1038/s41563-019-0531-0
|
[15] |
Lin Z, Wang C, Wang P, et al. Dirac fermions in antiferromagnetic FeSn kagome lattices with combined space inversion and time-reversal symmetry. Physical Review B, 2020, 102: 155103. doi: 10.1103/PhysRevB.102.155103
|
[16] |
Huang L, Lu H. Signatures of hundness in kagome metals. Physical Review B, 2020, 102: 125130. doi: 10.1103/PhysRevB.102.125130
|
[17] |
Ye L, Kang M, Liu J, et al. Massive Dirac fermions in a ferromagnetic kagome metal. Nature, 2018, 555: 638–642. doi: 10.1038/nature25987
|
[18] |
Lin Z, Choi J H, Zhang Q, et al. Flatbands and emergent ferromagnetic ordering in Fe3Sn2 kagome lattices. Physical Review Letters, 2018, 121: 096401. doi: 10.1103/PhysRevLett.121.096401
|
[19] |
Yin J X, Zhang S S, Li H, et al. Giant and anisotropic many-body spin-orbit tunability in a strongly correlated kagome magnet. Nature, 2018, 562: 91–95. doi: 10.1038/s41586-018-0502-7
|
[20] |
Kang M, Fang S, Ye L, et al. Topological flat bands in frustrated kagome lattice CoSn. Nature Communications, 2020, 11: 4004. doi: 10.1038/s41467-020-17465-1
|
[21] |
Liu Z, Li M, Wang Q, et al. Orbital-selective Dirac fermions and extremely flat bands in frustrated kagome-lattice metal CoSn. Nature Communications, 2020, 11: 4002. doi: 10.1038/s41467-020-17462-4
|
[22] |
Yin J X, Shumiya N, Mardanya S, et al. Fermion-boson many-body interplay in a frustrated kagome paramagnet. Nature Communications, 2020, 11: 4003. doi: 10.1038/s41467-020-17464-2
|
[23] |
Meier W R, Du M H, Okamoto S, et al. Flat bands in the CoSn-type compounds. Physical Review B, 2020, 102: 075148. doi: 10.1103/PhysRevB.102.075148
|
[24] |
Huang H, Zheng L, Lin Z, et al. Flat-band-induced anomalous anisotropic charge transport and orbital magnetism in kagome metal CoSn. Physical Review Letters, 2022, 128: 096601. doi: 10.1103/PhysRevLett.128.096601
|
[25] |
Yin J X, Ma W, Cochran T A, et al. Quantum-limit Chern topological magnetism in TbMn6Sn6. Nature, 2020, 583: 533–536. doi: 10.1038/s41586-020-2482-7
|
[26] |
Yang T Y, Wan Q, Song J P, et al. Fermi-level flat band in a kagome magnet. Quantum Frontiers, 2022, 1: 14. doi: 10.1007/s44214-022-00017-7
|
[27] |
Vandenberg J M, Barz H. The crystal structure of a new ternary silicide in the system rare-earth-ruthenium-silicon. Materials Research Bulletin, 1980, 15 (10): 1493–1498. doi: 10.1016/0025-5408(80)90108-7
|
[28] |
Li B, Li S, Wen H H. Chemical doping effect in the LaRu3Si2 superconductor with a kagome lattice. Physical Review B, 2016, 94: 094523. doi: 10.1103/PhysRevB.94.094523
|
[29] |
Li S, Zeng B, Wan X, et al. Anomalous properties in the normal and superconducting states of LaRu3Si2. Physical Review B, 2011, 84: 214527. doi: 10.1103/PhysRevB.84.214527
|
[30] |
Mielke C, Qin Y, Yin J X, et al. Nodeless kagome superconductivity in LaRu3Si2. Physical Review Materials, 2021, 5: 034803. doi: 10.1103/PhysRevMaterials.5.034803
|
[31] |
Gong C, Tian S, Tu Z, et al. Superconductivity in kagome metal YRu3Si2 with strong electron correlations. Chinese Physics Letters, 2022, 39: 087401. doi: 10.1088/0256-307X/39/8/087401
|
[32] |
Anisimov V I, Zaanen J, Andersen O K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Physical Review B, 1991, 44: 943. doi: 10.1103/PhysRevB.44.943
|
[33] |
Georges A, Kotliar G, Krauth W, et al. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Reviews of Modern Physics, 1996, 68: 13. doi: 10.1103/RevModPhys.68.13
|
[34] |
Lichtenstein A I, Katsnelson M I, Kotliar G. Finite-temperature magnetism of transition metals: An ab initio dynamical mean-field theory. Physical Review Letters, 2001, 87: 067205. doi: 10.1103/PhysRevLett.87.067205
|
[35] |
Kotliar G, Savrasov S Y, Haule K, et al. Electronic structure calculations with dynamical mean-field theory. Reviews of Modern Physics, 2006, 78: 865. doi: 10.1103/RevModPhys.78.865
|
[36] |
Momma K, Izumi F. VESTA: A three-dimensional visualization system for electronic and structural analysis. Journal of Applied Crystallography, 2008, 41: 653–658. doi: 10.1107/S0021889808012016
|
[37] |
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996, 54: 11169. doi: 10.1103/PhysRevB.54.11169
|
[38] |
Blöchl P E. Projector augmented-wave method. Physical Review B, 1994, 50: 17953. doi: 10.1103/PhysRevB.50.17953
|
[39] |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Europace, 1996, 77: 3865. doi: 10.1103/PhysRevLett.77.3865
|
[40] |
Liechtenstein A I, Anisimov V I, Zaanen J. Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. Physical Review B, 1995, 52: R5467. doi: 10.1103/PhysRevB.52.R5467
|
[41] |
Haule K, Yee C H, Kim K. Dynamical mean-field theory within the full-potential methods: Electronic structure of CeIrIn5, CeCoIn5, and CeRhIn5. Physical Review B, 2010, 81: 195107. doi: 10.1103/PhysRevB.81.195107
|
[42] |
Haule K, Birol T. Free energy from stationary implementation of the DFT+DMFT functional. Physical Review Letters, 2015, 115: 256402. doi: 10.1103/PhysRevLett.115.256402
|
[43] |
Blaha P, Schwarz K, Tran F, et al. WIEN2k: An APW+lo program for calculating the properties of solids. The Journal of Chemical Physics, 2020, 152 (7): 074101. doi: 10.1063/1.5143061
|
[44] |
Gull E, Millis A J, Lichtenstein A I, et al. Continuous-time Monte Carlo methods for quantum impurity models. Reviews of Modern Physics, 2011, 83: 349. doi: 10.1103/RevModPhys.83.349
|
[45] |
Haule K. Exact double counting in combining the dynamical mean field theory and the density functional theory. Physical Review Letters, 2015, 115: 196403. doi: 10.1103/PhysRevLett.115.196403
|
[46] |
Haule K, Pascut G L. Forces for structural optimizations in correlated materials within a DFT+embedded DMFT functional approach. Physical Review B, 2016, 94: 195146. doi: 10.1103/PhysRevB.94.195146
|
[47] |
Haule K. DFT+embedded DMFT Functional. [2022-10-11] http://hauleweb.rutgers.edu/tutorials/index.html.
|
Supporting information of JUSTC-2022-0182.pdf |
Figure
1.
Three possible crystal structures of LaRu3Si2 with a Kagome plane consisting of pure Ru atoms. (a), (c) Perfect Kagome structure. (b), (d), and (e) Two possible distorted Kagome structures with a doubling of the
Figure 2. Electronic correlation effects on stabilizing a perfect Kagome lattice. (a), (d) Fractional coordinates x of Ru (Fe) relaxed by LDA+U and GGA+U as functions of Hubbard U, for different lattice parameter ratio c/a with the fixed crystal volume of experiment. c = 7.12 Å is the experimental value. x = 0.5 for a perfect Kagome lattice. (b), (e) x relaxed by LDA+DMFT as functions of U. The yellow area mark that LaRu3Si2 is on the verge of becoming a perfect Kagome lattice. (c), (f) LDA+DMFT calculated mass-enhancement of Ru-4d (Fe-3d) orbitals due to electronic correlations, as functions of U. (a)–(c) for LaRu3Si2 and (d)–(f) for LaFe3Si2.
Figure
3.
Electronic correlation induced magnetism. (a), (d) Local magnetic susceptibilities calculated by LDA+DMFT as functions of temperate
Figure
4.
Flat band near Fermi level. (a), (d) LDA calculated band structures. The flat bands (FB) with
[1] |
Syôzi I. Statistics of Kagomé lattice. Progress of Theoretical Physics, 1951, 6 (3): 306–308. doi: 10.1143/ptp/6.3.306
|
[2] |
Mielke A. Ferromagnetic ground states for the Hubbard model on line graphs. Journal of Physics A: Mathematical and General, 1991, 24: L73. doi: 10.1088/0305-4470/24/2/005
|
[3] |
Tasaki H. Ferromagnetism in the Hubbard models with degenerate single-electron ground states. Physical Review Letters, 1992, 69: 1608. doi: 10.1103/PhysRevLett.69.1608
|
[4] |
Sachdev S. Kagomé- and triangular-lattice Heisenberg antiferromagnets: Ordering from quantum fluctuations and quantum-disordered ground states with unconfined bosonic spinons. Physical Review B, 1992, 45: 12377. doi: 10.1103/PhysRevB.45.12377
|
[5] |
Tang E, Mei J W, Wen X G. High-temperature fractional quantum Hall states. Physical Review Letters, 2011, 106: 236802. doi: 10.1103/PhysRevLett.106.236802
|
[6] |
Cao Y, Fatemi V, Fang S, et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 2018, 556: 43–50. doi: 10.1038/nature26160
|
[7] |
Balents L, Dean C R, Efetov D K, et al. Superconductivity and strong correlations in moiré flat bands. Nature Physics, 2020, 16: 725–733. doi: 10.1038/s41567-020-0906-9
|
[8] |
Aoki H. Theoretical possibilities for flat band superconductivity. Journal of Superconductivity and Novel Magnetism, 2020, 33: 2341–2346. doi: 10.1007/s10948-020-05474-6
|
[9] |
Heikkilä T T, Volovik G E. Flat bands as a route to high-temperature superconductivity in graphite. In: Esquinazi P, editor. Basic Physics of Functionalized Graphite. Cham: Springer International Publishing, 2016: 123–143.
|
[10] |
Jiang K, Wu T, Yin J X, et al. Kagome superconductors AV3Sb5 (A = K, Rb, Cs). National Science Review, 2022, 10 (2): nwac199. doi: 10.1093/nsr/nwac199
|
[11] |
Nie L, Sun K, Ma W, et al. Charge-density-wave-driven electronic nematicity in a kagome superconductor. Nature, 2022, 604: 59–64. doi: 10.1038/s41586-022-04493-8
|
[12] |
Jiang Y X, Yin J X, Denner M M, et al. Unconventional chiral charge order in kagome superconductor KV3Sb5. Nature Materials, 2021, 20: 1353–1357. doi: 10.1038/s41563-021-01034-y
|
[13] |
Teng X, Chen L, Ye F, et al. Discovery of charge density wave in a kagome lattice antiferromagnet. Nature, 2022, 609: 490–495. doi: 10.1038/s41586-022-05034-z
|
[14] |
Kang M, Ye L, Fang S, et al. Dirac fermions and flat bands in the ideal kagome metal FeSn. Nature Materials, 2020, 19: 163–169. doi: 10.1038/s41563-019-0531-0
|
[15] |
Lin Z, Wang C, Wang P, et al. Dirac fermions in antiferromagnetic FeSn kagome lattices with combined space inversion and time-reversal symmetry. Physical Review B, 2020, 102: 155103. doi: 10.1103/PhysRevB.102.155103
|
[16] |
Huang L, Lu H. Signatures of hundness in kagome metals. Physical Review B, 2020, 102: 125130. doi: 10.1103/PhysRevB.102.125130
|
[17] |
Ye L, Kang M, Liu J, et al. Massive Dirac fermions in a ferromagnetic kagome metal. Nature, 2018, 555: 638–642. doi: 10.1038/nature25987
|
[18] |
Lin Z, Choi J H, Zhang Q, et al. Flatbands and emergent ferromagnetic ordering in Fe3Sn2 kagome lattices. Physical Review Letters, 2018, 121: 096401. doi: 10.1103/PhysRevLett.121.096401
|
[19] |
Yin J X, Zhang S S, Li H, et al. Giant and anisotropic many-body spin-orbit tunability in a strongly correlated kagome magnet. Nature, 2018, 562: 91–95. doi: 10.1038/s41586-018-0502-7
|
[20] |
Kang M, Fang S, Ye L, et al. Topological flat bands in frustrated kagome lattice CoSn. Nature Communications, 2020, 11: 4004. doi: 10.1038/s41467-020-17465-1
|
[21] |
Liu Z, Li M, Wang Q, et al. Orbital-selective Dirac fermions and extremely flat bands in frustrated kagome-lattice metal CoSn. Nature Communications, 2020, 11: 4002. doi: 10.1038/s41467-020-17462-4
|
[22] |
Yin J X, Shumiya N, Mardanya S, et al. Fermion-boson many-body interplay in a frustrated kagome paramagnet. Nature Communications, 2020, 11: 4003. doi: 10.1038/s41467-020-17464-2
|
[23] |
Meier W R, Du M H, Okamoto S, et al. Flat bands in the CoSn-type compounds. Physical Review B, 2020, 102: 075148. doi: 10.1103/PhysRevB.102.075148
|
[24] |
Huang H, Zheng L, Lin Z, et al. Flat-band-induced anomalous anisotropic charge transport and orbital magnetism in kagome metal CoSn. Physical Review Letters, 2022, 128: 096601. doi: 10.1103/PhysRevLett.128.096601
|
[25] |
Yin J X, Ma W, Cochran T A, et al. Quantum-limit Chern topological magnetism in TbMn6Sn6. Nature, 2020, 583: 533–536. doi: 10.1038/s41586-020-2482-7
|
[26] |
Yang T Y, Wan Q, Song J P, et al. Fermi-level flat band in a kagome magnet. Quantum Frontiers, 2022, 1: 14. doi: 10.1007/s44214-022-00017-7
|
[27] |
Vandenberg J M, Barz H. The crystal structure of a new ternary silicide in the system rare-earth-ruthenium-silicon. Materials Research Bulletin, 1980, 15 (10): 1493–1498. doi: 10.1016/0025-5408(80)90108-7
|
[28] |
Li B, Li S, Wen H H. Chemical doping effect in the LaRu3Si2 superconductor with a kagome lattice. Physical Review B, 2016, 94: 094523. doi: 10.1103/PhysRevB.94.094523
|
[29] |
Li S, Zeng B, Wan X, et al. Anomalous properties in the normal and superconducting states of LaRu3Si2. Physical Review B, 2011, 84: 214527. doi: 10.1103/PhysRevB.84.214527
|
[30] |
Mielke C, Qin Y, Yin J X, et al. Nodeless kagome superconductivity in LaRu3Si2. Physical Review Materials, 2021, 5: 034803. doi: 10.1103/PhysRevMaterials.5.034803
|
[31] |
Gong C, Tian S, Tu Z, et al. Superconductivity in kagome metal YRu3Si2 with strong electron correlations. Chinese Physics Letters, 2022, 39: 087401. doi: 10.1088/0256-307X/39/8/087401
|
[32] |
Anisimov V I, Zaanen J, Andersen O K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Physical Review B, 1991, 44: 943. doi: 10.1103/PhysRevB.44.943
|
[33] |
Georges A, Kotliar G, Krauth W, et al. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Reviews of Modern Physics, 1996, 68: 13. doi: 10.1103/RevModPhys.68.13
|
[34] |
Lichtenstein A I, Katsnelson M I, Kotliar G. Finite-temperature magnetism of transition metals: An ab initio dynamical mean-field theory. Physical Review Letters, 2001, 87: 067205. doi: 10.1103/PhysRevLett.87.067205
|
[35] |
Kotliar G, Savrasov S Y, Haule K, et al. Electronic structure calculations with dynamical mean-field theory. Reviews of Modern Physics, 2006, 78: 865. doi: 10.1103/RevModPhys.78.865
|
[36] |
Momma K, Izumi F. VESTA: A three-dimensional visualization system for electronic and structural analysis. Journal of Applied Crystallography, 2008, 41: 653–658. doi: 10.1107/S0021889808012016
|
[37] |
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996, 54: 11169. doi: 10.1103/PhysRevB.54.11169
|
[38] |
Blöchl P E. Projector augmented-wave method. Physical Review B, 1994, 50: 17953. doi: 10.1103/PhysRevB.50.17953
|
[39] |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Europace, 1996, 77: 3865. doi: 10.1103/PhysRevLett.77.3865
|
[40] |
Liechtenstein A I, Anisimov V I, Zaanen J. Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. Physical Review B, 1995, 52: R5467. doi: 10.1103/PhysRevB.52.R5467
|
[41] |
Haule K, Yee C H, Kim K. Dynamical mean-field theory within the full-potential methods: Electronic structure of CeIrIn5, CeCoIn5, and CeRhIn5. Physical Review B, 2010, 81: 195107. doi: 10.1103/PhysRevB.81.195107
|
[42] |
Haule K, Birol T. Free energy from stationary implementation of the DFT+DMFT functional. Physical Review Letters, 2015, 115: 256402. doi: 10.1103/PhysRevLett.115.256402
|
[43] |
Blaha P, Schwarz K, Tran F, et al. WIEN2k: An APW+lo program for calculating the properties of solids. The Journal of Chemical Physics, 2020, 152 (7): 074101. doi: 10.1063/1.5143061
|
[44] |
Gull E, Millis A J, Lichtenstein A I, et al. Continuous-time Monte Carlo methods for quantum impurity models. Reviews of Modern Physics, 2011, 83: 349. doi: 10.1103/RevModPhys.83.349
|
[45] |
Haule K. Exact double counting in combining the dynamical mean field theory and the density functional theory. Physical Review Letters, 2015, 115: 196403. doi: 10.1103/PhysRevLett.115.196403
|
[46] |
Haule K, Pascut G L. Forces for structural optimizations in correlated materials within a DFT+embedded DMFT functional approach. Physical Review B, 2016, 94: 195146. doi: 10.1103/PhysRevB.94.195146
|
[47] |
Haule K. DFT+embedded DMFT Functional. [2022-10-11] http://hauleweb.rutgers.edu/tutorials/index.html.
|