[1] |
Kennedy T A, Charnock F T, Colton J S, et al. Single-qubit operations with the nitrogen-vacancy center in diamond. Physica Status Solidi (b), 2002, 233 (3): 416–426. doi: 10.1002/1521-3951(200210)233:3<416::AID-PSSB416>3.0.CO;2-R
|
[2] |
Block M, Kobrin B, Jarmola A, et al. Optically enhanced electric field sensing using nitrogen-vacancy ensembles. Physical Review Applied, 2021, 16 (2): 024024. doi: 10.1103/PhysRevApplied.16.024024
|
[3] |
Taylor J M, Cappellaro P, Childress L, et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nature Physics, 2008, 4 (10): 810–816. doi: 10.1038/nphys1075
|
[4] |
Schloss J M, Barry J F, Turner M J, et al. Simultaneous broadband vector magnetometry using solid-state spins. Physical Review Applied, 2018, 10 (3): 034044. doi: 10.1103/PhysRevApplied.10.034044
|
[5] |
Fescenko I, Jarmola A, Savukov I, et al. Diamond magnetometer enhanced by ferrite flux concentrators. Physical Review Research, 2020, 2 (2): 023394. doi: 10.1103/PhysRevResearch.2.023394
|
[6] |
Xie Y, Yu H, Zhu Y, et al. A hybrid magnetometer towards femtotesla sensitivity under ambient conditions. Science Bulletin, 2021, 66 (2): 127–132. doi: 10.1016/j.scib.2020.08.001
|
[7] |
Barry J F, Turner M J, Schloss J M, et al. Optical magnetic detection of single-neuron action potentials using quantum defects in diamond. Proceedings of the National Academy of Sciences, 2016, 113 (49): 14133–14138. doi: 10.1073/pnas.1601513113
|
[8] |
Glenn D R, Fu R R, Kehayias P, et al. Micrometer-scale magnetic imaging of geological samples using a quantum diamond microscope. Geochemistry, Geophysics, Geosystems, 2017, 18 (8): 3254–3267. doi: 10.1002/2017GC006946
|
[9] |
Acosta V M, Bauch E, Ledbetter M P, et al. Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond. Physical Review Letters, 2010, 104 (7): 070801. doi: 10.1103/PhysRevLett.104.070801
|
[10] |
Chen X D, Dong C H, Sun F W, et al. Temperature dependent energy level shifts of nitrogen-vacancy centers in diamond. Applied Physics Letters, 2011, 99 (16): 161903. doi: 10.1063/1.3652910
|
[11] |
Webb J L, Troise L, Hansen N W, et al. Optimization of a diamond nitrogen vacancy centre magnetometer for sensing of biological signals. Frontiers in Physics, 2020, 8: 522536. doi: 10.3389/fphy.2020.522536
|
[12] |
Clevenson H, Pham L M, Teale C, et al. Robust high-dynamic-range vector magnetometry with nitrogen-vacancy centers in diamond. Applied Physics Letters, 2018, 112 (25): 252406. doi: 10.1063/1.5034216
|
[13] |
Bennett J S, Vyhnalek B E, Greenall H, et al. Precision magnetometers for aerospace applications: A review. Sensors, 2021, 21 (16): 5568. doi: 10.3390/s21165568
|
[14] |
Toyli D M, Christle D J, Alkauskas A, et al. Measurement and control of single nitrogen-vacancy center spins above 600 K. Physical Review X, 2012, 2 (3): 031001. doi: 10.1103/PhysRevX.2.031001
|
[15] |
Doherty M W, Manson N B, Delaney P, et al. The nitrogen-vacancy colour centre in diamond. Physics Reports, 2013, 528 (1): 1–45. doi: 10.1016/j.physrep.2013.02.001
|
[16] |
Doherty M W, Struzhkin V V, Simpson D A, et al. Electronic properties and metrology applications of the diamond NV-center under pressure. Physical Review Letters, 2014, 112 (4): 047601. doi: 10.1103/PhysRevLett.112.047601
|
[17] |
Barry J F, Schloss J M, Bauch E, et al. Sensitivity optimization for NV-diamond magnetometry. Reviews of Modern Physics, 2020, 92 (1): 015004. doi: 10.1103/RevModPhys.92.015004
|
[18] |
Clevenson H, Trusheim M E, Teale C, et al. Broadband magnetometry and temperature sensing with a light-trapping diamond waveguide. Nature Physics, 2015, 11 (5): 393–397. doi: 10.1038/nphys3291
|
[19] |
Bayat K, Choy J, Farrokh Baroughi M, et al. Efficient, uniform, and large area microwave magnetic coupling to NV centers in diamond using double split-ring resonators. Nano Letters, 2014, 14 (3): 1208–1213. doi: 10.1021/nl404072s
|
[20] |
Jensen K, Acosta V M, Jarmola A, et al. Light narrowing of magnetic resonances in ensembles of nitrogen-vacancy centers in diamond. Physical Review B, 2013, 87 (1): 014115. doi: 10.1103/PhysRevB.87.014115
|
[21] |
Plakhotnik T, Gruber D. Luminescence of nitrogen-vacancy centers in nanodiamonds at temperatures between 300 and 700 K: perspectives on nanothermometry. Physical Chemistry Chemical Physics, 2010, 12 (33): 9751–9756. doi: 10.1039/c001132k
|
[22] |
Blakley S M, Fedotov A B, Becker J, et al. Stimulated fluorescence quenching in nitrogen-vacancy centers of diamond: Temperature effects. Optics Letters, 2016, 41 (9): 2077–2080. doi: 10.1364/OL.41.002077
|
[23] |
Ness N F. Magnetometers for space research. Space Science Reviews, 1970, 11 (4): 459–554. doi: https://doi.org/10.1007/BF00183028
|
[24] |
Acuna M H. Space-based magnetometers. Review of Scientific Instruments, 2002, 73 (11): 3717–3736. doi: 10.1063/1.1510570
|
[25] |
Jiao M, Guo M, Rong X, et al. Experimental constraint on an exotic parity-odd spin- and velocity-dependent interaction with a single electron spin quantum sensor. Physical Review Letters, 2021, 127 (1): 010501. doi: 10.1103/PhysRevLett.127.010501
|
[26] |
Zheng H, Xu J, Iwata G Z, et al. Zero-field magnetometry based on nitrogen-vacancy ensembles in diamond. Physical Review Applied, 2019, 11: 064068. doi: 10.1103/PhysRevApplied.11.064068
|
[27] |
Kim J H, An H W, Yun T Y. A low-noise WLAN mixer using switched biasing technique. IEEE Microwave and Wireless Components Letters, 2009, 19 (10): 650–652. doi: 10.1109/LMWC.2009.2029746
|
[28] |
Lee J S, Jeong C J, Jang Y S, et al. A high linear low flicker noise 25% duty cycle LO I/Q mixer for a FM radio receiver. In: 2011 IEEE International Symposium of Circuits and Systems (ISCAS), Rio, Brazil: IEEE, 2011: 1399–1402.
|
[29] |
Yu H, Xie Y, Zhu Y, et al. Enhanced sensitivity of the nitrogen-vacancy ensemble magnetometer via surface coating. Applied Physics Letters, 2020, 117 (20): 204002. doi: 10.1063/5.0022047
|
[30] |
Teraji T, Taniguchi T, Koizumi S, et al. Effective use of source gas for diamond growth with isotopic enrichment. Applied Physics Express, 2013, 6 (5): 055601. doi: 10.7567/APEX.6.055601
|
Supporting information for JUSTC-2022-0150.pdf |
Figure
1.
The level structure of NV center in diamond and the setup of temperature-robust diamond magnetometry based on the double-transition method. (a) Energy-level diagram for the NV center. The external magnetic field
[1] |
Kennedy T A, Charnock F T, Colton J S, et al. Single-qubit operations with the nitrogen-vacancy center in diamond. Physica Status Solidi (b), 2002, 233 (3): 416–426. doi: 10.1002/1521-3951(200210)233:3<416::AID-PSSB416>3.0.CO;2-R
|
[2] |
Block M, Kobrin B, Jarmola A, et al. Optically enhanced electric field sensing using nitrogen-vacancy ensembles. Physical Review Applied, 2021, 16 (2): 024024. doi: 10.1103/PhysRevApplied.16.024024
|
[3] |
Taylor J M, Cappellaro P, Childress L, et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nature Physics, 2008, 4 (10): 810–816. doi: 10.1038/nphys1075
|
[4] |
Schloss J M, Barry J F, Turner M J, et al. Simultaneous broadband vector magnetometry using solid-state spins. Physical Review Applied, 2018, 10 (3): 034044. doi: 10.1103/PhysRevApplied.10.034044
|
[5] |
Fescenko I, Jarmola A, Savukov I, et al. Diamond magnetometer enhanced by ferrite flux concentrators. Physical Review Research, 2020, 2 (2): 023394. doi: 10.1103/PhysRevResearch.2.023394
|
[6] |
Xie Y, Yu H, Zhu Y, et al. A hybrid magnetometer towards femtotesla sensitivity under ambient conditions. Science Bulletin, 2021, 66 (2): 127–132. doi: 10.1016/j.scib.2020.08.001
|
[7] |
Barry J F, Turner M J, Schloss J M, et al. Optical magnetic detection of single-neuron action potentials using quantum defects in diamond. Proceedings of the National Academy of Sciences, 2016, 113 (49): 14133–14138. doi: 10.1073/pnas.1601513113
|
[8] |
Glenn D R, Fu R R, Kehayias P, et al. Micrometer-scale magnetic imaging of geological samples using a quantum diamond microscope. Geochemistry, Geophysics, Geosystems, 2017, 18 (8): 3254–3267. doi: 10.1002/2017GC006946
|
[9] |
Acosta V M, Bauch E, Ledbetter M P, et al. Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond. Physical Review Letters, 2010, 104 (7): 070801. doi: 10.1103/PhysRevLett.104.070801
|
[10] |
Chen X D, Dong C H, Sun F W, et al. Temperature dependent energy level shifts of nitrogen-vacancy centers in diamond. Applied Physics Letters, 2011, 99 (16): 161903. doi: 10.1063/1.3652910
|
[11] |
Webb J L, Troise L, Hansen N W, et al. Optimization of a diamond nitrogen vacancy centre magnetometer for sensing of biological signals. Frontiers in Physics, 2020, 8: 522536. doi: 10.3389/fphy.2020.522536
|
[12] |
Clevenson H, Pham L M, Teale C, et al. Robust high-dynamic-range vector magnetometry with nitrogen-vacancy centers in diamond. Applied Physics Letters, 2018, 112 (25): 252406. doi: 10.1063/1.5034216
|
[13] |
Bennett J S, Vyhnalek B E, Greenall H, et al. Precision magnetometers for aerospace applications: A review. Sensors, 2021, 21 (16): 5568. doi: 10.3390/s21165568
|
[14] |
Toyli D M, Christle D J, Alkauskas A, et al. Measurement and control of single nitrogen-vacancy center spins above 600 K. Physical Review X, 2012, 2 (3): 031001. doi: 10.1103/PhysRevX.2.031001
|
[15] |
Doherty M W, Manson N B, Delaney P, et al. The nitrogen-vacancy colour centre in diamond. Physics Reports, 2013, 528 (1): 1–45. doi: 10.1016/j.physrep.2013.02.001
|
[16] |
Doherty M W, Struzhkin V V, Simpson D A, et al. Electronic properties and metrology applications of the diamond NV-center under pressure. Physical Review Letters, 2014, 112 (4): 047601. doi: 10.1103/PhysRevLett.112.047601
|
[17] |
Barry J F, Schloss J M, Bauch E, et al. Sensitivity optimization for NV-diamond magnetometry. Reviews of Modern Physics, 2020, 92 (1): 015004. doi: 10.1103/RevModPhys.92.015004
|
[18] |
Clevenson H, Trusheim M E, Teale C, et al. Broadband magnetometry and temperature sensing with a light-trapping diamond waveguide. Nature Physics, 2015, 11 (5): 393–397. doi: 10.1038/nphys3291
|
[19] |
Bayat K, Choy J, Farrokh Baroughi M, et al. Efficient, uniform, and large area microwave magnetic coupling to NV centers in diamond using double split-ring resonators. Nano Letters, 2014, 14 (3): 1208–1213. doi: 10.1021/nl404072s
|
[20] |
Jensen K, Acosta V M, Jarmola A, et al. Light narrowing of magnetic resonances in ensembles of nitrogen-vacancy centers in diamond. Physical Review B, 2013, 87 (1): 014115. doi: 10.1103/PhysRevB.87.014115
|
[21] |
Plakhotnik T, Gruber D. Luminescence of nitrogen-vacancy centers in nanodiamonds at temperatures between 300 and 700 K: perspectives on nanothermometry. Physical Chemistry Chemical Physics, 2010, 12 (33): 9751–9756. doi: 10.1039/c001132k
|
[22] |
Blakley S M, Fedotov A B, Becker J, et al. Stimulated fluorescence quenching in nitrogen-vacancy centers of diamond: Temperature effects. Optics Letters, 2016, 41 (9): 2077–2080. doi: 10.1364/OL.41.002077
|
[23] |
Ness N F. Magnetometers for space research. Space Science Reviews, 1970, 11 (4): 459–554. doi: https://doi.org/10.1007/BF00183028
|
[24] |
Acuna M H. Space-based magnetometers. Review of Scientific Instruments, 2002, 73 (11): 3717–3736. doi: 10.1063/1.1510570
|
[25] |
Jiao M, Guo M, Rong X, et al. Experimental constraint on an exotic parity-odd spin- and velocity-dependent interaction with a single electron spin quantum sensor. Physical Review Letters, 2021, 127 (1): 010501. doi: 10.1103/PhysRevLett.127.010501
|
[26] |
Zheng H, Xu J, Iwata G Z, et al. Zero-field magnetometry based on nitrogen-vacancy ensembles in diamond. Physical Review Applied, 2019, 11: 064068. doi: 10.1103/PhysRevApplied.11.064068
|
[27] |
Kim J H, An H W, Yun T Y. A low-noise WLAN mixer using switched biasing technique. IEEE Microwave and Wireless Components Letters, 2009, 19 (10): 650–652. doi: 10.1109/LMWC.2009.2029746
|
[28] |
Lee J S, Jeong C J, Jang Y S, et al. A high linear low flicker noise 25% duty cycle LO I/Q mixer for a FM radio receiver. In: 2011 IEEE International Symposium of Circuits and Systems (ISCAS), Rio, Brazil: IEEE, 2011: 1399–1402.
|
[29] |
Yu H, Xie Y, Zhu Y, et al. Enhanced sensitivity of the nitrogen-vacancy ensemble magnetometer via surface coating. Applied Physics Letters, 2020, 117 (20): 204002. doi: 10.1063/5.0022047
|
[30] |
Teraji T, Taniguchi T, Koizumi S, et al. Effective use of source gas for diamond growth with isotopic enrichment. Applied Physics Express, 2013, 6 (5): 055601. doi: 10.7567/APEX.6.055601
|