[1] |
de Greeff J, Mioch T, van Vught W, et al. Persistent robot-assisted disaster response. In: Companion of the 2018 ACM/IEEE International Conference on Human-Robot Interaction. New York: ACM, 2018: 99–100.
|
[2] |
Matsuno F, Sato N, Kon K, et al. Utilization of robot systems in disaster sites of the great eastern Japan earthquake. In: Yoshida K, Tadokoro S, editors. Field and Service Robotics. Berlin: Springer. 2013: 1–17.
|
[3] |
Queralta J P, Taipalmaa J, Can Pullinen B, et al. Collaborative multi-robot search and rescue: Planning, coordination, perception, and active vision. IEEE Access, 2020, 8: 191617–191643. doi: 10.1109/access.2020.3030190
|
[4] |
Nagatani K, Kiribayashi S, Okada Y, et al. Emergency response to the nuclear accident at the Fukushima Daiichi Nuclear Power Plants using mobile rescue robots. Journal of Field Robotics, 2013, 30 (1): 44–63. doi: 10.1002/rob.21439
|
[5] |
Delmerico J, Mintchev S, Giusti A, et al. The current state and future outlook of rescue robotics. Journal of Field Robotics, 2019, 36 (7): 1171–1191. doi: 10.1002/rob.21887
|
[6] |
Atkeson C G, Babu B P W, Banerjee N, et al. No falls, no resets: Reliable humanoid behavior in the DARPA robotics challenge. In: 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids). Seoul, South Korea: IEEE, 2015: 623–630.
|
[7] |
Feng S, Whitman E, Xinjilefu X, et al. Optimization-based full body control for the DARPA robotics challenge. Journal of Field Robotics, 2015, 32 (2): 293–312. doi: 10.1002/rob.21559
|
[8] |
Spenko M, Buerger S, Iagnemma K. The DARPA robotics challenge finals: Humanoid robots to the rescue. Cham: Springer International Publishing, 2018.
|
[9] |
Sheh R, Schwertfeger S, Visser A. 16 years of RoboCup rescue. KI―Künstliche Intelligenz, 2016, 30: 267–277. doi: 10.1007/s13218-016-0444-x
|
[10] |
Karumanchi S, Edelberg K, Baldwin I, et al. Team RoboSimian: Semi-autonomous mobile manipulation at the 2015 DARPA robotics challenge finals. Journal of Field Robotics, 2017, 34 (2): 305–332. doi: 10.1002/rob.21676
|
[11] |
Schwarz M, Beul M, Droeschel D, et al. DRC team NimbRo rescue: Perception and control for centaur-like mobile manipulation robot momaro. In: Spenko M, Buerger S, Iagnemma K, editors. The DARPA Robotics Challenge Finals: Humanoid Robots To The Rescue. Cham: Springer International Publishing, 2018: 145–190.
|
[12] |
Stentz A, Herman H, Kelly A, et al. CHIMP, the CMU highly intelligent mobile platform. Journal of Field Robotics, 2015, 32 (2): 209–228. doi: 10.1002/rob.21569
|
[13] |
Hutter M, Gehring C, Lauber A, et al. ANYmal—toward legged robots for harsh environments. Advanced Robotics, 2017, 31 (17): 918–931. doi: 10.1080/01691864.2017.1378591
|
[14] |
Kruijff-Korbayová I, Freda L, Gianni M, et al. Deployment of ground and aerial robots in earthquake-struck Amatrice in Italy (brief report). In: 2016 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). Lausanne, Switzerland: IEEE, 2016: 278–279.
|
[15] |
Autonomous robot for gas and oil sites challenge. http://www.argos–challenge.com/en/challenge. Accessed January 10, 2022.
|
[16] |
TAUROB—ARGOS winner. http://taurob.com/text–argos–gewinner/.Accessed January 10, 2022.
|
[17] |
Endo D, Nagatani K. Assessment of a tracked vehicle’s ability to traverse stairs. ROBOMECH Journal, 2016, 3: 20. doi: 10.1186/s40648-016-0058-y
|
[18] |
Yamauchi G, Nagatani K, Hashimoto T, et al. Slip-compensated odometry for tracked vehicle on loose and weak slope. ROBOMECH Journal, 2017, 4: 27. doi: 10.1186/s40648-017-0095-1
|
[19] |
Rouček T, Pecka M, Čížek P, et al. System for multi-robotic exploration of underground environments CTU-CRAS-NORLAB in the DARPA Subterranean Challenge. 2021. https://arxiv.org/abs/2110.05911. Accessed January 10, 2022.
|
[20] |
Agha A, Otsu K, Morrell B, et al. NeBula: Quest for robotic autonomy in challenging environments; TEAM CoSTAR at the DARPA subterranean challenge. 2021. https://arxiv.org/abs/2103.11470. Accessed January 10, 2022.
|
[21] |
Chen X, Zhang H, Lu H, et al. Robust SLAM system based on monocular vision and LiDAR for robotic urban search and rescue. In: 2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR). Shanghai, China: IEEE, 2017: 41–47.
|
[22] |
Rouček T, Pecka M, Čížek P, et al. DARPA subterranean challenge: Multi-robotic exploration of underground environments. In: Mazal J, Fagiolini A, Vasik P,editors. Modelling and Simulation for Autonomous Systems. Cham: Springer International Publishing, 2020: 274–290.
|
[23] |
Tranzatto M, Mascarich F, Bernreiter L, et al. CERBERUS: Autonomous legged and aerial robotic exploration in the tunnel and urban circuits of the DARPA subterranean challenge. 2022. https://arxiv.org/abs/2201.07067. Accessed January 20, 2022.
|
[24] |
Schwarz M, Rodehutskors T, Droeschel D, et al. NimbRo rescue: Solving disaster-response tasks with the mobile manipulation robot momaro. Journal of Field Robotics, 2017, 34 (2): 400–425. doi: 10.1002/rob.21677
|
[25] |
Li Y, Li M, Zhu H, et al. Development and applications of rescue robots for explosion accidents in coal mines. Journal of Field Robotics, 2020, 37 (3): 466–489. doi: 10.1002/rob.21920
|
[26] |
Lösch R, Grehl S, Donner M, et al. Design of an autonomous robot for mapping, navigation, and manipulation in underground mines. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain: IEEE, 2018: 1407–1412.
|
[27] |
Szrek J, Zimroz R, Wodecki J, et al. Application of the infrared thermography and unmanned ground vehicle for rescue action support in underground mine—The AMICOS project. Remote Sensing, 2021, 13 (1): 69. doi: 10.3390/rs13010069
|
[28] |
Bhatia R, Li L. Throughput optimization of wireless mesh networks with MIMO links. In: IEEE INFOCOM 2007 26th IEEE International Conference on Computer Communications. Anchorage, USA: IEEE, 2007: 2326–2330.
|
[29] |
Karl P. LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1901, 2 (11): 559–572. doi: 10.1080/14786440109462720
|
[30] |
Murray R M, Li Z, Sastry S S. A Mathematical Introduction to Robotic Manipulation. Boca Raton: CRC Press, 2017.
|
[31] |
Kriegel H P, Kröger P, Sander J, et al. Density-based clustering. WIREs Data Mining and Knowledge Discovery, 2011, 1 (3): 231–240. doi: 10.1002/widm.30
|
[32] |
Zhang J, Singh S. LOAM: lidar odometry and mapping in real-time. In: Robotics: Science and Systems Conference. Berkeley, USA: IEEE, 2014: 1–9.
|
[33] |
Besl P J, McKay N D. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14 (2): 239–256. doi: 10.1109/34.121791
|
[34] |
Forster C, Carlone L, Dellaert F, et al. IMU preintegration on manifold for efficient visual-inertial maximum-a-posteriori estimation. In: Robotics: Science and Systems, 2015.
|
[35] |
Simanek J, Reinstein M, Kubelka V. Evaluation of the EKF-based estimation architectures for data fusion in mobile robots. IEEE/ASME Transactions on Mechatronics, 2015, 20 (2): 985–990. doi: 10.1109/tmech.2014.2311416
|
[36] |
Bircher A, Kamel M, Alexis K, et al. Receding horizon “next-best-view” planner for 3D exploration. In: 2016 IEEE International Conference on Robotics and Automation (ICRA). Stockholm, Sweden: IEEE, 2016: 1462–1468.
|
[37] |
The ROS Wiki. Move_base. 2020. http://wiki.ros.org/move_base. Accessed January 20, 2022.
|
[38] |
Frana P L, Misa T J. An interview with Edsger W. Dijkstra. Communications of the ACM, 2010, 53 (8): 41–47. doi: 10.1145/1787234.1787249
|
[39] |
A-TEC Official Website. 2020. https://atec.leaguer.com.cn/index/index/championshipsjj. Accessed January 20, 2022.
|
[40] |
de Petris P, Nguyen H, Dharmadhikari M, et al. RMF-owl: A collision-tolerant flying robot for autonomous subterranean exploration. 2022. https://arxiv.org/abs/2202.11055. Accessed March 2, 2022.
|
[41] |
Hudson N, Talbot F, Cox M, et al. Heterogeneous ground and air platforms, homogeneous sensing: Team CSIRO Data61’s approach to the DARPA subterranean challenge. 2021. https://arxiv.org/abs/2104.09053. Accessed March 2, 2022.
|
[42] |
Otsu K, Tepsuporn S, Thakker R, et al. Supervised autonomy for communication-degraded subterranean exploration by a robot team. In: 2020 IEEE Aerospace Conference. Big Sky, USA: IEEE, 2020: 1–9.
|
[43] |
Ohradzansky M T, Rush E R, Riley D G, et al. Multi-agent autonomy: Advancements and challenges in subterranean exploration. 2021. https://arxiv.org/abs/2110.04390. Accessed March 12, 2022.
|
Figure 8. The map built for the maze from the competition. The red slim line represents the path that the robot followed. The gray area indicates the accessible part of the map, while the cyan areas with dark red boundaries indicate the inaccessible parts. The three sub figures are the built maps, in turn, (a) at the beginning, (b) in the middle, and (c) at the end of the autonomous navigation through the maze.
[1] |
de Greeff J, Mioch T, van Vught W, et al. Persistent robot-assisted disaster response. In: Companion of the 2018 ACM/IEEE International Conference on Human-Robot Interaction. New York: ACM, 2018: 99–100.
|
[2] |
Matsuno F, Sato N, Kon K, et al. Utilization of robot systems in disaster sites of the great eastern Japan earthquake. In: Yoshida K, Tadokoro S, editors. Field and Service Robotics. Berlin: Springer. 2013: 1–17.
|
[3] |
Queralta J P, Taipalmaa J, Can Pullinen B, et al. Collaborative multi-robot search and rescue: Planning, coordination, perception, and active vision. IEEE Access, 2020, 8: 191617–191643. doi: 10.1109/access.2020.3030190
|
[4] |
Nagatani K, Kiribayashi S, Okada Y, et al. Emergency response to the nuclear accident at the Fukushima Daiichi Nuclear Power Plants using mobile rescue robots. Journal of Field Robotics, 2013, 30 (1): 44–63. doi: 10.1002/rob.21439
|
[5] |
Delmerico J, Mintchev S, Giusti A, et al. The current state and future outlook of rescue robotics. Journal of Field Robotics, 2019, 36 (7): 1171–1191. doi: 10.1002/rob.21887
|
[6] |
Atkeson C G, Babu B P W, Banerjee N, et al. No falls, no resets: Reliable humanoid behavior in the DARPA robotics challenge. In: 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids). Seoul, South Korea: IEEE, 2015: 623–630.
|
[7] |
Feng S, Whitman E, Xinjilefu X, et al. Optimization-based full body control for the DARPA robotics challenge. Journal of Field Robotics, 2015, 32 (2): 293–312. doi: 10.1002/rob.21559
|
[8] |
Spenko M, Buerger S, Iagnemma K. The DARPA robotics challenge finals: Humanoid robots to the rescue. Cham: Springer International Publishing, 2018.
|
[9] |
Sheh R, Schwertfeger S, Visser A. 16 years of RoboCup rescue. KI―Künstliche Intelligenz, 2016, 30: 267–277. doi: 10.1007/s13218-016-0444-x
|
[10] |
Karumanchi S, Edelberg K, Baldwin I, et al. Team RoboSimian: Semi-autonomous mobile manipulation at the 2015 DARPA robotics challenge finals. Journal of Field Robotics, 2017, 34 (2): 305–332. doi: 10.1002/rob.21676
|
[11] |
Schwarz M, Beul M, Droeschel D, et al. DRC team NimbRo rescue: Perception and control for centaur-like mobile manipulation robot momaro. In: Spenko M, Buerger S, Iagnemma K, editors. The DARPA Robotics Challenge Finals: Humanoid Robots To The Rescue. Cham: Springer International Publishing, 2018: 145–190.
|
[12] |
Stentz A, Herman H, Kelly A, et al. CHIMP, the CMU highly intelligent mobile platform. Journal of Field Robotics, 2015, 32 (2): 209–228. doi: 10.1002/rob.21569
|
[13] |
Hutter M, Gehring C, Lauber A, et al. ANYmal—toward legged robots for harsh environments. Advanced Robotics, 2017, 31 (17): 918–931. doi: 10.1080/01691864.2017.1378591
|
[14] |
Kruijff-Korbayová I, Freda L, Gianni M, et al. Deployment of ground and aerial robots in earthquake-struck Amatrice in Italy (brief report). In: 2016 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). Lausanne, Switzerland: IEEE, 2016: 278–279.
|
[15] |
Autonomous robot for gas and oil sites challenge. http://www.argos–challenge.com/en/challenge. Accessed January 10, 2022.
|
[16] |
TAUROB—ARGOS winner. http://taurob.com/text–argos–gewinner/.Accessed January 10, 2022.
|
[17] |
Endo D, Nagatani K. Assessment of a tracked vehicle’s ability to traverse stairs. ROBOMECH Journal, 2016, 3: 20. doi: 10.1186/s40648-016-0058-y
|
[18] |
Yamauchi G, Nagatani K, Hashimoto T, et al. Slip-compensated odometry for tracked vehicle on loose and weak slope. ROBOMECH Journal, 2017, 4: 27. doi: 10.1186/s40648-017-0095-1
|
[19] |
Rouček T, Pecka M, Čížek P, et al. System for multi-robotic exploration of underground environments CTU-CRAS-NORLAB in the DARPA Subterranean Challenge. 2021. https://arxiv.org/abs/2110.05911. Accessed January 10, 2022.
|
[20] |
Agha A, Otsu K, Morrell B, et al. NeBula: Quest for robotic autonomy in challenging environments; TEAM CoSTAR at the DARPA subterranean challenge. 2021. https://arxiv.org/abs/2103.11470. Accessed January 10, 2022.
|
[21] |
Chen X, Zhang H, Lu H, et al. Robust SLAM system based on monocular vision and LiDAR for robotic urban search and rescue. In: 2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR). Shanghai, China: IEEE, 2017: 41–47.
|
[22] |
Rouček T, Pecka M, Čížek P, et al. DARPA subterranean challenge: Multi-robotic exploration of underground environments. In: Mazal J, Fagiolini A, Vasik P,editors. Modelling and Simulation for Autonomous Systems. Cham: Springer International Publishing, 2020: 274–290.
|
[23] |
Tranzatto M, Mascarich F, Bernreiter L, et al. CERBERUS: Autonomous legged and aerial robotic exploration in the tunnel and urban circuits of the DARPA subterranean challenge. 2022. https://arxiv.org/abs/2201.07067. Accessed January 20, 2022.
|
[24] |
Schwarz M, Rodehutskors T, Droeschel D, et al. NimbRo rescue: Solving disaster-response tasks with the mobile manipulation robot momaro. Journal of Field Robotics, 2017, 34 (2): 400–425. doi: 10.1002/rob.21677
|
[25] |
Li Y, Li M, Zhu H, et al. Development and applications of rescue robots for explosion accidents in coal mines. Journal of Field Robotics, 2020, 37 (3): 466–489. doi: 10.1002/rob.21920
|
[26] |
Lösch R, Grehl S, Donner M, et al. Design of an autonomous robot for mapping, navigation, and manipulation in underground mines. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain: IEEE, 2018: 1407–1412.
|
[27] |
Szrek J, Zimroz R, Wodecki J, et al. Application of the infrared thermography and unmanned ground vehicle for rescue action support in underground mine—The AMICOS project. Remote Sensing, 2021, 13 (1): 69. doi: 10.3390/rs13010069
|
[28] |
Bhatia R, Li L. Throughput optimization of wireless mesh networks with MIMO links. In: IEEE INFOCOM 2007 26th IEEE International Conference on Computer Communications. Anchorage, USA: IEEE, 2007: 2326–2330.
|
[29] |
Karl P. LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1901, 2 (11): 559–572. doi: 10.1080/14786440109462720
|
[30] |
Murray R M, Li Z, Sastry S S. A Mathematical Introduction to Robotic Manipulation. Boca Raton: CRC Press, 2017.
|
[31] |
Kriegel H P, Kröger P, Sander J, et al. Density-based clustering. WIREs Data Mining and Knowledge Discovery, 2011, 1 (3): 231–240. doi: 10.1002/widm.30
|
[32] |
Zhang J, Singh S. LOAM: lidar odometry and mapping in real-time. In: Robotics: Science and Systems Conference. Berkeley, USA: IEEE, 2014: 1–9.
|
[33] |
Besl P J, McKay N D. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14 (2): 239–256. doi: 10.1109/34.121791
|
[34] |
Forster C, Carlone L, Dellaert F, et al. IMU preintegration on manifold for efficient visual-inertial maximum-a-posteriori estimation. In: Robotics: Science and Systems, 2015.
|
[35] |
Simanek J, Reinstein M, Kubelka V. Evaluation of the EKF-based estimation architectures for data fusion in mobile robots. IEEE/ASME Transactions on Mechatronics, 2015, 20 (2): 985–990. doi: 10.1109/tmech.2014.2311416
|
[36] |
Bircher A, Kamel M, Alexis K, et al. Receding horizon “next-best-view” planner for 3D exploration. In: 2016 IEEE International Conference on Robotics and Automation (ICRA). Stockholm, Sweden: IEEE, 2016: 1462–1468.
|
[37] |
The ROS Wiki. Move_base. 2020. http://wiki.ros.org/move_base. Accessed January 20, 2022.
|
[38] |
Frana P L, Misa T J. An interview with Edsger W. Dijkstra. Communications of the ACM, 2010, 53 (8): 41–47. doi: 10.1145/1787234.1787249
|
[39] |
A-TEC Official Website. 2020. https://atec.leaguer.com.cn/index/index/championshipsjj. Accessed January 20, 2022.
|
[40] |
de Petris P, Nguyen H, Dharmadhikari M, et al. RMF-owl: A collision-tolerant flying robot for autonomous subterranean exploration. 2022. https://arxiv.org/abs/2202.11055. Accessed March 2, 2022.
|
[41] |
Hudson N, Talbot F, Cox M, et al. Heterogeneous ground and air platforms, homogeneous sensing: Team CSIRO Data61’s approach to the DARPA subterranean challenge. 2021. https://arxiv.org/abs/2104.09053. Accessed March 2, 2022.
|
[42] |
Otsu K, Tepsuporn S, Thakker R, et al. Supervised autonomy for communication-degraded subterranean exploration by a robot team. In: 2020 IEEE Aerospace Conference. Big Sky, USA: IEEE, 2020: 1–9.
|
[43] |
Ohradzansky M T, Rush E R, Riley D G, et al. Multi-agent autonomy: Advancements and challenges in subterranean exploration. 2021. https://arxiv.org/abs/2110.04390. Accessed March 12, 2022.
|