[1] |
Tian H, Liu Y, Li Y, et al. An investigation of transmission control measures during thefirst 50 days of the COVID-19 pandemic in China. Science,2020, 368(6491): 638-642.
|
[2] |
Chang S, Pierson E, Pang W K, et al. Mobility network models of COVID-19 explaininequities and inform reopening. Nature, 2020, 589(7840): 82-87.
|
[3] |
Kuhbandner C, Homburg S. Commentary: Estimating the effects of non-pharmaceuticalinterventions on COVID-19 in Europe. Frontiers in Medicine, 2020, 7: 580361.
|
[4] |
Desson Z, Lambertz L, Peters J W, et al. Europe’s Covid-19 outliers: German,Austrian and Swiss policy responses during the early stages of the 2020 pandemic. HealthPolicy and Technology, 2020, 9(4):405-418.
|
[5] |
Kiesha P, Cook A R, Mark J, et al. Projecting social contact matrices in 152 countriesusing contact surveys and demographic data. PLoS Computational Biology, 2017, 13(9):e1005697.
|
[6] |
Mossong J, Hens N, Jit M, et al. Social contacts and mixing patterns relevant tothe spread of infectious diseases. PLoS Medicine, 2008, 5(3):e74.
|
[7] |
Glass L M, Glass R J. Social contact networks for the spread of pandemic influenzain children and teenagers. BMC Public Health, 2008, 8: Article number 61.
|
[8] |
Boehmer T K, Devies J, Caruso E, et al. Changing age distribution of the COVID-19 pandemic: United States, May-August 2020. Morbidity and MortalityWeekly Report (MMWR), 2020, 69(39): 1404-1409.
|
[9] |
Levin A T, Hanage W P, Owusu-Boaitey N, et al. Assessing the age specificity ofinfection fatality rates for COVID-19: Systematic review, meta-analysis, and public policyimplications. European Journal of Epidemiology, 2020, 35(12): 1123-1138.
|
[10] |
Simon D. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches.Hoboken, NJ: Wiley-Interscience, 2006.
|
[11] |
Li R, Pei S, Chen B, et al. Substantial undocumented infection facilitates the rapiddissemination of novel coronavirus (SARS-CoV-2). Science, 2020, 368(6490): 489-493.
|
[12] |
Ionides E L, Breto C, King A A. Inference for nonlinear dynamical systems.Proceedings of the National Academy of Sciences of the United States of America, 2006,103(49): 18438-18443.
|
[13] |
Anderson J L. An ensemble adjustment Kalman filter for data assimilation. Monthly Weather Review, 2001, 129(12): 2884-2903.
|
[14] |
Qi H, Xiao S, Shi R, et al. COVID-19 transmission in Mainland China is associated withtemperature and humidity: A time-series analysis. Science of the Total Environment,2020, 728: 138778.
|
[15] |
Kodera S, Rashed E A, Hirata A. Correlation between COVID-19 morbidity andmortality rates in Japan and local population density, temperature and absolute humidity. International Journal of Environmental Research and Public Health, 2020, 17(15): 5477.
|
[16] |
Kissler S M, Tedijanto C, Goldstein E, et al. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science, 2020, 368(6493): 860-868.
|
[1] |
Tian H, Liu Y, Li Y, et al. An investigation of transmission control measures during thefirst 50 days of the COVID-19 pandemic in China. Science,2020, 368(6491): 638-642.
|
[2] |
Chang S, Pierson E, Pang W K, et al. Mobility network models of COVID-19 explaininequities and inform reopening. Nature, 2020, 589(7840): 82-87.
|
[3] |
Kuhbandner C, Homburg S. Commentary: Estimating the effects of non-pharmaceuticalinterventions on COVID-19 in Europe. Frontiers in Medicine, 2020, 7: 580361.
|
[4] |
Desson Z, Lambertz L, Peters J W, et al. Europe’s Covid-19 outliers: German,Austrian and Swiss policy responses during the early stages of the 2020 pandemic. HealthPolicy and Technology, 2020, 9(4):405-418.
|
[5] |
Kiesha P, Cook A R, Mark J, et al. Projecting social contact matrices in 152 countriesusing contact surveys and demographic data. PLoS Computational Biology, 2017, 13(9):e1005697.
|
[6] |
Mossong J, Hens N, Jit M, et al. Social contacts and mixing patterns relevant tothe spread of infectious diseases. PLoS Medicine, 2008, 5(3):e74.
|
[7] |
Glass L M, Glass R J. Social contact networks for the spread of pandemic influenzain children and teenagers. BMC Public Health, 2008, 8: Article number 61.
|
[8] |
Boehmer T K, Devies J, Caruso E, et al. Changing age distribution of the COVID-19 pandemic: United States, May-August 2020. Morbidity and MortalityWeekly Report (MMWR), 2020, 69(39): 1404-1409.
|
[9] |
Levin A T, Hanage W P, Owusu-Boaitey N, et al. Assessing the age specificity ofinfection fatality rates for COVID-19: Systematic review, meta-analysis, and public policyimplications. European Journal of Epidemiology, 2020, 35(12): 1123-1138.
|
[10] |
Simon D. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches.Hoboken, NJ: Wiley-Interscience, 2006.
|
[11] |
Li R, Pei S, Chen B, et al. Substantial undocumented infection facilitates the rapiddissemination of novel coronavirus (SARS-CoV-2). Science, 2020, 368(6490): 489-493.
|
[12] |
Ionides E L, Breto C, King A A. Inference for nonlinear dynamical systems.Proceedings of the National Academy of Sciences of the United States of America, 2006,103(49): 18438-18443.
|
[13] |
Anderson J L. An ensemble adjustment Kalman filter for data assimilation. Monthly Weather Review, 2001, 129(12): 2884-2903.
|
[14] |
Qi H, Xiao S, Shi R, et al. COVID-19 transmission in Mainland China is associated withtemperature and humidity: A time-series analysis. Science of the Total Environment,2020, 728: 138778.
|
[15] |
Kodera S, Rashed E A, Hirata A. Correlation between COVID-19 morbidity andmortality rates in Japan and local population density, temperature and absolute humidity. International Journal of Environmental Research and Public Health, 2020, 17(15): 5477.
|
[16] |
Kissler S M, Tedijanto C, Goldstein E, et al. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science, 2020, 368(6493): 860-868.
|