[1] |
Riley C, Zhou S, Kunwar D, et al. Design of effective catalysts for selective alkyne hydrogenation by doping of ceria with a single-atom promotor. Journal of the American Chemical Society, 2018, 140 (40): 12964-12973.
|
[2] |
Teschner D, Borsodi J, Wootsch A, et al. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science, 2008, 320 (5872): 86-89.
|
[3] |
Studt F, Abild-Pedersen F, Bligaard T, et al. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science, 2008, 320 (5881): 1320.
|
[4] |
Khan N A, Shaikhutdinov S, Freund H J. Acetylene and ethylene hydrogenation on alumina supported Pd-Ag model catalysts. Catalysis Letters, 2006, 108 (3): 159-164.
|
[5] |
Hannagan R T, Giannakakis G, Flytzani-Stephanopoulos M, et al. Single-atom alloy catalysis. Chemical Reviews, 2020, 120 (21): 12044-12088.
|
[6] |
Huang F, Deng Y, Chen Y, et al. Atomically dispersed Pd on nanodiamond/graphene hybrid for selective hydrogenation of acetylene. Journal of the American Chemical Society, 2018, 140 (41): 13142-13146.
|
[7] |
Zhuo H Y, Yu X, Yu Q, et al. Selective hydrogenation of acetylene on graphene-supported non-noble metal single-atom catalysts. Science China Materials, 2020, 63 (9): 1741-1749.
|
[8] |
Vanni M, Serrano-Ruiz M, Telesio F, et al. Black phosphorus/palladium nanohybrid: Unraveling the nature of P-Pd interaction and application in selective hydrogenation. Chemistry of Materials, 2019, 31 (14): 5075-5080.
|
[9] |
Farnesi Camellone M, Negreiros Ribeiro F, Szabová L, et al. Catalytic proton dynamics at the water/solid interface of ceria-supported Pt clusters. Journal of the American Chemical Society, 2016, 138 (36): 11560-11567.
|
[10] |
Ye X, Wang H, Lin Y, et al. Insight of the stability and activity of platinum single atoms on ceria. Nano Research, 2019, 12 (6): 1401-1409.
|
[11] |
Parastaev A, Muravev V, Osta E, et al. Boosting CO2 hydrogenation via size-dependent metal-support interactions in cobalt/ceria-based catalysts. Nature Catalysis, 2020, 3: 526-533.
|
[12] |
Kašpar J, Fornasiero P, Graziani M. Use of CeO2-based oxides in the three-way catalysis. Catalysis Today, 1999, 50 (2): 285-298.
|
[13] |
Eguchi K, Setoguchi T, Inoue T, et al. Electrical properties of ceria-based oxides and their application to solid oxide fuel cells. Solid State Ionics, 1992, 52 (1): 165-172.
|
[14] |
Liu Z, Ding D, Liu M, et al. High-performance, ceria-based solid oxide fuel cells fabricated at low temperatures. Journal of Power Sources, 2013, 241: 454-459.
|
[15] |
Rajabbeigi N, Elyassi B, Khodadadi A, et al. A novel miniaturized oxygen sensor with solid-state ceria-zirconia reference. Sensors and Actuators B: Chemical, 2004, 100 (1): 139-142.
|
[16] |
Izu N, Shin W, Matsubara I, et al. Development of resistive oxygen sensors based on cerium oxide thick film. Journal of Electroceramics, 2004, 13 (1): 703-706.
|
[17] |
Montini T, Melchionna M, Monai M, et al. Fundamentals and catalytic applications of CeO2-based materials. Chemical Reviews, 2016, 116 (10): 5987-6041.
|
[18] |
Paier J, Penschke C, Sauer J. Oxygen defects and surface chemistry of ceria: Quantum chemical studies compared to experiment. Chemical Reviews, 2013, 113 (6): 3949-3985.
|
[19] |
Vilé G, Bridier B, Wichert J, et al. Ceria in hydrogenation catalysis: High selectivity in the conversion of alkynes to olefins. Angewandte Chemie International Edition, 2012, 51 (34): 8620-8623.
|
[20] |
Carrasco J, Vilé G, Fernández-Torre D, et al. Molecular-level understanding of CeO2 as a catalyst for partial alkyne hydrogenation. The Journal of Physical Chemistry C, 2014, 118 (10): 5352-5360.
|
[21] |
Vilé G, Colussi S, Krumeich F, et al. Opposite face sensitivity of CeO2 in hydrogenation and oxidation catalysis. Angewandte Chemie International Edition, 2014, 53 (45): 12069-12072.
|
[22] |
Capdevila-Cortada M, García-Melchor M, López N. Unraveling the structure sensitivity in methanol conversion on CeO2: A DFT+U study. Journal of Catalysis, 2015, 327: 58-64.
|
[23] |
Mullins D R. The surface chemistry of cerium oxide. Surface Science Reports, 2015, 70 (1): 42-85.
|
[24] |
García-Mota M, Gómez-Díaz J, Novell-Leruth G, et al. A density functional theory study of the ‘mythic’ Lindlar hydrogenation catalyst. Theoretical Chemistry Accounts, 2011, 128 (4): 663-673.
|
[25] |
Vilé G, Dähler P, Vecchietti J, et al. Promoted ceria catalysts for alkyne semi-hydrogenation. Journal of Catalysis, 2015, 324: 69-78.
|
[26] |
Ganduglia-Pirovano M V, Popa C, Sauer J, et al. Role of ceria in oxidative dehydrogenation on supported vanadia catalysts. Journal of the American Chemical Society, 2010, 132 (7): 2345-2349.
|
[27] |
da Silva Alvim R, Borges I, Leitão A A. Proton migration on perfect, vacant, and doped MgO(001) surfaces: Role of dissociation residual groups. The Journal of Physical Chemistry C, 2018, 122 (38): 21841-21853.
|
[28] |
Chen H Y T, Giordano L, Pacchioni G. From heterolytic to homolytic H2 dissociation on nanostructured MgO(001) films as a function of the metal support. The Journal of Physical Chemistry C, 2013, 117 (20): 10623-10629.
|
[29] |
Martin D, Duprez D. Mobility of surface species on oxides. 1. Isotopic exchange of 18O2 with 16O of SiO2, Al2O3, ZrO2, MgO, CeO2, and CeO2-Al2O3. Activation by noble metals. Correlation with oxide basicity. The Journal of Physical Chemistry, 1996, 100 (22): 9429-9438.
|
[30] |
García-Melchor M, López N. Homolytic products from heterolytic paths in H2 dissociation on metal oxides: The example of CeO2. The Journal of Physical Chemistry C, 2014, 118 (20): 10921-10926.
|
[31] |
Syzgantseva O, Calatayud M, Minot C. Hydrogen adsorption on monoclinic (111) and (101) ZrO2 surfaces: A periodic ab initio study. The Journal of Physical Chemistry C, 2010, 114 (27): 11918-11923.
|
[32] |
Wu Z, Zhang W, Xiong F, et al. Active hydrogen species on TiO2 for photocatalytic H2 production. Physical Chemistry Chemical Physics, 2014, 16 (15): 7051-7057.
|
[33] |
Schweke D, Shelly L, Ben David R, et al. A comprehensive study of the ceria-H2 system: Effect of the reaction conditions on the reduction extent and intermediates. The Journal of Physical Chemistry C, 2020, 124 (11): 6180-6187.
|
[34] |
Menetrey M, Markovits A, Minot C. Reactivity of a reduced metal oxide surface:Hydrogen, water and carbon monoxide adsorption on oxygen defective rutile TiO2(110). Surface Science, 2003, 524 (1): 49-62.
|
[35] |
Huang Z Q, Liu L P, Qi S, et al. Understanding all-solid frustrated Lewis pair sites on CeO2 from theoretical perspectives. ACS Catalysis, 2018, 8 (1): 546-554.
|
[36] |
Li Z, Werner K, Qian K, et al. Oxidation of reduced ceria by incorporation of hydrogen. Angewandte Chemie International Edition, 2019, 58 (41): 14686-14693.
|
[37] |
Wu Z, Cheng Y, Tao F, et al. Direct neutron spectroscopy observation of cerium hydride species on a cerium oxide catalyst. Journal of the American Chemical Society, 2017, 139 (28): 9721-9727.
|
[38] |
Cao T, You R, Li Z, et al. Morphology-dependent CeO2 catalysis in acetylene semihydrogenation reaction. Applied Surface Science, 2020, 501: 144120.
|
[39] |
Vilé G, Colussi S, Krumeich F, et al. Opposite face sensitivity of CeO2 in hydrogenation and oxidation catalysis. Angewandte Chemie International Edition, 2014, 53 (45): 12069-12072.
|
[40] |
Matz O, Calatayud M. Breaking H2 with CeO2: Effect of surface termination. ACS Omega, 2018, 3 (11): 16063-16073.
|
[41] |
Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Physical Review B, 1993, 47 (1): 558-561.
|
[42] |
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996, 54 (16): 11169-11186.
|
[43] |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Physical Review Letters, 1997, 78 (7): 1396.
|
[44] |
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 1999, 59: 1758.
|
[45] |
Kümmerle E A, Heger G. The structures of C-Ce2O3+δ, Ce7O12, and Ce11O20. Journal of Solid State Chemistry, 1999, 147 (2): 485-500.
|
[46] |
Castleton C W, Kullgren J, Hermansson K. Tuning LDA+U for electron localization and structure at oxygen vacancies in ceria.The Journal of Chemical Physics, 2007, 127 (24): 244704.
|
[47] |
Tasker P W. The stability of ionic crystal surfaces. Journal of Physics C: Solid State Physics, 1979, 12 (22): 4977-4984.
|
[48] |
Zhou C Y, Wang D, Gong X Q. A DFT+U revisit of reconstructed CeO2(100) surfaces: Structures, thermostabilities and reactivities. Physical Chemistry Chemical Physics, 2019, 21 (36): 19987-19994.
|
[49] |
Kim Y, Lee H, Kwak J H. Mechanism of CO oxidation on Pd/CeO2(100): The unique surface-structure of CeO2(100) and the role of peroxide. ChemCatChem, 2020, 12 (20): 5164-5172.
|
[50] |
Chen H T, Choi Y M, Liu M, et al. A theoretical study of surface reduction mechanisms of CeO2(111) and (110) by H2. ChemPhysChem, 2007, 8 (6): 849-855.
|
[51] |
Li Z, Werner K, Chen L, et al. Interaction of hydrogen with ceria: Hydroxylation, reduction, and hydride formation on the surface and in the bulk. Chemistry, 2021, 27 (16): 5268-5276.
|
[52] |
Özkan E, Cop P, Benfer F, et al. Rational synthesis concept for cerium oxide nanoparticles: On the impact of particle size on the oxygen storage capacity. The Journal of Physical Chemistry C, 2020, 124 (16): 8736-8748.
|
[53] |
Dutta P, Pal S, Seehra M S, et al. Concentration of Ce3+ and oxygen vacancies in cerium oxide nanoparticles. Chemistry of Materials, 2006, 18 (21): 5144-5146.
|
[1] |
Riley C, Zhou S, Kunwar D, et al. Design of effective catalysts for selective alkyne hydrogenation by doping of ceria with a single-atom promotor. Journal of the American Chemical Society, 2018, 140 (40): 12964-12973.
|
[2] |
Teschner D, Borsodi J, Wootsch A, et al. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science, 2008, 320 (5872): 86-89.
|
[3] |
Studt F, Abild-Pedersen F, Bligaard T, et al. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science, 2008, 320 (5881): 1320.
|
[4] |
Khan N A, Shaikhutdinov S, Freund H J. Acetylene and ethylene hydrogenation on alumina supported Pd-Ag model catalysts. Catalysis Letters, 2006, 108 (3): 159-164.
|
[5] |
Hannagan R T, Giannakakis G, Flytzani-Stephanopoulos M, et al. Single-atom alloy catalysis. Chemical Reviews, 2020, 120 (21): 12044-12088.
|
[6] |
Huang F, Deng Y, Chen Y, et al. Atomically dispersed Pd on nanodiamond/graphene hybrid for selective hydrogenation of acetylene. Journal of the American Chemical Society, 2018, 140 (41): 13142-13146.
|
[7] |
Zhuo H Y, Yu X, Yu Q, et al. Selective hydrogenation of acetylene on graphene-supported non-noble metal single-atom catalysts. Science China Materials, 2020, 63 (9): 1741-1749.
|
[8] |
Vanni M, Serrano-Ruiz M, Telesio F, et al. Black phosphorus/palladium nanohybrid: Unraveling the nature of P-Pd interaction and application in selective hydrogenation. Chemistry of Materials, 2019, 31 (14): 5075-5080.
|
[9] |
Farnesi Camellone M, Negreiros Ribeiro F, Szabová L, et al. Catalytic proton dynamics at the water/solid interface of ceria-supported Pt clusters. Journal of the American Chemical Society, 2016, 138 (36): 11560-11567.
|
[10] |
Ye X, Wang H, Lin Y, et al. Insight of the stability and activity of platinum single atoms on ceria. Nano Research, 2019, 12 (6): 1401-1409.
|
[11] |
Parastaev A, Muravev V, Osta E, et al. Boosting CO2 hydrogenation via size-dependent metal-support interactions in cobalt/ceria-based catalysts. Nature Catalysis, 2020, 3: 526-533.
|
[12] |
Kašpar J, Fornasiero P, Graziani M. Use of CeO2-based oxides in the three-way catalysis. Catalysis Today, 1999, 50 (2): 285-298.
|
[13] |
Eguchi K, Setoguchi T, Inoue T, et al. Electrical properties of ceria-based oxides and their application to solid oxide fuel cells. Solid State Ionics, 1992, 52 (1): 165-172.
|
[14] |
Liu Z, Ding D, Liu M, et al. High-performance, ceria-based solid oxide fuel cells fabricated at low temperatures. Journal of Power Sources, 2013, 241: 454-459.
|
[15] |
Rajabbeigi N, Elyassi B, Khodadadi A, et al. A novel miniaturized oxygen sensor with solid-state ceria-zirconia reference. Sensors and Actuators B: Chemical, 2004, 100 (1): 139-142.
|
[16] |
Izu N, Shin W, Matsubara I, et al. Development of resistive oxygen sensors based on cerium oxide thick film. Journal of Electroceramics, 2004, 13 (1): 703-706.
|
[17] |
Montini T, Melchionna M, Monai M, et al. Fundamentals and catalytic applications of CeO2-based materials. Chemical Reviews, 2016, 116 (10): 5987-6041.
|
[18] |
Paier J, Penschke C, Sauer J. Oxygen defects and surface chemistry of ceria: Quantum chemical studies compared to experiment. Chemical Reviews, 2013, 113 (6): 3949-3985.
|
[19] |
Vilé G, Bridier B, Wichert J, et al. Ceria in hydrogenation catalysis: High selectivity in the conversion of alkynes to olefins. Angewandte Chemie International Edition, 2012, 51 (34): 8620-8623.
|
[20] |
Carrasco J, Vilé G, Fernández-Torre D, et al. Molecular-level understanding of CeO2 as a catalyst for partial alkyne hydrogenation. The Journal of Physical Chemistry C, 2014, 118 (10): 5352-5360.
|
[21] |
Vilé G, Colussi S, Krumeich F, et al. Opposite face sensitivity of CeO2 in hydrogenation and oxidation catalysis. Angewandte Chemie International Edition, 2014, 53 (45): 12069-12072.
|
[22] |
Capdevila-Cortada M, García-Melchor M, López N. Unraveling the structure sensitivity in methanol conversion on CeO2: A DFT+U study. Journal of Catalysis, 2015, 327: 58-64.
|
[23] |
Mullins D R. The surface chemistry of cerium oxide. Surface Science Reports, 2015, 70 (1): 42-85.
|
[24] |
García-Mota M, Gómez-Díaz J, Novell-Leruth G, et al. A density functional theory study of the ‘mythic’ Lindlar hydrogenation catalyst. Theoretical Chemistry Accounts, 2011, 128 (4): 663-673.
|
[25] |
Vilé G, Dähler P, Vecchietti J, et al. Promoted ceria catalysts for alkyne semi-hydrogenation. Journal of Catalysis, 2015, 324: 69-78.
|
[26] |
Ganduglia-Pirovano M V, Popa C, Sauer J, et al. Role of ceria in oxidative dehydrogenation on supported vanadia catalysts. Journal of the American Chemical Society, 2010, 132 (7): 2345-2349.
|
[27] |
da Silva Alvim R, Borges I, Leitão A A. Proton migration on perfect, vacant, and doped MgO(001) surfaces: Role of dissociation residual groups. The Journal of Physical Chemistry C, 2018, 122 (38): 21841-21853.
|
[28] |
Chen H Y T, Giordano L, Pacchioni G. From heterolytic to homolytic H2 dissociation on nanostructured MgO(001) films as a function of the metal support. The Journal of Physical Chemistry C, 2013, 117 (20): 10623-10629.
|
[29] |
Martin D, Duprez D. Mobility of surface species on oxides. 1. Isotopic exchange of 18O2 with 16O of SiO2, Al2O3, ZrO2, MgO, CeO2, and CeO2-Al2O3. Activation by noble metals. Correlation with oxide basicity. The Journal of Physical Chemistry, 1996, 100 (22): 9429-9438.
|
[30] |
García-Melchor M, López N. Homolytic products from heterolytic paths in H2 dissociation on metal oxides: The example of CeO2. The Journal of Physical Chemistry C, 2014, 118 (20): 10921-10926.
|
[31] |
Syzgantseva O, Calatayud M, Minot C. Hydrogen adsorption on monoclinic (111) and (101) ZrO2 surfaces: A periodic ab initio study. The Journal of Physical Chemistry C, 2010, 114 (27): 11918-11923.
|
[32] |
Wu Z, Zhang W, Xiong F, et al. Active hydrogen species on TiO2 for photocatalytic H2 production. Physical Chemistry Chemical Physics, 2014, 16 (15): 7051-7057.
|
[33] |
Schweke D, Shelly L, Ben David R, et al. A comprehensive study of the ceria-H2 system: Effect of the reaction conditions on the reduction extent and intermediates. The Journal of Physical Chemistry C, 2020, 124 (11): 6180-6187.
|
[34] |
Menetrey M, Markovits A, Minot C. Reactivity of a reduced metal oxide surface:Hydrogen, water and carbon monoxide adsorption on oxygen defective rutile TiO2(110). Surface Science, 2003, 524 (1): 49-62.
|
[35] |
Huang Z Q, Liu L P, Qi S, et al. Understanding all-solid frustrated Lewis pair sites on CeO2 from theoretical perspectives. ACS Catalysis, 2018, 8 (1): 546-554.
|
[36] |
Li Z, Werner K, Qian K, et al. Oxidation of reduced ceria by incorporation of hydrogen. Angewandte Chemie International Edition, 2019, 58 (41): 14686-14693.
|
[37] |
Wu Z, Cheng Y, Tao F, et al. Direct neutron spectroscopy observation of cerium hydride species on a cerium oxide catalyst. Journal of the American Chemical Society, 2017, 139 (28): 9721-9727.
|
[38] |
Cao T, You R, Li Z, et al. Morphology-dependent CeO2 catalysis in acetylene semihydrogenation reaction. Applied Surface Science, 2020, 501: 144120.
|
[39] |
Vilé G, Colussi S, Krumeich F, et al. Opposite face sensitivity of CeO2 in hydrogenation and oxidation catalysis. Angewandte Chemie International Edition, 2014, 53 (45): 12069-12072.
|
[40] |
Matz O, Calatayud M. Breaking H2 with CeO2: Effect of surface termination. ACS Omega, 2018, 3 (11): 16063-16073.
|
[41] |
Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Physical Review B, 1993, 47 (1): 558-561.
|
[42] |
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996, 54 (16): 11169-11186.
|
[43] |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Physical Review Letters, 1997, 78 (7): 1396.
|
[44] |
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 1999, 59: 1758.
|
[45] |
Kümmerle E A, Heger G. The structures of C-Ce2O3+δ, Ce7O12, and Ce11O20. Journal of Solid State Chemistry, 1999, 147 (2): 485-500.
|
[46] |
Castleton C W, Kullgren J, Hermansson K. Tuning LDA+U for electron localization and structure at oxygen vacancies in ceria.The Journal of Chemical Physics, 2007, 127 (24): 244704.
|
[47] |
Tasker P W. The stability of ionic crystal surfaces. Journal of Physics C: Solid State Physics, 1979, 12 (22): 4977-4984.
|
[48] |
Zhou C Y, Wang D, Gong X Q. A DFT+U revisit of reconstructed CeO2(100) surfaces: Structures, thermostabilities and reactivities. Physical Chemistry Chemical Physics, 2019, 21 (36): 19987-19994.
|
[49] |
Kim Y, Lee H, Kwak J H. Mechanism of CO oxidation on Pd/CeO2(100): The unique surface-structure of CeO2(100) and the role of peroxide. ChemCatChem, 2020, 12 (20): 5164-5172.
|
[50] |
Chen H T, Choi Y M, Liu M, et al. A theoretical study of surface reduction mechanisms of CeO2(111) and (110) by H2. ChemPhysChem, 2007, 8 (6): 849-855.
|
[51] |
Li Z, Werner K, Chen L, et al. Interaction of hydrogen with ceria: Hydroxylation, reduction, and hydride formation on the surface and in the bulk. Chemistry, 2021, 27 (16): 5268-5276.
|
[52] |
Özkan E, Cop P, Benfer F, et al. Rational synthesis concept for cerium oxide nanoparticles: On the impact of particle size on the oxygen storage capacity. The Journal of Physical Chemistry C, 2020, 124 (16): 8736-8748.
|
[53] |
Dutta P, Pal S, Seehra M S, et al. Concentration of Ce3+ and oxygen vacancies in cerium oxide nanoparticles. Chemistry of Materials, 2006, 18 (21): 5144-5146.
|