[1] |
Wang B, Yu S, Lou W, et al. Privacy-preserving multi-keyword fuzzy search over encrypted data in the cloud. Proceedings of the International Conference on Computer Communications (INFOCOM). IEEE, 2014: 2112-2120.
|
[2] |
Fu Z, Wu X, Guan C,et al. Toward efficient multi-keyword fuzzy search over encrypted outsourced data with accuracy improvement. IEEE Transactions on Information Forensics and Security, 2016, 11(12): 2706-2716.
|
[3] |
Kim M, Lee H T, Ling S,et al. Private compound wildcard queries using fully homomorphic encryption. IEEE Transactions on Dependable and Secure Computing,2019, 16(5): 743-756.
|
[4] |
Yang Y, Liu X, Deng R H,et al. Flexible wildcard searchable encryption system. IEEE Transactions on Services Computing, 2020, 13(3): 464-477.
|
[5] |
Yang Y, Liu X, Deng R. Multi-user multi-keyword rank search over encrypted data in arbitrary language. IEEE Transactions on Dependable and Secure Computing, 2017, 17(2): 320-334.
|
[6] |
Wang X, Ma J, Liu X, et al. Search in my way: Practical outsourced image retrieval framework supporting unshared key. Proceedings of the International Conference on Computer Communications (INFOCOM). IEEE, 2019: 2485-2493.
|
[7] |
Cheng K, Shen Y, Wang Y,et al. Strongly secure and efficient range queries in cloud databases under multiple keys. Proceedings of the International Conference on Computer Communications (INFOCOM). IEEE, 2019: 2494-2502.
|
[8] |
Curtmola R, Garay J, Kamara S,et al. Searchable symmetric encryption: Improved definitions and efficient constructions. Journal of Computer Security, 2011, 19(5): 895-934.
|
[9] |
Bloom B H. Space/time trade-offs in hash coding with allowable errors. Communications of the ACM, 1970, 13(7): 422-426.
|
[10] |
Mitzenmacher M. Compressed bloom filters. IEEE/ACM Transactions on Networking, 2002, 10(5): 604-612.
|
[11] |
Broder A Z, Mitzenmacher M. Network applications of bloom filters: A survey. Internet Mathematics, 2004, 1(4): 485-509.
|
[12] |
Wong W K, Cheung D W-L, Kao B, et al. Secure kNN computation on encrypted databases. Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD). Rhode Island, USA: ACM, 2009: 139-152.
|
[13] |
Blaze M, Bleumer G, Strauss M. Divertible protocols and atomic proxy cryptography. International Conference on the Theory and Application of Cryptographic Techniques. Espoo, Finland: Springer, 1998: 127-144.
|
[14] |
Ateniese G, Fu K, Green M. Improved proxy reencryption schemes with applications to secure distributed storage. ACM Transactions on Information and System Security, 2006, 9(1): 1-30.
|
[15] |
Yuan J, Tian Y. Practical privacy-preserving MapReduce based k-means clustering over large-scale dataset. IEEE Transactions on Cloud Computing, 2017, 7(2): 568-579.
|
[16] |
Yao B, Li F F, Xiao X K. Secure nearest neighbor revisited. International Conference on Data Engineering. Brisbane, Australia: IEEE, 2013: 733-744.
|
[17] |
RFC Index. https://www.rfc-editor.org/rfc-index.html/.
|
[18] |
Song D X,. Wagner D, Perrig A. Practical techniques for searches on encrypted data. Proceedings of IEEE Symposium on Security and Privacy (S&P). Berkeley, USA: IEEE, 2000: 44-55.
|
[19] |
Cash D, Jarecki S, Jutla C.et al. Highly-Scalable Searchable Symmetric Encryption with Support for Boolean Queries. Berlin Heidelberg: Springer, 2013.
|
[20] |
Cao N, Wang C, Li M,et al. Privacy preserving multi-keyword ranked search over encrypted cloud data. IEEE Transactions on Parallel and Distributed Systems, 2014, 25(1): 222-233.
|
[21] |
Fu Z, Sun X, Linge N,et al. Achieving effective cloud search services: Multi-keyword ranked search over encrypted cloud data supporting synonym query. IEEE Transactions on Consumer Electronics,2014, 60(1): 164-172.
|
[22] |
Sun W, Wang B, Cao N,et al. Verifiable privacy-preserving multi-keyword text search in the cloud supporting similarity-based ranking. IEEE Transactions on Parallel Distributed Systems, 2014, 25(11): 3025-3035.
|
[23] |
Yu J, Lu P, Zhu Y,et al. Toward secure multikeyword top-k retrieval over encrypted cloud data. IEEE Transactions on Dependable Secure Computing, 2013, 10(4): 239-250.
|
[24] |
Sun S F, Yuan X, Liu J K, et al. Practical backward-secure searchable encryption from symmetric puncturable encryption. Proceedings of the ACM SIGSAC Conference on Computer and Communications Security (CCS). Toronto, Canada: ACM, 2018: 763-780.
|
[25] |
Chamani J G, Papadopoulos D, Papamanthou C, et al. New constructions for forward and backward private symmetric searchable encryption. Proceedings of the ACM SIGSAC Conference on Computer and Communications Security (CCS). Toronto, Canada: ACM, 2018: 1038-1055.
|
[26] |
Bost R. ∑oφoς: Forward secure searchable encryption. Proceedings of the ACM SIGSAC Conference on Computer and Communications Security (CCS). Vienna Austria: ACM, 2016: 1143-1154.
|
[27] |
Song X, Dong C, Yuan D,et al. Forward private searchable symmetric encryption with optimized I/O efficiency. IEEE Transactions on Dependable and Secure Computing, 2020, 17(5): 912-927.
|
[28] |
Ding X, Liu P, Jin H. Privacy-preserving multi-keyword top-k similarity search over encrypted data. IEEE Transactions on Dependable and Secure Computing, 2017, 16(2): 344-357.
|
[29] |
Sun W, Yu S, Lou W,et al. Protecting your right: Attribute-based keyword search with fine-grained owner enforced search authorization in the cloud. IEEE Transactions on Parallel and Distributed Systems, 2016, 27(4): 1187-1198.
|
[30] |
Xu L, Chen X, Zhang F,et al. ASBKS: Towards attribute set based keyword search over encrypted personal health records. IEEE Transactions on Dependable and Secure Computing, 2020, https://doi.org/10.1109/TDSC.2020.2970928.
|
[31] |
Yang Y, Liu X, Deng R H,et al. Lightweight sharable and traceable secure mobile health system. IEEE Transactions on Dependable and Secure Computing, 2020, 17(1): 78-91.
|
[32] |
Liu X, Yang G, Mu Y,et al. Multi-user verifiable searchable symmetric encryption for cloud storage. IEEE Transactions on Dependable and Secure Computing, 2020,17(6): 1322-1332.
|
[33] |
Zhang K, Wen M, Lu R, aet al. Multi-client sublinear boolean keyword searching for encrypted cloud storage with owner-enforced authorization. IEEE Transactions on Dependable and Secure Computing, 2020, PP(99): 1-1.
|
[34] |
Kermanshahi S K, Liu J K, Steinfeld R,et al. Multi-client cloud-based symmetric searchable encryption. IEEE Transactions on Dependable and Secure Computing. 2021, 18(5): 2419-2437.
|
[35] |
Li J, Wang Q, Wang C,et al. Fuzzy keyword search over encrypted data in cloud computing. Proceeding of the 2010 International Conference on Computer Communications (INFOCOM). San Diego, USA: IEEE, 2010: 1-5.
|
[1] |
Wang B, Yu S, Lou W, et al. Privacy-preserving multi-keyword fuzzy search over encrypted data in the cloud. Proceedings of the International Conference on Computer Communications (INFOCOM). IEEE, 2014: 2112-2120.
|
[2] |
Fu Z, Wu X, Guan C,et al. Toward efficient multi-keyword fuzzy search over encrypted outsourced data with accuracy improvement. IEEE Transactions on Information Forensics and Security, 2016, 11(12): 2706-2716.
|
[3] |
Kim M, Lee H T, Ling S,et al. Private compound wildcard queries using fully homomorphic encryption. IEEE Transactions on Dependable and Secure Computing,2019, 16(5): 743-756.
|
[4] |
Yang Y, Liu X, Deng R H,et al. Flexible wildcard searchable encryption system. IEEE Transactions on Services Computing, 2020, 13(3): 464-477.
|
[5] |
Yang Y, Liu X, Deng R. Multi-user multi-keyword rank search over encrypted data in arbitrary language. IEEE Transactions on Dependable and Secure Computing, 2017, 17(2): 320-334.
|
[6] |
Wang X, Ma J, Liu X, et al. Search in my way: Practical outsourced image retrieval framework supporting unshared key. Proceedings of the International Conference on Computer Communications (INFOCOM). IEEE, 2019: 2485-2493.
|
[7] |
Cheng K, Shen Y, Wang Y,et al. Strongly secure and efficient range queries in cloud databases under multiple keys. Proceedings of the International Conference on Computer Communications (INFOCOM). IEEE, 2019: 2494-2502.
|
[8] |
Curtmola R, Garay J, Kamara S,et al. Searchable symmetric encryption: Improved definitions and efficient constructions. Journal of Computer Security, 2011, 19(5): 895-934.
|
[9] |
Bloom B H. Space/time trade-offs in hash coding with allowable errors. Communications of the ACM, 1970, 13(7): 422-426.
|
[10] |
Mitzenmacher M. Compressed bloom filters. IEEE/ACM Transactions on Networking, 2002, 10(5): 604-612.
|
[11] |
Broder A Z, Mitzenmacher M. Network applications of bloom filters: A survey. Internet Mathematics, 2004, 1(4): 485-509.
|
[12] |
Wong W K, Cheung D W-L, Kao B, et al. Secure kNN computation on encrypted databases. Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD). Rhode Island, USA: ACM, 2009: 139-152.
|
[13] |
Blaze M, Bleumer G, Strauss M. Divertible protocols and atomic proxy cryptography. International Conference on the Theory and Application of Cryptographic Techniques. Espoo, Finland: Springer, 1998: 127-144.
|
[14] |
Ateniese G, Fu K, Green M. Improved proxy reencryption schemes with applications to secure distributed storage. ACM Transactions on Information and System Security, 2006, 9(1): 1-30.
|
[15] |
Yuan J, Tian Y. Practical privacy-preserving MapReduce based k-means clustering over large-scale dataset. IEEE Transactions on Cloud Computing, 2017, 7(2): 568-579.
|
[16] |
Yao B, Li F F, Xiao X K. Secure nearest neighbor revisited. International Conference on Data Engineering. Brisbane, Australia: IEEE, 2013: 733-744.
|
[17] |
RFC Index. https://www.rfc-editor.org/rfc-index.html/.
|
[18] |
Song D X,. Wagner D, Perrig A. Practical techniques for searches on encrypted data. Proceedings of IEEE Symposium on Security and Privacy (S&P). Berkeley, USA: IEEE, 2000: 44-55.
|
[19] |
Cash D, Jarecki S, Jutla C.et al. Highly-Scalable Searchable Symmetric Encryption with Support for Boolean Queries. Berlin Heidelberg: Springer, 2013.
|
[20] |
Cao N, Wang C, Li M,et al. Privacy preserving multi-keyword ranked search over encrypted cloud data. IEEE Transactions on Parallel and Distributed Systems, 2014, 25(1): 222-233.
|
[21] |
Fu Z, Sun X, Linge N,et al. Achieving effective cloud search services: Multi-keyword ranked search over encrypted cloud data supporting synonym query. IEEE Transactions on Consumer Electronics,2014, 60(1): 164-172.
|
[22] |
Sun W, Wang B, Cao N,et al. Verifiable privacy-preserving multi-keyword text search in the cloud supporting similarity-based ranking. IEEE Transactions on Parallel Distributed Systems, 2014, 25(11): 3025-3035.
|
[23] |
Yu J, Lu P, Zhu Y,et al. Toward secure multikeyword top-k retrieval over encrypted cloud data. IEEE Transactions on Dependable Secure Computing, 2013, 10(4): 239-250.
|
[24] |
Sun S F, Yuan X, Liu J K, et al. Practical backward-secure searchable encryption from symmetric puncturable encryption. Proceedings of the ACM SIGSAC Conference on Computer and Communications Security (CCS). Toronto, Canada: ACM, 2018: 763-780.
|
[25] |
Chamani J G, Papadopoulos D, Papamanthou C, et al. New constructions for forward and backward private symmetric searchable encryption. Proceedings of the ACM SIGSAC Conference on Computer and Communications Security (CCS). Toronto, Canada: ACM, 2018: 1038-1055.
|
[26] |
Bost R. ∑oφoς: Forward secure searchable encryption. Proceedings of the ACM SIGSAC Conference on Computer and Communications Security (CCS). Vienna Austria: ACM, 2016: 1143-1154.
|
[27] |
Song X, Dong C, Yuan D,et al. Forward private searchable symmetric encryption with optimized I/O efficiency. IEEE Transactions on Dependable and Secure Computing, 2020, 17(5): 912-927.
|
[28] |
Ding X, Liu P, Jin H. Privacy-preserving multi-keyword top-k similarity search over encrypted data. IEEE Transactions on Dependable and Secure Computing, 2017, 16(2): 344-357.
|
[29] |
Sun W, Yu S, Lou W,et al. Protecting your right: Attribute-based keyword search with fine-grained owner enforced search authorization in the cloud. IEEE Transactions on Parallel and Distributed Systems, 2016, 27(4): 1187-1198.
|
[30] |
Xu L, Chen X, Zhang F,et al. ASBKS: Towards attribute set based keyword search over encrypted personal health records. IEEE Transactions on Dependable and Secure Computing, 2020, https://doi.org/10.1109/TDSC.2020.2970928.
|
[31] |
Yang Y, Liu X, Deng R H,et al. Lightweight sharable and traceable secure mobile health system. IEEE Transactions on Dependable and Secure Computing, 2020, 17(1): 78-91.
|
[32] |
Liu X, Yang G, Mu Y,et al. Multi-user verifiable searchable symmetric encryption for cloud storage. IEEE Transactions on Dependable and Secure Computing, 2020,17(6): 1322-1332.
|
[33] |
Zhang K, Wen M, Lu R, aet al. Multi-client sublinear boolean keyword searching for encrypted cloud storage with owner-enforced authorization. IEEE Transactions on Dependable and Secure Computing, 2020, PP(99): 1-1.
|
[34] |
Kermanshahi S K, Liu J K, Steinfeld R,et al. Multi-client cloud-based symmetric searchable encryption. IEEE Transactions on Dependable and Secure Computing. 2021, 18(5): 2419-2437.
|
[35] |
Li J, Wang Q, Wang C,et al. Fuzzy keyword search over encrypted data in cloud computing. Proceeding of the 2010 International Conference on Computer Communications (INFOCOM). San Diego, USA: IEEE, 2010: 1-5.
|