ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Original Paper

Pulsed laser deposition derived Sb2S3 thin film for solar cell applications

Cite this:
https://doi.org/10.3969/j.issn.0253-2778.2020.06.003
  • Received Date: 27 November 2019
  • Accepted Date: 16 March 2020
  • Rev Recd Date: 16 March 2020
  • Publish Date: 30 June 2020
  • High quality Sb2S3 thin films were prepared by pulsed laser deposition (PLD) method. The thickness of the Sb2S3 thin film was adjusted by changing the deposition duration to investigate the thickness dependent power conversion efficiency in complete solar devices. It was found that the Sb2S3 solar cell achieved power conversion efficiency of 3.98% when the deposition time was 5 min. Based on external quantum efficiency and electrochemical impedance spectroscopy analysis, it was observed that the change of thickness affects both the light harvesting capacity of the Sb2S3 layer and non-radiative recombination of photo generated carriers, thus affecting the efficiency of the solar cell.
    High quality Sb2S3 thin films were prepared by pulsed laser deposition (PLD) method. The thickness of the Sb2S3 thin film was adjusted by changing the deposition duration to investigate the thickness dependent power conversion efficiency in complete solar devices. It was found that the Sb2S3 solar cell achieved power conversion efficiency of 3.98% when the deposition time was 5 min. Based on external quantum efficiency and electrochemical impedance spectroscopy analysis, it was observed that the change of thickness affects both the light harvesting capacity of the Sb2S3 layer and non-radiative recombination of photo generated carriers, thus affecting the efficiency of the solar cell.
  • loading
  • [1]
    BRITT J, FEREKIDES C. Thin-film CdS/CdTe solar cell with 15.8% efficiency[J]. Appl Phys Lett, 1993, 62(22): 2851.
    [2]
    MEZHER M, GARRIS R, MANSFIELD L M, et al. Electronic structure of the Zn(O,S)/Cu(In,Ga)Se2 thin-film solar cell interface[J]. Prog Photovolt: Res Appl, 2016, 24: 1142-1148.
    [3]
    KIM J, HIROI H, TODOROV T K, et al. High efficiency Cu2ZnSn(S,Se)4 solar cells by applying a double In2S3/CdS emitter[J]. Adv Mater, 2014, 26(44): 7427-7431.
    [4]
    JEON N J, NOH J H, YANG W S, et al. Compositional engineering of perovskite materials for high-performance solar cells[J]. Nature, 2015, 517(7535): 476-480.
    [5]
    CHOI Y C, LEE D U, NOH J H, et al. Highly improved Sb2S3 sensitized-inorganic-organic heterojunction solar cells and ouantification of traps by deep-level transient spectroscopy[J]. Adv Funct Mater, 2014, 24(23): 3587-3592.
    [6]
    BANSAL N, O'MAHONY F T F, LUTZ T, et al. Solution processed polymer-inorganic semiconductor solar cells employing Sb2S3 as a light harvesting and electron transporting material[J]. Adv Energy Mater, 2013, 3(8): 986-990.
    [7]
    FUKUMOTO T, MOEHL T, NIWA Y, et al. Effect of interfacial engineering in solid-state nanostructured Sb2S3 Heterojunction solar cells[J]. Adv Energy Mater, 2013, 3(1): 29-33.
    [8]
    NIE R, YUN H S, PAIK M J, et al. Efficient solar cells based on light-harvesting antimony sulfoiodide[J]. Adv Energy Mater, 2018, 8: 1701901.
    [9]
    CHOI Y C, SEOK S I. Efficient Sb2S3-sensitized solar cells via single-step deposition of Sb2S3 using S/Sb-ratio-controlled SbCl3-thiourea complex solution[J]. Adv Funct Mater, 2015, 25(19): 2892-2898.
    [10]
    GODEL K C, CHOI Y C, ROOSE B, et al. Efficient room temperature aqueous Sb2S3 synthesis for inorganic-organic sensitized solar cells with 5.1% efficiencies[J]. Chem Commun (Camb), 2015, 51(41): 8640-8643.
    [11]
    ZHANG L, WU C, LIU W, et al. Sequential deposition route to efficient Sb2S3 solar cells[J]. J Mater Chem A, 2018, 6(43): 21320-21326.
    [12]
    CHEN X, LI Z, ZHU H, et al. CdS/Sb2S3 heterojunction thin film solar cells with a thermally evaporated absorber[J]. J Mater Chem C, 2017, 5(36): 9421-9428.
    [13]
    YUAN S, DENG H, DONG D, et al. Efficient planar antimony sulfide thin film photovoltaics with large grain and preferential growth[J]. Sol Energy Mater Sol Cells, 2016, 157: 887-893.
    [14]
    LIU C P, WANG H E, NG T W, et al. Hybrid photovoltaic cells based on ZnO/Sb2S3/P3HT heterojunctions[J]. Phys Status Solidi B, 2012, 249(3): 627-633.
    [15]
    ESCORCIA-GARCíA J, BECERRA D, NAIR M T S, et al. Heterojunction CdS/Sb2S3 solar cells using antimony sulfide thin films prepared by thermal evaporation[J]. Thin Solid Films, 2014, 569: 28-34.
    [16]
    MOHOLKAR A V, SHINDE S S, BABAR A R, et al. Development of CZTS thin films solar cells by pulsed laser deposition: Influence of pulse repetition rate[J]. Solar Energy, 2011, 85(7): 1354-1363.
    [17]
    SUN L, HE J, KONG H, et al. Structure, composition and optical properties of Cu2ZnSnS4 thin films deposited by pulsed laser deposition method[J]. Sol Energy Mater Sol Cells, 2011, 95(10): 2907-2913.
    [18]
    BERERA R, VAN GRONDELLE R, KENNIS J T. Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems[J]. Photosynth Res, 2009, 101(2/3): 105-118.
    [19]
    ZHOU P, FANG Z, ZHOU W, et al. Nonconjugated polymer poly(vinylpyrrolidone) as an efficient interlayer promoting electron transport for perovskite solar cells[J]. ACS Appl Mater Interfaces, 2017, 9(38): 32957-32964.
    [20]
    ZHANG L, JIANG C, WU C, et al. V2O5 as hole transporting material for efficient all inorganic Sb2S3 solar cells[J]. ACS Appl Mater Interfaces, 2018, 10(32): 27098-27105.
    [21]
    LI S, ZHANG Y, TANG R, et al. Aqueous-solution-based approach towards carbon-free Sb2S3 films for high efficiency solar cells[J]. ChemSusChem, 2018, 11: 3208-3214.
    [22]
    QIAN X, GU N, CHENG Z, et al. Impedance study of (PEO)10LiClO4-Al2O3 composite polymer electrolyte with blocking electrodes[J]. Electrochimica Acta, 2001, 46(12): 1829-1836.
    [23]
    NELSON J. The Physics of Solar Cells[M]. London: Imperial College Press, 2003.
    [24]
    TAN H, JAIN A, VOZNYY O, et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation[J]. Science, 2017, 355(6326): 722-726.
    [25]
    LIU M, JOHNSTON M B, SNAITH H J J N. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501: 395-398.)
  • 加载中

Catalog

    [1]
    BRITT J, FEREKIDES C. Thin-film CdS/CdTe solar cell with 15.8% efficiency[J]. Appl Phys Lett, 1993, 62(22): 2851.
    [2]
    MEZHER M, GARRIS R, MANSFIELD L M, et al. Electronic structure of the Zn(O,S)/Cu(In,Ga)Se2 thin-film solar cell interface[J]. Prog Photovolt: Res Appl, 2016, 24: 1142-1148.
    [3]
    KIM J, HIROI H, TODOROV T K, et al. High efficiency Cu2ZnSn(S,Se)4 solar cells by applying a double In2S3/CdS emitter[J]. Adv Mater, 2014, 26(44): 7427-7431.
    [4]
    JEON N J, NOH J H, YANG W S, et al. Compositional engineering of perovskite materials for high-performance solar cells[J]. Nature, 2015, 517(7535): 476-480.
    [5]
    CHOI Y C, LEE D U, NOH J H, et al. Highly improved Sb2S3 sensitized-inorganic-organic heterojunction solar cells and ouantification of traps by deep-level transient spectroscopy[J]. Adv Funct Mater, 2014, 24(23): 3587-3592.
    [6]
    BANSAL N, O'MAHONY F T F, LUTZ T, et al. Solution processed polymer-inorganic semiconductor solar cells employing Sb2S3 as a light harvesting and electron transporting material[J]. Adv Energy Mater, 2013, 3(8): 986-990.
    [7]
    FUKUMOTO T, MOEHL T, NIWA Y, et al. Effect of interfacial engineering in solid-state nanostructured Sb2S3 Heterojunction solar cells[J]. Adv Energy Mater, 2013, 3(1): 29-33.
    [8]
    NIE R, YUN H S, PAIK M J, et al. Efficient solar cells based on light-harvesting antimony sulfoiodide[J]. Adv Energy Mater, 2018, 8: 1701901.
    [9]
    CHOI Y C, SEOK S I. Efficient Sb2S3-sensitized solar cells via single-step deposition of Sb2S3 using S/Sb-ratio-controlled SbCl3-thiourea complex solution[J]. Adv Funct Mater, 2015, 25(19): 2892-2898.
    [10]
    GODEL K C, CHOI Y C, ROOSE B, et al. Efficient room temperature aqueous Sb2S3 synthesis for inorganic-organic sensitized solar cells with 5.1% efficiencies[J]. Chem Commun (Camb), 2015, 51(41): 8640-8643.
    [11]
    ZHANG L, WU C, LIU W, et al. Sequential deposition route to efficient Sb2S3 solar cells[J]. J Mater Chem A, 2018, 6(43): 21320-21326.
    [12]
    CHEN X, LI Z, ZHU H, et al. CdS/Sb2S3 heterojunction thin film solar cells with a thermally evaporated absorber[J]. J Mater Chem C, 2017, 5(36): 9421-9428.
    [13]
    YUAN S, DENG H, DONG D, et al. Efficient planar antimony sulfide thin film photovoltaics with large grain and preferential growth[J]. Sol Energy Mater Sol Cells, 2016, 157: 887-893.
    [14]
    LIU C P, WANG H E, NG T W, et al. Hybrid photovoltaic cells based on ZnO/Sb2S3/P3HT heterojunctions[J]. Phys Status Solidi B, 2012, 249(3): 627-633.
    [15]
    ESCORCIA-GARCíA J, BECERRA D, NAIR M T S, et al. Heterojunction CdS/Sb2S3 solar cells using antimony sulfide thin films prepared by thermal evaporation[J]. Thin Solid Films, 2014, 569: 28-34.
    [16]
    MOHOLKAR A V, SHINDE S S, BABAR A R, et al. Development of CZTS thin films solar cells by pulsed laser deposition: Influence of pulse repetition rate[J]. Solar Energy, 2011, 85(7): 1354-1363.
    [17]
    SUN L, HE J, KONG H, et al. Structure, composition and optical properties of Cu2ZnSnS4 thin films deposited by pulsed laser deposition method[J]. Sol Energy Mater Sol Cells, 2011, 95(10): 2907-2913.
    [18]
    BERERA R, VAN GRONDELLE R, KENNIS J T. Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems[J]. Photosynth Res, 2009, 101(2/3): 105-118.
    [19]
    ZHOU P, FANG Z, ZHOU W, et al. Nonconjugated polymer poly(vinylpyrrolidone) as an efficient interlayer promoting electron transport for perovskite solar cells[J]. ACS Appl Mater Interfaces, 2017, 9(38): 32957-32964.
    [20]
    ZHANG L, JIANG C, WU C, et al. V2O5 as hole transporting material for efficient all inorganic Sb2S3 solar cells[J]. ACS Appl Mater Interfaces, 2018, 10(32): 27098-27105.
    [21]
    LI S, ZHANG Y, TANG R, et al. Aqueous-solution-based approach towards carbon-free Sb2S3 films for high efficiency solar cells[J]. ChemSusChem, 2018, 11: 3208-3214.
    [22]
    QIAN X, GU N, CHENG Z, et al. Impedance study of (PEO)10LiClO4-Al2O3 composite polymer electrolyte with blocking electrodes[J]. Electrochimica Acta, 2001, 46(12): 1829-1836.
    [23]
    NELSON J. The Physics of Solar Cells[M]. London: Imperial College Press, 2003.
    [24]
    TAN H, JAIN A, VOZNYY O, et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation[J]. Science, 2017, 355(6326): 722-726.
    [25]
    LIU M, JOHNSTON M B, SNAITH H J J N. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501: 395-398.)

    Article Metrics

    Article views (46) PDF downloads(121)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return