ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Original Paper

A calculation analysis for the ablation and heat transfer of carbon-based composite materials in combustible airflow environment

Cite this:
https://doi.org/10.3969/j.issn.0253-2778.2018.03.010
  • Received Date: 21 December 2016
  • Rev Recd Date: 19 January 2018
  • Publish Date: 31 March 2018
  • To study the ablative heat transfer mechanisms of carbon-based composite materials in the aerodynamic heating environment of combustible airflow, an analysis of chemical reaction,thermal chemical ablation and thermal response for the materials was conducted,and a calculation method for the oxidative ablation and heat transfer of the materials was present. The comparison results signified that the ablation results obtained by the calculation method were consistent with the experimental results of flat and stagnation-point ablation tests. Using this method, the ablation and temperature-field differences of carbon-based composite materials in combustible airflow and air environments, and the effects of a variety of parameters concerning pressure and components on the ablation and heat transfer were obtained. In the same thermal environment, the material surface temperature under combustible airflow is lower than that of the air environment, and the ablation back quantity is higher than the results of the air environment; with the increase in H2O and CO2 content, surface temperature and the amount of ablation back show a tendency of decrease and increase, respectively, with H2O exhibiting a greater influence.
    To study the ablative heat transfer mechanisms of carbon-based composite materials in the aerodynamic heating environment of combustible airflow, an analysis of chemical reaction,thermal chemical ablation and thermal response for the materials was conducted,and a calculation method for the oxidative ablation and heat transfer of the materials was present. The comparison results signified that the ablation results obtained by the calculation method were consistent with the experimental results of flat and stagnation-point ablation tests. Using this method, the ablation and temperature-field differences of carbon-based composite materials in combustible airflow and air environments, and the effects of a variety of parameters concerning pressure and components on the ablation and heat transfer were obtained. In the same thermal environment, the material surface temperature under combustible airflow is lower than that of the air environment, and the ablation back quantity is higher than the results of the air environment; with the increase in H2O and CO2 content, surface temperature and the amount of ablation back show a tendency of decrease and increase, respectively, with H2O exhibiting a greater influence.
  • loading
  • [1]
    王国雄, 马鹏飞. 弹头技术[M]. 北京: 宇航出版社, 1993.
    [2]
    姜贵庆, 刘连元. 高速气流传热与烧蚀热防护[M]. 北京: 国防工业出版社, 2003.
    [3]
    Chen Lianzhong Zhang Youhua. Types and Trend of Arc Heater Facility[J]. Aerospace Materials & Technology, 2011, (2): 34-42.
    [4]
    杨鸿, 陈伟芳, 柳森. 电弧湍流平板烧蚀矩形喷管研制及应用[J]. 实验流体力学, 2006, 20(1): 27-30.
    YANG Hong, CHEN Weifang, LIU Sen. The development and application on rectangular nozzle of arc turbulent flat plate ablation test[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(1): 27-30.
    [5]
    齐斌, 娄文忠, 田宁, 等. 防热试验用高温超声速燃气流场热环境分析[J]. 宇航材料工艺, 2014, (5): 30-35.
    QI Bin, LOU Wenzhong, TIAN Ning, et al. Thermal-environment analysis of high temperature and supersonic flow field for thermal protection system test[J]. Aerospace Materials & Technology, 2014, (5): 30-35.
    [6]
    张涛. 热解气体流动的二维烧蚀热防护数值仿真研究[J]. 宇航学报, 2014,35(1):119-124.
    ZHANG Tao. Numerical Simulation Research on Two-Dimensional Ablative Thermal Protection with Pyrolysis Gas Flow[J]. Journal of Astronautics, 2014,35(1):119-124.
    [7]
    AMAR A J, BLACKWELL B F, EDWARDS J R. One-dimensional ablation using a full Newton’s method and finite control volume procedure [J]. Journal of Thermophysics and Heat Transfer, 2008, 22(1):77-82.
    [8]
    LI W J, HUANG H M, WANG Q, et al. Protection of pyrolysis gases combustion against charring materials’ surface ablation [J]. International Journal of Heat and Mass Transfer, 2016, 102:10-17.
    [9]
    AGRAWAL P, ELLERBY D, SWITZER M, et a1.Multidimensional Testing of Thermal Protection Materials in the Arcjet Test Facility [C]//10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. Reston, VA, USA:AIAA, 2010: AIAA 2010-4664.
    [10]
    CHEN Y K, MILOS F S. Effects of nonequilibrium chemistry and Darcy-Forchheimer pyrolysis flow for charring ablator [J]. Journal of Spacecraft and Rockets, 2013, 50(2):256-269.
    [11]
    姚峰, 董素君, 王浚. 高温燃气热环境加热特性的试验方法研究[J]. 宇航学报, 2010, 31(5):1446-1451.
    YAO Feng, DONG Sujun, WANG Jun. Numerical analysis of thermal characteristics of high temperature-gas thermal environment[J]. Journal of Astronautics, 2010, 31(5):1446-1451.
    [12]
    李钟华, 张秀媚. 用独立组元法计算多元多相复杂化学平衡[J]. 哈尔滨工程大学学报, 1997, 18(4): 96~100.
    LI Zhonghua, ZHANG Xiumei. The calculation of complex equilibrium system by using the independent component method[J]. Journal of Harbin Engineering University, 1997, 18(4): 96-100.
    [13]
    科.逻辑耶夫. 固体火箭发动机气体动力学与热物理过程[M]. 北京: 宇航出版社, 2007.
    [14]
    THAKRE P, YANG V. A comprehensive model to predict and mitigate the erosion of carbon-carbon/graphite rocket nozzles[C]// 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2007.
    [15]
    张斌, 刘宇, 王长辉, 等. 长时间工作固体火箭发动机燃烧室热防护层烧蚀计算[J]. 固体火箭技术, 2011, 34(2):189-192.
    ZHANG Bin, LIU Yu, WANG Changhui, et al. Computation of ablation of thermal-protection layer in long-time working solid rocket motors[J]. Journal of Solid Rocket Technology , 2011, 34(2):189-192.
    [16]
    刘骁, 国义军, 刘伟, 等. 碳化材料三维烧蚀热响应有限元计算研究[J]. 宇航学报, 2016, 37(9):1150-1156.
    LIU Xiao, GUO Yijun, LIU Wei, et al. Numerical simulation research on three-dimensional ablative thermal response of charring ablators[J]. Journal of Astronautics, 2016, 37(9):1150-1156.
    [17]
    LI W J, HUANG H M, TIAN Y, et al. Nonlinear analysis on thermal behavior of charring materials with surface ablation[J]. International Journal of Heat and Mass Transfer, 2015, 84:245-252.
  • 加载中

Catalog

    [1]
    王国雄, 马鹏飞. 弹头技术[M]. 北京: 宇航出版社, 1993.
    [2]
    姜贵庆, 刘连元. 高速气流传热与烧蚀热防护[M]. 北京: 国防工业出版社, 2003.
    [3]
    Chen Lianzhong Zhang Youhua. Types and Trend of Arc Heater Facility[J]. Aerospace Materials & Technology, 2011, (2): 34-42.
    [4]
    杨鸿, 陈伟芳, 柳森. 电弧湍流平板烧蚀矩形喷管研制及应用[J]. 实验流体力学, 2006, 20(1): 27-30.
    YANG Hong, CHEN Weifang, LIU Sen. The development and application on rectangular nozzle of arc turbulent flat plate ablation test[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(1): 27-30.
    [5]
    齐斌, 娄文忠, 田宁, 等. 防热试验用高温超声速燃气流场热环境分析[J]. 宇航材料工艺, 2014, (5): 30-35.
    QI Bin, LOU Wenzhong, TIAN Ning, et al. Thermal-environment analysis of high temperature and supersonic flow field for thermal protection system test[J]. Aerospace Materials & Technology, 2014, (5): 30-35.
    [6]
    张涛. 热解气体流动的二维烧蚀热防护数值仿真研究[J]. 宇航学报, 2014,35(1):119-124.
    ZHANG Tao. Numerical Simulation Research on Two-Dimensional Ablative Thermal Protection with Pyrolysis Gas Flow[J]. Journal of Astronautics, 2014,35(1):119-124.
    [7]
    AMAR A J, BLACKWELL B F, EDWARDS J R. One-dimensional ablation using a full Newton’s method and finite control volume procedure [J]. Journal of Thermophysics and Heat Transfer, 2008, 22(1):77-82.
    [8]
    LI W J, HUANG H M, WANG Q, et al. Protection of pyrolysis gases combustion against charring materials’ surface ablation [J]. International Journal of Heat and Mass Transfer, 2016, 102:10-17.
    [9]
    AGRAWAL P, ELLERBY D, SWITZER M, et a1.Multidimensional Testing of Thermal Protection Materials in the Arcjet Test Facility [C]//10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. Reston, VA, USA:AIAA, 2010: AIAA 2010-4664.
    [10]
    CHEN Y K, MILOS F S. Effects of nonequilibrium chemistry and Darcy-Forchheimer pyrolysis flow for charring ablator [J]. Journal of Spacecraft and Rockets, 2013, 50(2):256-269.
    [11]
    姚峰, 董素君, 王浚. 高温燃气热环境加热特性的试验方法研究[J]. 宇航学报, 2010, 31(5):1446-1451.
    YAO Feng, DONG Sujun, WANG Jun. Numerical analysis of thermal characteristics of high temperature-gas thermal environment[J]. Journal of Astronautics, 2010, 31(5):1446-1451.
    [12]
    李钟华, 张秀媚. 用独立组元法计算多元多相复杂化学平衡[J]. 哈尔滨工程大学学报, 1997, 18(4): 96~100.
    LI Zhonghua, ZHANG Xiumei. The calculation of complex equilibrium system by using the independent component method[J]. Journal of Harbin Engineering University, 1997, 18(4): 96-100.
    [13]
    科.逻辑耶夫. 固体火箭发动机气体动力学与热物理过程[M]. 北京: 宇航出版社, 2007.
    [14]
    THAKRE P, YANG V. A comprehensive model to predict and mitigate the erosion of carbon-carbon/graphite rocket nozzles[C]// 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2007.
    [15]
    张斌, 刘宇, 王长辉, 等. 长时间工作固体火箭发动机燃烧室热防护层烧蚀计算[J]. 固体火箭技术, 2011, 34(2):189-192.
    ZHANG Bin, LIU Yu, WANG Changhui, et al. Computation of ablation of thermal-protection layer in long-time working solid rocket motors[J]. Journal of Solid Rocket Technology , 2011, 34(2):189-192.
    [16]
    刘骁, 国义军, 刘伟, 等. 碳化材料三维烧蚀热响应有限元计算研究[J]. 宇航学报, 2016, 37(9):1150-1156.
    LIU Xiao, GUO Yijun, LIU Wei, et al. Numerical simulation research on three-dimensional ablative thermal response of charring ablators[J]. Journal of Astronautics, 2016, 37(9):1150-1156.
    [17]
    LI W J, HUANG H M, TIAN Y, et al. Nonlinear analysis on thermal behavior of charring materials with surface ablation[J]. International Journal of Heat and Mass Transfer, 2015, 84:245-252.

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return