ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Original Paper

Spice modeling of 4H-SiC MOSFET based on advanced mobility model

Cite this:
https://doi.org/10.3969/j.issn.0253-2778.2017.10.011
  • Received Date: 23 November 2016
  • Rev Recd Date: 27 May 2017
  • Publish Date: 31 October 2017
  • Spice modeling of 4H-SiC MOSFET based on advanced mobility model has been developed. This modeling employs the Spice Level-1 model of MOSFET, but the constant mobility in the current equations has been replaced by the advanced mobility expressions, which can exactly reflect the effect of 4H-SiC/SiO2 interface features on the characteristics of 4H-SiC MOSFET. The transfer characteristics of the developed 4H-SiC MOSFET model have been verified by the production datasheet, and the dynamic characteristics have been experimentally verified in DC/DC Boost converter. Based on the developed 4H-SiC MOSFET model, the effect of 4H-SiC/SiO2 interface trap and surface roughness on the dynamic characteristics of 4H-SiC MOSFET has been discussed. The results show that the switching loss increases with the increase in interface trap density, but surface roughness exists little impact on switching characteristics. The achieved results are very helpful to device application and device process.
    Spice modeling of 4H-SiC MOSFET based on advanced mobility model has been developed. This modeling employs the Spice Level-1 model of MOSFET, but the constant mobility in the current equations has been replaced by the advanced mobility expressions, which can exactly reflect the effect of 4H-SiC/SiO2 interface features on the characteristics of 4H-SiC MOSFET. The transfer characteristics of the developed 4H-SiC MOSFET model have been verified by the production datasheet, and the dynamic characteristics have been experimentally verified in DC/DC Boost converter. Based on the developed 4H-SiC MOSFET model, the effect of 4H-SiC/SiO2 interface trap and surface roughness on the dynamic characteristics of 4H-SiC MOSFET has been discussed. The results show that the switching loss increases with the increase in interface trap density, but surface roughness exists little impact on switching characteristics. The achieved results are very helpful to device application and device process.
  • loading
  • [1]
    胡林辉, 谢家纯, 王丽玉, 等. 4H-SiC肖特基势垒二极管温度特性研究[J]. 中国科学技术大学学报, 2003, 33(6): 688-691.
    HU Linhui, XIE Jiachun, WANG Liyu,et al.Temperature characteristics of 4H-SiC Schottky barrier diodes[J]. Journal of University of Science and Technoloty of China, 2003, 33(6): 688-691.
    [2]
    徐军, 谢家纯, 董小波, 等. 宽禁带SiC肖特基势垒二极管的研制[J]. 中国科学技术大学学报, 2002, 32(3): 320-323.
    XU Jun, XIE Jiachun, DONG Xiaobao, WANG Keyan, et al. Ni Schottky barrier diodes on n-type 4H-Silicon Carbide[J]. Journal of University of Science and Technoloty of China, 2002, 32(3): 320-323.
    [3]
    孙凯, 陆钰晶, 吴红飞, 等.碳化硅MOSFET的变温度参数建模[J].中国电机工程学报, 2013, 33(3): 37-43.
    SUN Kai, LU Juejing, WU Hongfei, et al. Modeling of SiC MOSFET with temperature dependent parameter[J].Proceedings of the CSEE, 2013, 33(3): 37-43.
    [4]
    WANG J, ZHAO T, LI J, et al. Characterization, modeling and application of 10 kV SiC MOSFET[J]. IEEE Transactions on Electron Devices, 2008, 55(8): 1798-1805.
    [5]
    PUSHPAKARAN B N, BAYNE S, OGUNNIYI A A, et al. Physics-based simulation of 4H-SiC DMOSFET structure under inductive switching[J]. Journal of Computational Electronics, 2016, 1(15): 191-199.
    [6]
    POTBHARE S, GOLDSMAN N, LELIS A, et al. A physical model of high temperature 4H-SiC MOSFETs[J]. IEEE Transactions on Electron Devices, 2008, 55(8): 2029-2039.
    [7]
    LIANG M, ZHENG T, LI Y. An improved analytical model for predicting the switching performance of SiC MOSFETs[J]. Journal of Power Electronics, 2016, 16(1): 374-387.
    [8]
    OKAMOTO D, YANO H, HIRATA K, et al. Improved inversion channel mobility in 4H-SiC MOSFETs on Si Face utilizing Phosphorus-doped gate oxide[J]. IEEE Electron Device Letters, 2010, 31(7): 710-712.
    [9]
    YOSHIOKA H, SENZAKI J, SHIMOZATO A, et al. N-channel field-effect mobility inversely proportional to the interface state density at the conduction band edges of SiO2/4H-SiC interfaces[J]. AIP Advances, 2015, 5(1): 017109(1-12.)
    [10]
    ROZEN J, AHYI A C, ZHU X G, et al. Scaling between channel mobility and interface state density in SiC MOSFETs[J]. IEEE Transactions on Electron Devices, 2011, 58(11): 3808-3811.
    [11]
    ARRIBAS A P, SHANG F, KRISHNAMURTHY M, et al. Simple and accurate circuit simulation model for SiC power MOSFETs[J]. IEEE Transactions on Electron Devices, 2015, 62(2): 449-457.
    [12]
    FU R Y, GREKOV A, HHUDGINSJ, et al. Power SiC DMOSFET model accounting for nonuniform current distribution in JFET region[J]. IEEE Transactions on Industry Applications, 2012, 48(1): 181-190.
    [13]
    ARNOLD E. Charge-sheet model for silicon carbide inversion layers[J]. IEEE Transactions on Electron Devices, 1999, 46(3): 497-503.
    [14]
    PREZ-TOMS A, BROSSELARD P, GODIGNON P, et al. Field-effect mobility temperature modeling of 4H-SiC metal-oxide-semiconductor transistors[J]. Journal of Applied Physics, 2006, 100(11): 114508(1-6).
    [15]
    YU A Z, WHITE M H, DAS M K. Electron transport modeling in the inversion layers of 4H and 6H-SiC MOSFETs on implanted regions[J]. Solid-State Electronics, 2005, 49(6): 1017-1028.
    [16]
    Cree, Inc. C2M0080120D Silicon Carbide MOSFET datasheet[EB/OL]. [2015-12], http://www.wolfspeed.com/c2m0080120d.
    [17]
    TANIMOTO Y, SAITO A, MATSUURA K, et al. Power-loss prediction of high-voltage SiC-MOSFET, circuits with compact model including carrier-trap influences[J]. IEEE Transactions on Power Electronics, 2016, 31(6): 4509-4516.
    [18]
    PREZ-TOMS A, GODIGNON P, MESTRES N, et al. A field-effect electron mobility model for SiC MOSFETs including high density of traps at the interface[J]. Microelectronic Engineering, 2006, 83(3): 440-445.
    [19]
    刘莉, 杨银堂. SiC/SiO2界面形貌对SiC MOS器件沟道迁移率的影响[J]. 浙江大学学报, 2016, 50(2): 392-396.
    LIU Li, YANG Yintang. Effection of morphology of SiC/SiO2 interface on mobility characteristics of MOS devices[J]. Journal of Zhejiang University, 2016, 50(2): 392-396.
  • 加载中

Catalog

    [1]
    胡林辉, 谢家纯, 王丽玉, 等. 4H-SiC肖特基势垒二极管温度特性研究[J]. 中国科学技术大学学报, 2003, 33(6): 688-691.
    HU Linhui, XIE Jiachun, WANG Liyu,et al.Temperature characteristics of 4H-SiC Schottky barrier diodes[J]. Journal of University of Science and Technoloty of China, 2003, 33(6): 688-691.
    [2]
    徐军, 谢家纯, 董小波, 等. 宽禁带SiC肖特基势垒二极管的研制[J]. 中国科学技术大学学报, 2002, 32(3): 320-323.
    XU Jun, XIE Jiachun, DONG Xiaobao, WANG Keyan, et al. Ni Schottky barrier diodes on n-type 4H-Silicon Carbide[J]. Journal of University of Science and Technoloty of China, 2002, 32(3): 320-323.
    [3]
    孙凯, 陆钰晶, 吴红飞, 等.碳化硅MOSFET的变温度参数建模[J].中国电机工程学报, 2013, 33(3): 37-43.
    SUN Kai, LU Juejing, WU Hongfei, et al. Modeling of SiC MOSFET with temperature dependent parameter[J].Proceedings of the CSEE, 2013, 33(3): 37-43.
    [4]
    WANG J, ZHAO T, LI J, et al. Characterization, modeling and application of 10 kV SiC MOSFET[J]. IEEE Transactions on Electron Devices, 2008, 55(8): 1798-1805.
    [5]
    PUSHPAKARAN B N, BAYNE S, OGUNNIYI A A, et al. Physics-based simulation of 4H-SiC DMOSFET structure under inductive switching[J]. Journal of Computational Electronics, 2016, 1(15): 191-199.
    [6]
    POTBHARE S, GOLDSMAN N, LELIS A, et al. A physical model of high temperature 4H-SiC MOSFETs[J]. IEEE Transactions on Electron Devices, 2008, 55(8): 2029-2039.
    [7]
    LIANG M, ZHENG T, LI Y. An improved analytical model for predicting the switching performance of SiC MOSFETs[J]. Journal of Power Electronics, 2016, 16(1): 374-387.
    [8]
    OKAMOTO D, YANO H, HIRATA K, et al. Improved inversion channel mobility in 4H-SiC MOSFETs on Si Face utilizing Phosphorus-doped gate oxide[J]. IEEE Electron Device Letters, 2010, 31(7): 710-712.
    [9]
    YOSHIOKA H, SENZAKI J, SHIMOZATO A, et al. N-channel field-effect mobility inversely proportional to the interface state density at the conduction band edges of SiO2/4H-SiC interfaces[J]. AIP Advances, 2015, 5(1): 017109(1-12.)
    [10]
    ROZEN J, AHYI A C, ZHU X G, et al. Scaling between channel mobility and interface state density in SiC MOSFETs[J]. IEEE Transactions on Electron Devices, 2011, 58(11): 3808-3811.
    [11]
    ARRIBAS A P, SHANG F, KRISHNAMURTHY M, et al. Simple and accurate circuit simulation model for SiC power MOSFETs[J]. IEEE Transactions on Electron Devices, 2015, 62(2): 449-457.
    [12]
    FU R Y, GREKOV A, HHUDGINSJ, et al. Power SiC DMOSFET model accounting for nonuniform current distribution in JFET region[J]. IEEE Transactions on Industry Applications, 2012, 48(1): 181-190.
    [13]
    ARNOLD E. Charge-sheet model for silicon carbide inversion layers[J]. IEEE Transactions on Electron Devices, 1999, 46(3): 497-503.
    [14]
    PREZ-TOMS A, BROSSELARD P, GODIGNON P, et al. Field-effect mobility temperature modeling of 4H-SiC metal-oxide-semiconductor transistors[J]. Journal of Applied Physics, 2006, 100(11): 114508(1-6).
    [15]
    YU A Z, WHITE M H, DAS M K. Electron transport modeling in the inversion layers of 4H and 6H-SiC MOSFETs on implanted regions[J]. Solid-State Electronics, 2005, 49(6): 1017-1028.
    [16]
    Cree, Inc. C2M0080120D Silicon Carbide MOSFET datasheet[EB/OL]. [2015-12], http://www.wolfspeed.com/c2m0080120d.
    [17]
    TANIMOTO Y, SAITO A, MATSUURA K, et al. Power-loss prediction of high-voltage SiC-MOSFET, circuits with compact model including carrier-trap influences[J]. IEEE Transactions on Power Electronics, 2016, 31(6): 4509-4516.
    [18]
    PREZ-TOMS A, GODIGNON P, MESTRES N, et al. A field-effect electron mobility model for SiC MOSFETs including high density of traps at the interface[J]. Microelectronic Engineering, 2006, 83(3): 440-445.
    [19]
    刘莉, 杨银堂. SiC/SiO2界面形貌对SiC MOS器件沟道迁移率的影响[J]. 浙江大学学报, 2016, 50(2): 392-396.
    LIU Li, YANG Yintang. Effection of morphology of SiC/SiO2 interface on mobility characteristics of MOS devices[J]. Journal of Zhejiang University, 2016, 50(2): 392-396.

    Article Metrics

    Article views (511) PDF downloads(204)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return