ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Original Paper

Stator-flux-based sliding-mode MRAS speed estimation of doubly-fed wind power generator

Cite this:
https://doi.org/10.3969/j.issn.0253-2778.2014.07.010
  • Received Date: 17 January 2014
  • Accepted Date: 17 April 2014
  • Rev Recd Date: 17 April 2014
  • Publish Date: 30 July 2014
  • Under the execrable operating environment,the mechanical sensor for detecting the position and speed signals of the doubly-fed wind power generator leads to more faults and inconvenient maintenance. To solve the problem, a stator flux-based sliding-mode model reference adaptive system (MRAS) speed estimator was proposed. In the proposed sliding-mode MRAS estimator, the stator flux voltage model of the doubly-fed wind power generator was used to obtain the reference model and its current model as the adaptive model, and a slide-mode surface was designed according to the two model output cross product, and the reaching conditions for the sliding mode were analyzed by using the small-signal model. Meanwhile the continuous saturation function is introduced to overcome the high frequency chattering problem. And the performances of the proposed control method were tested in Matlab/SimuLink.
    Under the execrable operating environment,the mechanical sensor for detecting the position and speed signals of the doubly-fed wind power generator leads to more faults and inconvenient maintenance. To solve the problem, a stator flux-based sliding-mode model reference adaptive system (MRAS) speed estimator was proposed. In the proposed sliding-mode MRAS estimator, the stator flux voltage model of the doubly-fed wind power generator was used to obtain the reference model and its current model as the adaptive model, and a slide-mode surface was designed according to the two model output cross product, and the reaching conditions for the sliding mode were analyzed by using the small-signal model. Meanwhile the continuous saturation function is introduced to overcome the high frequency chattering problem. And the performances of the proposed control method were tested in Matlab/SimuLink.
  • loading
  • [1]
    Chowdhury B H,Chellapilla S. Double-fed induction generator control for variable speed wind power generation[J]. Electric Power System Research, 2006, 76(9): 786-800.
    [2]
    Li H, Fu B, Yang C, et al. Reactive current allocation and control strategies improvement of low voltage ride-though for doubly fed induction wind turbine generation system[J]. Proceedings of the CSEE, 2012, 32(22): 24-31.
    李辉,付博,杨超,等. 双馈风电机组低电压穿越的无功电流分配及控制策略改进[J]. 中国电机工程学报,2012, 32(22): 24-31.
    [3]
    Ramtharan G, Ekanayake J B, Jenkins N. Frequency support from doubly fed induction generator wind turbines[J]. IET Renewable Power Generation, 2007, 1(1): 3-9.
    [4]
    Chondrogiannis S, Barnes M. Stability of doubly-fed induction generator under stator voltage orientated vector control[J]. IET Renewable Power Generation, 2008, 2(3): 170-180.
    [5]
    Hu J B, He Y K, Wang H S, et al Proportional resonant current control scheme for rotor-side converter of doubly-fed induction generators under unbalanced network voltage conditions[J]. Proceedings of the CSEE, 2010, 30(6): 48-56.
    胡家兵, 贺益康, 王宏胜, 等. 不平衡电网电压下双馈感应发电机转子侧变换器的比例-谐振电流控制策略[J]. 中国电机工程学报, 2010, 30(6): 48-56.
    [6]
    Petersson A, Harnefors L, Thiringer T. Comparison between stator flux and grid flux oriented rotor current control of doubly-fed induction generators[C]// 35th Annual IEEE Power Electronics Specialists Conference. Aachen, Germany: IEEE Press, 2004: 482-486.
    [7]
    Mohseni M, Islam S M, Masoum M A S. Enhanced hysteresis-based current regulators in vector control of DFIG wind turbines[J]. IEEE Transactions on Power Electronics, 2011, 26(1): 223-234.
    [8]
    战亮宇. 双馈风力发电系统变流器控制的相关研究[D].北京交通大学, 2012.
    [9]
    Yang S Y, Zhang X,Zhang C W, et al. Speed and position observer of DFIG based on rotor current vector angle deviation[J]. Automation of Electric Power System, 2009, 33(4): 92-95.
    杨淑英, 张兴, 张崇巍, 等. 基于转子电流偏差角的双馈感应电机速度观测[J]. 电力系统自动化, 2009, 33(4): 92-95.
    [10]
    Chen G F,Huang S D,Huang K Y,et al. Experimental evaluation of observation for doubly-fed induction wind power generator[J]. ACTA Energiae Solaris Sinica, 2011, 32(2): 189-192.
    陈国富, 黄守道, 黄科元, 等. 双馈感应风力发电机位置观测的实验评估[J]. 太阳能学报, 2011, 32(2): 189-192.
    [11]
    Hopfensperger B, Atkinson D J, Lakin R A. Stator flux oriented control of a doubly-fed induction machine with and without position encoder[J]. IEE Proceedings of the Electric Power Applications, 2000, 147(4): 241-250.
    [12]
    Huang S, Liao W, Huang K Y. Speed sensorless control of doubly-fed wind generator system[J]. Electric Drive, 2010, 40(3): 3-5.
    黄晟, 廖武, 黄科元. 双馈风力发电系统无速度传感器控制[J]. 电气传动, 2010, 40(3): 3-5.
    [13]
    Abolhassani M, Enjeti P, Toliyat H. Integrated doubly fed electric alternator/active filter (IDEA), a viable power quality solution, for wind energy conversion systems[J]. IEEE Transactions on Energy Conversion, 2008, 23(2): 642-650.
    [14]
    Jain A K, Ranganathan V T. Wound rotor induction generator with sensorless control and integrated active filter for feeding nonlinear loads in a stand-alone grid[J]. IEEE Transactions on Industrial Electronics, 2008, 55(1): 218-228.
    [15]
    Crdenas R, Pena R, Proboste J, Asher G, Clare J. MRAS observer for sensorless control of standalone doubly fed induction generators[J]. IEEE Transactions on Energy Conversion, 2005, 20(4): 710-718.
    [16]
    Crdenas R, Pena, R, Proboste J, Asher G, Clare J. Sensorless control of a doubly- fed induction generator for stand alone operation[C]// 35th Annual IEEE Power Electronics Specialists Conference. Aachen, Germany: IEEE Press, 2004: 3 378-3 383.
    [17]
    Pena R, Crdenas R, Proboste J, et al. Sensorless control of doubly-fed induction generators using a rotor-current-based MRAS observer[J]. IEEE Transactions on Industrial Electronics, 2008, 55(1): 330-339.
    [18]
    Crdenas R, Pena R, Clare J C, et al. MRAS observers for sensorless control of doubly-fed induction generators[J]. IEEE Transactions on Power Electronics, 2008, 23(3): 1 075-1 084.
    [19]
    高乐. 双馈感应风力发电机控制系统关键技术研究[D].湖南大学,2010.
    [20]
    Yang S, Ajjarapu V. A speed-adaptive reduced-order observer for sensorless vector control of doubly fed induction generator-based variable speed wind turbines[J]. IEEE Transactions on Energy Conversion, 2010, 25(3): 891-900.
    [21]
    Yang S, Ajjarapu V. Sensorless Control of the doubly-fed induction generator for wind energy generations using a speed-adaptive full-order flux observer[C]// 24th Annual IEEE Applied Power Electronics Conference and Exposition. Washington, USA: IEEE Press, 2009: 1 951-1 957.
    [22]
    Mwinyiwiwa B, Zhang Y, Shen B, et al. Rotor position phase-locked loop for decoupled P-Q control of DFIG for wind power generation[J]. IEEE Transactions on Energy Conversion, 2009, 24(3): 758-765.
    [23]
    Wang Q L, Zhang C W, Zhang X. Variable structure MRAS speed identification for speed sensorless vector control of induction motor[J].Proceedings of the CSEE,2007,27(15):70-74.
    王庆龙,张崇巍,张兴. 交流电机无速度传感器矢量控制系统变结构模型参考自适应转速辨识[J].中国电机工程学报,2007,27(15):70-74.
  • 加载中

Catalog

    [1]
    Chowdhury B H,Chellapilla S. Double-fed induction generator control for variable speed wind power generation[J]. Electric Power System Research, 2006, 76(9): 786-800.
    [2]
    Li H, Fu B, Yang C, et al. Reactive current allocation and control strategies improvement of low voltage ride-though for doubly fed induction wind turbine generation system[J]. Proceedings of the CSEE, 2012, 32(22): 24-31.
    李辉,付博,杨超,等. 双馈风电机组低电压穿越的无功电流分配及控制策略改进[J]. 中国电机工程学报,2012, 32(22): 24-31.
    [3]
    Ramtharan G, Ekanayake J B, Jenkins N. Frequency support from doubly fed induction generator wind turbines[J]. IET Renewable Power Generation, 2007, 1(1): 3-9.
    [4]
    Chondrogiannis S, Barnes M. Stability of doubly-fed induction generator under stator voltage orientated vector control[J]. IET Renewable Power Generation, 2008, 2(3): 170-180.
    [5]
    Hu J B, He Y K, Wang H S, et al Proportional resonant current control scheme for rotor-side converter of doubly-fed induction generators under unbalanced network voltage conditions[J]. Proceedings of the CSEE, 2010, 30(6): 48-56.
    胡家兵, 贺益康, 王宏胜, 等. 不平衡电网电压下双馈感应发电机转子侧变换器的比例-谐振电流控制策略[J]. 中国电机工程学报, 2010, 30(6): 48-56.
    [6]
    Petersson A, Harnefors L, Thiringer T. Comparison between stator flux and grid flux oriented rotor current control of doubly-fed induction generators[C]// 35th Annual IEEE Power Electronics Specialists Conference. Aachen, Germany: IEEE Press, 2004: 482-486.
    [7]
    Mohseni M, Islam S M, Masoum M A S. Enhanced hysteresis-based current regulators in vector control of DFIG wind turbines[J]. IEEE Transactions on Power Electronics, 2011, 26(1): 223-234.
    [8]
    战亮宇. 双馈风力发电系统变流器控制的相关研究[D].北京交通大学, 2012.
    [9]
    Yang S Y, Zhang X,Zhang C W, et al. Speed and position observer of DFIG based on rotor current vector angle deviation[J]. Automation of Electric Power System, 2009, 33(4): 92-95.
    杨淑英, 张兴, 张崇巍, 等. 基于转子电流偏差角的双馈感应电机速度观测[J]. 电力系统自动化, 2009, 33(4): 92-95.
    [10]
    Chen G F,Huang S D,Huang K Y,et al. Experimental evaluation of observation for doubly-fed induction wind power generator[J]. ACTA Energiae Solaris Sinica, 2011, 32(2): 189-192.
    陈国富, 黄守道, 黄科元, 等. 双馈感应风力发电机位置观测的实验评估[J]. 太阳能学报, 2011, 32(2): 189-192.
    [11]
    Hopfensperger B, Atkinson D J, Lakin R A. Stator flux oriented control of a doubly-fed induction machine with and without position encoder[J]. IEE Proceedings of the Electric Power Applications, 2000, 147(4): 241-250.
    [12]
    Huang S, Liao W, Huang K Y. Speed sensorless control of doubly-fed wind generator system[J]. Electric Drive, 2010, 40(3): 3-5.
    黄晟, 廖武, 黄科元. 双馈风力发电系统无速度传感器控制[J]. 电气传动, 2010, 40(3): 3-5.
    [13]
    Abolhassani M, Enjeti P, Toliyat H. Integrated doubly fed electric alternator/active filter (IDEA), a viable power quality solution, for wind energy conversion systems[J]. IEEE Transactions on Energy Conversion, 2008, 23(2): 642-650.
    [14]
    Jain A K, Ranganathan V T. Wound rotor induction generator with sensorless control and integrated active filter for feeding nonlinear loads in a stand-alone grid[J]. IEEE Transactions on Industrial Electronics, 2008, 55(1): 218-228.
    [15]
    Crdenas R, Pena R, Proboste J, Asher G, Clare J. MRAS observer for sensorless control of standalone doubly fed induction generators[J]. IEEE Transactions on Energy Conversion, 2005, 20(4): 710-718.
    [16]
    Crdenas R, Pena, R, Proboste J, Asher G, Clare J. Sensorless control of a doubly- fed induction generator for stand alone operation[C]// 35th Annual IEEE Power Electronics Specialists Conference. Aachen, Germany: IEEE Press, 2004: 3 378-3 383.
    [17]
    Pena R, Crdenas R, Proboste J, et al. Sensorless control of doubly-fed induction generators using a rotor-current-based MRAS observer[J]. IEEE Transactions on Industrial Electronics, 2008, 55(1): 330-339.
    [18]
    Crdenas R, Pena R, Clare J C, et al. MRAS observers for sensorless control of doubly-fed induction generators[J]. IEEE Transactions on Power Electronics, 2008, 23(3): 1 075-1 084.
    [19]
    高乐. 双馈感应风力发电机控制系统关键技术研究[D].湖南大学,2010.
    [20]
    Yang S, Ajjarapu V. A speed-adaptive reduced-order observer for sensorless vector control of doubly fed induction generator-based variable speed wind turbines[J]. IEEE Transactions on Energy Conversion, 2010, 25(3): 891-900.
    [21]
    Yang S, Ajjarapu V. Sensorless Control of the doubly-fed induction generator for wind energy generations using a speed-adaptive full-order flux observer[C]// 24th Annual IEEE Applied Power Electronics Conference and Exposition. Washington, USA: IEEE Press, 2009: 1 951-1 957.
    [22]
    Mwinyiwiwa B, Zhang Y, Shen B, et al. Rotor position phase-locked loop for decoupled P-Q control of DFIG for wind power generation[J]. IEEE Transactions on Energy Conversion, 2009, 24(3): 758-765.
    [23]
    Wang Q L, Zhang C W, Zhang X. Variable structure MRAS speed identification for speed sensorless vector control of induction motor[J].Proceedings of the CSEE,2007,27(15):70-74.
    王庆龙,张崇巍,张兴. 交流电机无速度传感器矢量控制系统变结构模型参考自适应转速辨识[J].中国电机工程学报,2007,27(15):70-74.

    Article Metrics

    Article views (25) PDF downloads(64)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return