ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Original Paper

The progress in exploring the structure and

Cite this:
More Information
  • Corresponding author: ZANG Jian-ye, E-mail: zangjy@ustc.edu.cn
  • Received Date: 28 June 2008
  • Rev Recd Date: 05 July 2008
  • Publish Date: 31 August 2008
  • The discovery of histone demethylase LSD1 is an important progress in the field of epigenetics, indicating that histone lysine methylation is a reversible and dynamic process like other covalent histone modifications such as acetylation, phosphorylation and ubiquitylation.Structural and functional research results demonstrate that LSD1 regulates the activation and silencing of gene transcription and the function of p53. LSD1 plays a significant role in the development of several cancers and is a potential target protein for developing anti-cancer drugs.
    The discovery of histone demethylase LSD1 is an important progress in the field of epigenetics, indicating that histone lysine methylation is a reversible and dynamic process like other covalent histone modifications such as acetylation, phosphorylation and ubiquitylation.Structural and functional research results demonstrate that LSD1 regulates the activation and silencing of gene transcription and the function of p53. LSD1 plays a significant role in the development of several cancers and is a potential target protein for developing anti-cancer drugs.
  • loading
  • [1]
    Kornberg R D, Lorch Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome[J]. Cell,1999,98:285-294.
    [2]
    Martin C, Zhang Y. The diverse functions of histone lysine methylation[J]. Nat Rev Mol Cell Biol,2005,6:838-849.
    [3]
    Mailand N, Bekker-Jensen S, Faustrup H, et al. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins[J]. Cell, 2007,131:887-900.
    [4]
    Kolas N K, Chapman J R, Nakada S, et al. Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase[J]. Science,2007,318:1 637-1 640.
    [5]
    Huen M S, Grant R, Manke I, et al. RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly[J]. Cell,2007,131:901-914.
    [6]
    Wyce A, Xiao T, Whelan K A, et al. H2B ubiquitylation acts as a barrier to Ctk1 nucleosomal recruitment prior to removal by Ubp8 within a SAGA-related complex[J]. Mol Cell,2007,27:275-288.
    [7]
    Volkel P, Angrand P O. The control of histone lysine methylation in epigenetic regulation[J]. Biochimie,2007,89:1-20.
    [8]
    Jenuwein T, Allis C D. Translating the histone code[J]. Science,2001,293:1 074-1 080.
    [9]
    Ruthenburg A J, Li H, Patel D J, et al. Multivalent engagement of chromatin modifications by linked binding modules[J]. Nat Rev Mol Cell Biol, 2007,8:983-994.
    [10]
    Wysocka J, Allis C D, Coonrod S. Histone arginine methylation and its dynamic regulation[J]. Front Biosci, 2006,11:344-355.
    [11]
    Lachner M, OSullivan R J, Jenuwein T. An epigenetic road map for histone lysine methylation[J]. J Cell Sci, 2003,116:2 117-2 124.
    [12]
    Margueron R, Trojer P, Reinberg D. The key to development: Interpreting the histone code[J]. Curr Opin Genet Dev, 2005,15:163-176.
    [13]
    Zhang Y, Reinberg D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails[J]. Genes Dev,2001,15:2 343-2 360.
    [14]
    Santos-Rosa H, Schneider R, Bannister A J, et al. Active genes are tri-methylated at K4 of histone H3[J]. Nature, 2002.419:407-411.
    [15]
    Wysocka J, Swigut T, Xiao H, et al. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling[J]. Nature, 2006,442:86-90.
    [16]
    Shi X, Hong T, Walter K L, et al. ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression[J]. Nature, 2006,442:96-99.
    [17]
    Rea S, Eisenhaber F, OCarroll D, et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases[J]. Nature,2000,406:593-599.
    [18]
    Biel M, Wascholowski V, Giannis A. Epigenetics: An epicenter of gene regulation — histones and histone-modifying enzymes[J]. Angew Chem Int Ed Engl, 2005,44:3 186-3 216.
    [19]
    Shahbazian M D, Grunstein M. Functions of site-specific histone acetylation and deacetylation[J]. Annu Rev Biochem,2007,76:75-100.
    [20]
    Zhang Y. Transcriptional regulation by histone ubiquitination and deubiquitination[J]. Genes Dev, 2003,17:2 733-2 740.
    [21]
    Paik W K, Kim S. Enzymatic demethylation of calf thymus histones[J]. Biochem Biophys Res Commun,1973,51:781-788.
    [22]
    Shi Y, Lan F, Matson C, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1[J]. Cell, 2004,119:941-953.
    [23]
    Shi Y, Whetstine J R. Dynamic regulation of histone lysine methylation by demethylases[J]. Mol Cell,2007,25:1-14.
    [24]
    Klose R J, Zhang Y. Regulation of histone methylation by demethylimination and demethylation[J]. Nat Rev Mol Cell Biol, 2007,8:307-318.
    [25]
    Tong J K, Hassig C A, Schnitzler G R, et al. Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex[J]. Nature, 1998,395:917-921.
    [26]
    Hakimi M A, Dong Y, Lane W S, et al. A candidate X-linked mental retardation gene is a component of a new family of histone deacetylase-containing complexes[J]. J Biol Chem,2003,278:7 234-7 239.
    [27]
    You A, Tong J K, Grozinger C M, et al. CoREST is an integral component of the CoREST- human histone deacetylase complex[J]. Proc Natl Acad Sci U S A,2001,98:1 454-1 458.
    [28]
    Humphrey G W, Wang Y, Russanova V R, et al. Stable histone deacetylase complexes distinguished by the presence of SANT domain proteins CoREST/kiaa0071 and Mta-L1[J]. J Biol Chem, 2001,276:6 817-6 824.
    [29]
    Shi Y, Sawada J, Sui G, et al. Coordinated histone modifications mediated by a CtBP co-repressor complex[J]. Nature, 2003,422:735-738.
    [30]
    Aravind L, Iyer L M. The SWIRM domain: A conserved module found in chromosomal proteins points to novel chromatin-modifying activities[J]. Genome Biol 3, 2002,RESEARCH0039.
    [31]
    Trewick S C, Henshaw T F, Hausinger R P, et al. Oxidative demethylation by Escherichia coli AlkB directly reverts DNA base damage[J]. Nature,2002,419:174-178.
    [32]
    Tsukada Y I, Fang J, Erdjument-Bromage H, et al. Histone demethylation by a family of JmjC domain-containing proteins[J]. Nature,2005.
    [33]
    Fang J, Hogan G J, Liang G, et al. The Saccharomyces cerevisiae histone demethylase Jhd1 fine-tunes the distribution of H3K36Me2[J]. Mol Cell Biol, 2007,27:5 055-5 065.
    [34]
    Tu S, Bulloch E M, Yang L, et al. Identification of histone demethylases in Saccharomyces cerevisiae[J]. J Biol Chem, 2007,282:14 262-14 271.
    [35]
    Yamane K, Toumazou C, Tsukada Y, et al. JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor[J]. Cell, 2006,125:483-495.
    [36]
    Klose R J, Yamane K, Bae Y, et al. The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36[J]. Nature, 2006,442:312-316.
    [37]
    Whetstine J R, Nottke A, Lan F, et al. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases[J]. Cell, 2006,125:467-481.
    [38]
    Klose R J, Gardner K E, Liang G, et al. Demethylation of histone H3K36 and H3K9 by Rph1: A vestige of an H3K9 methylation system in Saccharomyces cerevisiae[J]. Mol Cell Biol,2007,27(11):3 951-3 961.
    [39]
    Liang G, Klose R J, Gardner K E, et al. Yeast Jhd2p is a histone H3 Lys4 trimethyl demethylase[J]. Nat Struct Mol Biol, 2007,14:243-245.
    [40]
    Iwase S, Lan F, Bayliss P, et al. The X-Linked Mental Retardation Gene SMCX/JARID1C Defines a Family of Histone H3 Lysine 4 Demethylases[J]. Cell,2007,128:1 077-1 088.
    [41]
    Christensen J, Agger K, Cloos P A, et al. RBP2 belongs to a family of demethylases, specific for tri-and dimethylated lysine 4 on histone 3[J]. Cell, 2007,128:1 063-1 076.
    [42]
    Secombe J, Li L, Carlos L, et al. The Trithorax group protein Lid is a trimethyl histone H3K4 demethylase required for dMyc-induced cell growth[J]. Genes Dev, 2007,21:537-551;doi: 101101/gad1523007.
    [43]
    Yamane K, Tateishi K, Klose R J, et al. PLU-1 is an H3K4 Demethylase Involved in Transcriptional Repression and Breast Cancer Cell Proliferation[J]. Mol Cell, 2007,25(6):801-812.
    [44]
    Huarte M, Lan F, Kim T, et al. The fission yeast Jmj2 reverses histone H3 Lysine 4 trimethylation[J]. J Biol Chem, 2007,282:21 662-21 670.
    [45]
    Seward D J, Cubberley G, Kim S, et al. Demethylation of trimethylated histone H3 Lys4 in vivo by JARID1 JmjC proteins[J]. Nat Struct Mol Biol, 2007,14:240-242.
    [46]
    Lee N, Zhang J, Klose R J, et al. The trithorax-group protein Lid is a histone H3 trimethyl-Lys4 demethylase[J]. Nat Struct Mol Biol,2007,14:341-343;doi: 101038/nsmb1216.
    [47]
    Smith E R, Lee M G, Winter B, et al. Drosophila UTX is a histone H3 Lys27 demethylase that colocalizes with the elongating form of RNA polymerase II[J]. Mol Cell Biol, 2008,28:1 041-1 046.
    [48]
    Hong S, Cho Y W, Yu L R, et al. Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases[J]. Proc Natl Acad Sci U S A, 2007,104:18 439-18 444.
    [49]
    Lan F, Bayliss P E, Rinn J L, et al. A histone H3 lysine 27 demethylase regulates animal posterior development[J]. Nature, 2007,449:689-694.
    [50]
    Lee M G, Villa R, Trojer P, et al. Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination[J]. Science,2007,318:447-450.
    [51]
    Agger K, Cloos P A, Christensen J, et al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development[J]. Nature, 2007,449:731-734.
    [52]
    Jepsen K, Solum D, Zhou T, et al. SMRT-mediated repression of an H3K27 demethylase in progression from neural stem cell to neuron[J]. Nature, 2007,450:415-419.
    [53]
    Xiang Y, Zhu Z, Han G, et al. JMJD3 is a histone H3K27 demethylase[J]. Cell Res, 2007,17:850-857.
    [54]
    De Santa F, Totaro M G, Prosperini E, et al. The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing[J]. Cell, 2007,130:1 083-1 094.
    [55]
    Culhane J C, Cole P A. LSD1 and the chemistry of histone demethylation[J]. Curr Opin Chem Biol, 2007,11:561-568.
    [56]
    Yang M, Gocke C B, Luo X, et al. Structural basis for CoREST-dependent demethylation of nucleosomes by the human LSD1 histone demethylase[J]. Mol Cell, 2006,23:377-387.
    [57]
    Shi Y J, Matson C, Lan F, et al. Regulation of LSD1 histone demethylase activity by its associated factors[J]. Mol Cell, 2005.19:857-864.
    [58]
    Lee M G, Wynder C, Cooch N, et al. An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation[J]. Nature, 2005,437:432-435.
    [59]
    Metzger E, Wissmann M, Yin N, et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription[J]. Nature, 2005,437:436-439.
    [60]
    Garcia-Bassets I, Kwon Y S, Telese F, et al. Histone methylation-dependent mechanisms impose ligand dependency for gene activation by nuclear receptors[J]. Cell,2007,128:505-518.
    [61]
    Chen W, Obara M, Ishida Y,et al. Characterization of histone lysine-specific demethylase in relation to thyroid hormone-regulated anuran metamorphosis[J]. Dev Growth Differ, 2007,49:325-334.
    [62]
    Lan F, Zaratiegui M, Villen J, et al. S. pombe LSD1 Homologs Regulate Heterochromatin Propagation and Euchromatic Gene Transcription[J]. Mol Cell, 2007,26:89-101.
    [63]
    Gordon M, Holt D G, Panigrahi A, et al. Genome-wide dynamics of SAPHIRE, an essential complex for gene activation and chromatin boundaries[J]. Mol Cell Biol, 2007,27:4 058-4 069.
    [64]
    Opel M, Lando D, Bonilla C, et al. Genome-wide studies of histone demethylation catalysed by the fission yeast homologues of mammalian LSD1[J]. PLoS ONE, 2007,2, e386.
    [65]
    Huang J, Sengupta R, Espejo A B, et al. p53 is regulated by the lysine demethylase LSD1[J]. Nature, 2007,449:105-108.
    [66]
    Forneris F, Binda C, Vanoni M A, et al. Human histone demethylase LSD1 reads the histone code[J]. J Biol Chem, 2005,280:41 360-41 365.
    [67]
    Forneris F, Binda C, Dallaglio A, et al. A highly specific mechanism of histone H3-K4 recognition by histone demethylase LSD1[J]. J Biol Chem, 2006,281(46):35 289-35 295.
    [68]
    Lee M G, Wynder C, Bochar D A, et al. Functional interplay between histone demethylase and deacetylase enzymes[J]. Mol Cell Biol, 2006,26:6 395-6 402.
    [69]
    Guenther M G, Barak O, Lazar M A. The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3[J]. Mol Cell Biol, 2001,21:6 091-6 101.
    [70]
    Zhang Y, Ng H H, Erdjument-Bromage H, et al. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation[J]. Genes Dev,1999,13:1 924-1 935.
    [71]
    Iwase S, Januma A, Miyamoto K, et al. Characterization of BHC80 in BRAF-HDAC complex, involved in neuron-specific gene repression[J]. Biochem Biophys Res Commun, 2004,322:601-608.
    [72]
    Lan F, Collins R E, De Cegli R, et al. Recognition of unmethylated histone H3 lysine 4 links BHC80 to LSD1-mediated gene repression[J]. Nature,2007,448:718-722.
    [73]
    Wissmann M, Yin N, Muller J M, et al. Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression[J]. Nat Cell Biol, 2007,9(3):347-353.
    [74]
    Rudolph T, Yonezawa M, Lein S, et al. Heterochromatin Formation in Drosophila Is Initiated through Active Removal of H3K4 Methylation by the LSD1 Homolog SU(VAR)3-3[J]. Mol Cell, 2007,26:103-115.
    [75]
    Wang J, Scully K, Zhu X, Cai L, et al. Opposing LSD1 complexes function in developmental gene activation and repression programmes[J]. Nature, 2007,446(7 138):882-887.
    [76]
    Zhu Q, Liu C, Ge Z, et al. Lysine-Specific Demethylase 1 (LSD1) Is Required for the Transcriptional Repression of the Telomerase Reverse Transcriptase (hTERT) Gene[J]. PLoS ONE 3, 2008,3(1):e1446.
    [77]
    Stavropoulos P, Blobel G, Hoelz A. Crystal structure and mechanism of human lysine-specific demethylase-1[J]. Nat Struct Mol Biol,2006,13:626-632.
    [78]
    Chen Y, Yang Y, Wang F, et al. Crystal structure of human histone lysine-specific demethylase 1 (LSD1)[J]. Proc Natl Acad Sci U S A,2006,103:13 956-13 961.
    [79]
    Yang M, Culhane J C, Szewczuk L M, et al. Structural basis for the inhibition of the LSD1 histone demethylase by the antidepressant trans-2-phenylcyclopropylamine[J]. Biochemistry,2007,46:8 058-8 065.
    [80]
    Forneris F, Binda C, Adamo A, et al. Structural basis of LSD1-CoREST selectivity in histone H3 recognition[J]. J Biol Chem, 2007,282:20 070-20 074.
    [81]
    Lee M G, Wynder C, Schmidt D M, et al. Histone H3 lysine 4 demethylation is a target of nonselective antidepressive medications[J]. Chem Biol, 2006,13:563-567.
    [82]
    Huang Y, Greene E, Murray Stewart T, et al. Inhibition of lysine-specific demethylase 1 by polyamine analogues results in reexpression of aberrantly silenced genes[J]. Proc Natl Acad Sci U S A,2007,104:8 023-8 028.
    [83]
    Perillo B, Ombra M N, Bertoni A, et al. DNA oxidation as triggered by H3K9Me2 demethylation drives estrogen-induced gene expression[J]. Science, 2008,319:202-206.
  • 加载中

Catalog

    [1]
    Kornberg R D, Lorch Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome[J]. Cell,1999,98:285-294.
    [2]
    Martin C, Zhang Y. The diverse functions of histone lysine methylation[J]. Nat Rev Mol Cell Biol,2005,6:838-849.
    [3]
    Mailand N, Bekker-Jensen S, Faustrup H, et al. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins[J]. Cell, 2007,131:887-900.
    [4]
    Kolas N K, Chapman J R, Nakada S, et al. Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase[J]. Science,2007,318:1 637-1 640.
    [5]
    Huen M S, Grant R, Manke I, et al. RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly[J]. Cell,2007,131:901-914.
    [6]
    Wyce A, Xiao T, Whelan K A, et al. H2B ubiquitylation acts as a barrier to Ctk1 nucleosomal recruitment prior to removal by Ubp8 within a SAGA-related complex[J]. Mol Cell,2007,27:275-288.
    [7]
    Volkel P, Angrand P O. The control of histone lysine methylation in epigenetic regulation[J]. Biochimie,2007,89:1-20.
    [8]
    Jenuwein T, Allis C D. Translating the histone code[J]. Science,2001,293:1 074-1 080.
    [9]
    Ruthenburg A J, Li H, Patel D J, et al. Multivalent engagement of chromatin modifications by linked binding modules[J]. Nat Rev Mol Cell Biol, 2007,8:983-994.
    [10]
    Wysocka J, Allis C D, Coonrod S. Histone arginine methylation and its dynamic regulation[J]. Front Biosci, 2006,11:344-355.
    [11]
    Lachner M, OSullivan R J, Jenuwein T. An epigenetic road map for histone lysine methylation[J]. J Cell Sci, 2003,116:2 117-2 124.
    [12]
    Margueron R, Trojer P, Reinberg D. The key to development: Interpreting the histone code[J]. Curr Opin Genet Dev, 2005,15:163-176.
    [13]
    Zhang Y, Reinberg D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails[J]. Genes Dev,2001,15:2 343-2 360.
    [14]
    Santos-Rosa H, Schneider R, Bannister A J, et al. Active genes are tri-methylated at K4 of histone H3[J]. Nature, 2002.419:407-411.
    [15]
    Wysocka J, Swigut T, Xiao H, et al. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling[J]. Nature, 2006,442:86-90.
    [16]
    Shi X, Hong T, Walter K L, et al. ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression[J]. Nature, 2006,442:96-99.
    [17]
    Rea S, Eisenhaber F, OCarroll D, et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases[J]. Nature,2000,406:593-599.
    [18]
    Biel M, Wascholowski V, Giannis A. Epigenetics: An epicenter of gene regulation — histones and histone-modifying enzymes[J]. Angew Chem Int Ed Engl, 2005,44:3 186-3 216.
    [19]
    Shahbazian M D, Grunstein M. Functions of site-specific histone acetylation and deacetylation[J]. Annu Rev Biochem,2007,76:75-100.
    [20]
    Zhang Y. Transcriptional regulation by histone ubiquitination and deubiquitination[J]. Genes Dev, 2003,17:2 733-2 740.
    [21]
    Paik W K, Kim S. Enzymatic demethylation of calf thymus histones[J]. Biochem Biophys Res Commun,1973,51:781-788.
    [22]
    Shi Y, Lan F, Matson C, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1[J]. Cell, 2004,119:941-953.
    [23]
    Shi Y, Whetstine J R. Dynamic regulation of histone lysine methylation by demethylases[J]. Mol Cell,2007,25:1-14.
    [24]
    Klose R J, Zhang Y. Regulation of histone methylation by demethylimination and demethylation[J]. Nat Rev Mol Cell Biol, 2007,8:307-318.
    [25]
    Tong J K, Hassig C A, Schnitzler G R, et al. Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex[J]. Nature, 1998,395:917-921.
    [26]
    Hakimi M A, Dong Y, Lane W S, et al. A candidate X-linked mental retardation gene is a component of a new family of histone deacetylase-containing complexes[J]. J Biol Chem,2003,278:7 234-7 239.
    [27]
    You A, Tong J K, Grozinger C M, et al. CoREST is an integral component of the CoREST- human histone deacetylase complex[J]. Proc Natl Acad Sci U S A,2001,98:1 454-1 458.
    [28]
    Humphrey G W, Wang Y, Russanova V R, et al. Stable histone deacetylase complexes distinguished by the presence of SANT domain proteins CoREST/kiaa0071 and Mta-L1[J]. J Biol Chem, 2001,276:6 817-6 824.
    [29]
    Shi Y, Sawada J, Sui G, et al. Coordinated histone modifications mediated by a CtBP co-repressor complex[J]. Nature, 2003,422:735-738.
    [30]
    Aravind L, Iyer L M. The SWIRM domain: A conserved module found in chromosomal proteins points to novel chromatin-modifying activities[J]. Genome Biol 3, 2002,RESEARCH0039.
    [31]
    Trewick S C, Henshaw T F, Hausinger R P, et al. Oxidative demethylation by Escherichia coli AlkB directly reverts DNA base damage[J]. Nature,2002,419:174-178.
    [32]
    Tsukada Y I, Fang J, Erdjument-Bromage H, et al. Histone demethylation by a family of JmjC domain-containing proteins[J]. Nature,2005.
    [33]
    Fang J, Hogan G J, Liang G, et al. The Saccharomyces cerevisiae histone demethylase Jhd1 fine-tunes the distribution of H3K36Me2[J]. Mol Cell Biol, 2007,27:5 055-5 065.
    [34]
    Tu S, Bulloch E M, Yang L, et al. Identification of histone demethylases in Saccharomyces cerevisiae[J]. J Biol Chem, 2007,282:14 262-14 271.
    [35]
    Yamane K, Toumazou C, Tsukada Y, et al. JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor[J]. Cell, 2006,125:483-495.
    [36]
    Klose R J, Yamane K, Bae Y, et al. The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36[J]. Nature, 2006,442:312-316.
    [37]
    Whetstine J R, Nottke A, Lan F, et al. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases[J]. Cell, 2006,125:467-481.
    [38]
    Klose R J, Gardner K E, Liang G, et al. Demethylation of histone H3K36 and H3K9 by Rph1: A vestige of an H3K9 methylation system in Saccharomyces cerevisiae[J]. Mol Cell Biol,2007,27(11):3 951-3 961.
    [39]
    Liang G, Klose R J, Gardner K E, et al. Yeast Jhd2p is a histone H3 Lys4 trimethyl demethylase[J]. Nat Struct Mol Biol, 2007,14:243-245.
    [40]
    Iwase S, Lan F, Bayliss P, et al. The X-Linked Mental Retardation Gene SMCX/JARID1C Defines a Family of Histone H3 Lysine 4 Demethylases[J]. Cell,2007,128:1 077-1 088.
    [41]
    Christensen J, Agger K, Cloos P A, et al. RBP2 belongs to a family of demethylases, specific for tri-and dimethylated lysine 4 on histone 3[J]. Cell, 2007,128:1 063-1 076.
    [42]
    Secombe J, Li L, Carlos L, et al. The Trithorax group protein Lid is a trimethyl histone H3K4 demethylase required for dMyc-induced cell growth[J]. Genes Dev, 2007,21:537-551;doi: 101101/gad1523007.
    [43]
    Yamane K, Tateishi K, Klose R J, et al. PLU-1 is an H3K4 Demethylase Involved in Transcriptional Repression and Breast Cancer Cell Proliferation[J]. Mol Cell, 2007,25(6):801-812.
    [44]
    Huarte M, Lan F, Kim T, et al. The fission yeast Jmj2 reverses histone H3 Lysine 4 trimethylation[J]. J Biol Chem, 2007,282:21 662-21 670.
    [45]
    Seward D J, Cubberley G, Kim S, et al. Demethylation of trimethylated histone H3 Lys4 in vivo by JARID1 JmjC proteins[J]. Nat Struct Mol Biol, 2007,14:240-242.
    [46]
    Lee N, Zhang J, Klose R J, et al. The trithorax-group protein Lid is a histone H3 trimethyl-Lys4 demethylase[J]. Nat Struct Mol Biol,2007,14:341-343;doi: 101038/nsmb1216.
    [47]
    Smith E R, Lee M G, Winter B, et al. Drosophila UTX is a histone H3 Lys27 demethylase that colocalizes with the elongating form of RNA polymerase II[J]. Mol Cell Biol, 2008,28:1 041-1 046.
    [48]
    Hong S, Cho Y W, Yu L R, et al. Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases[J]. Proc Natl Acad Sci U S A, 2007,104:18 439-18 444.
    [49]
    Lan F, Bayliss P E, Rinn J L, et al. A histone H3 lysine 27 demethylase regulates animal posterior development[J]. Nature, 2007,449:689-694.
    [50]
    Lee M G, Villa R, Trojer P, et al. Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination[J]. Science,2007,318:447-450.
    [51]
    Agger K, Cloos P A, Christensen J, et al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development[J]. Nature, 2007,449:731-734.
    [52]
    Jepsen K, Solum D, Zhou T, et al. SMRT-mediated repression of an H3K27 demethylase in progression from neural stem cell to neuron[J]. Nature, 2007,450:415-419.
    [53]
    Xiang Y, Zhu Z, Han G, et al. JMJD3 is a histone H3K27 demethylase[J]. Cell Res, 2007,17:850-857.
    [54]
    De Santa F, Totaro M G, Prosperini E, et al. The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing[J]. Cell, 2007,130:1 083-1 094.
    [55]
    Culhane J C, Cole P A. LSD1 and the chemistry of histone demethylation[J]. Curr Opin Chem Biol, 2007,11:561-568.
    [56]
    Yang M, Gocke C B, Luo X, et al. Structural basis for CoREST-dependent demethylation of nucleosomes by the human LSD1 histone demethylase[J]. Mol Cell, 2006,23:377-387.
    [57]
    Shi Y J, Matson C, Lan F, et al. Regulation of LSD1 histone demethylase activity by its associated factors[J]. Mol Cell, 2005.19:857-864.
    [58]
    Lee M G, Wynder C, Cooch N, et al. An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation[J]. Nature, 2005,437:432-435.
    [59]
    Metzger E, Wissmann M, Yin N, et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription[J]. Nature, 2005,437:436-439.
    [60]
    Garcia-Bassets I, Kwon Y S, Telese F, et al. Histone methylation-dependent mechanisms impose ligand dependency for gene activation by nuclear receptors[J]. Cell,2007,128:505-518.
    [61]
    Chen W, Obara M, Ishida Y,et al. Characterization of histone lysine-specific demethylase in relation to thyroid hormone-regulated anuran metamorphosis[J]. Dev Growth Differ, 2007,49:325-334.
    [62]
    Lan F, Zaratiegui M, Villen J, et al. S. pombe LSD1 Homologs Regulate Heterochromatin Propagation and Euchromatic Gene Transcription[J]. Mol Cell, 2007,26:89-101.
    [63]
    Gordon M, Holt D G, Panigrahi A, et al. Genome-wide dynamics of SAPHIRE, an essential complex for gene activation and chromatin boundaries[J]. Mol Cell Biol, 2007,27:4 058-4 069.
    [64]
    Opel M, Lando D, Bonilla C, et al. Genome-wide studies of histone demethylation catalysed by the fission yeast homologues of mammalian LSD1[J]. PLoS ONE, 2007,2, e386.
    [65]
    Huang J, Sengupta R, Espejo A B, et al. p53 is regulated by the lysine demethylase LSD1[J]. Nature, 2007,449:105-108.
    [66]
    Forneris F, Binda C, Vanoni M A, et al. Human histone demethylase LSD1 reads the histone code[J]. J Biol Chem, 2005,280:41 360-41 365.
    [67]
    Forneris F, Binda C, Dallaglio A, et al. A highly specific mechanism of histone H3-K4 recognition by histone demethylase LSD1[J]. J Biol Chem, 2006,281(46):35 289-35 295.
    [68]
    Lee M G, Wynder C, Bochar D A, et al. Functional interplay between histone demethylase and deacetylase enzymes[J]. Mol Cell Biol, 2006,26:6 395-6 402.
    [69]
    Guenther M G, Barak O, Lazar M A. The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3[J]. Mol Cell Biol, 2001,21:6 091-6 101.
    [70]
    Zhang Y, Ng H H, Erdjument-Bromage H, et al. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation[J]. Genes Dev,1999,13:1 924-1 935.
    [71]
    Iwase S, Januma A, Miyamoto K, et al. Characterization of BHC80 in BRAF-HDAC complex, involved in neuron-specific gene repression[J]. Biochem Biophys Res Commun, 2004,322:601-608.
    [72]
    Lan F, Collins R E, De Cegli R, et al. Recognition of unmethylated histone H3 lysine 4 links BHC80 to LSD1-mediated gene repression[J]. Nature,2007,448:718-722.
    [73]
    Wissmann M, Yin N, Muller J M, et al. Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression[J]. Nat Cell Biol, 2007,9(3):347-353.
    [74]
    Rudolph T, Yonezawa M, Lein S, et al. Heterochromatin Formation in Drosophila Is Initiated through Active Removal of H3K4 Methylation by the LSD1 Homolog SU(VAR)3-3[J]. Mol Cell, 2007,26:103-115.
    [75]
    Wang J, Scully K, Zhu X, Cai L, et al. Opposing LSD1 complexes function in developmental gene activation and repression programmes[J]. Nature, 2007,446(7 138):882-887.
    [76]
    Zhu Q, Liu C, Ge Z, et al. Lysine-Specific Demethylase 1 (LSD1) Is Required for the Transcriptional Repression of the Telomerase Reverse Transcriptase (hTERT) Gene[J]. PLoS ONE 3, 2008,3(1):e1446.
    [77]
    Stavropoulos P, Blobel G, Hoelz A. Crystal structure and mechanism of human lysine-specific demethylase-1[J]. Nat Struct Mol Biol,2006,13:626-632.
    [78]
    Chen Y, Yang Y, Wang F, et al. Crystal structure of human histone lysine-specific demethylase 1 (LSD1)[J]. Proc Natl Acad Sci U S A,2006,103:13 956-13 961.
    [79]
    Yang M, Culhane J C, Szewczuk L M, et al. Structural basis for the inhibition of the LSD1 histone demethylase by the antidepressant trans-2-phenylcyclopropylamine[J]. Biochemistry,2007,46:8 058-8 065.
    [80]
    Forneris F, Binda C, Adamo A, et al. Structural basis of LSD1-CoREST selectivity in histone H3 recognition[J]. J Biol Chem, 2007,282:20 070-20 074.
    [81]
    Lee M G, Wynder C, Schmidt D M, et al. Histone H3 lysine 4 demethylation is a target of nonselective antidepressive medications[J]. Chem Biol, 2006,13:563-567.
    [82]
    Huang Y, Greene E, Murray Stewart T, et al. Inhibition of lysine-specific demethylase 1 by polyamine analogues results in reexpression of aberrantly silenced genes[J]. Proc Natl Acad Sci U S A,2007,104:8 023-8 028.
    [83]
    Perillo B, Ombra M N, Bertoni A, et al. DNA oxidation as triggered by H3K9Me2 demethylation drives estrogen-induced gene expression[J]. Science, 2008,319:202-206.

    Article Metrics

    Article views (2649) PDF downloads(830)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return