In this note, we study the Yang–Mills bar connection
A ![](JUSTC-2023-0136_M1.jpg)
, i.e., the curvature of
A ![](JUSTC-2023-0136_M1.jpg)
obeys
\bar\partial_A^\astF_A^0,2 = 0 ![](JUSTC-2023-0136_M3.jpg)
, on a principal
G ![](JUSTC-2023-0136_M4.jpg)
-bundle
P ![](JUSTC-2023-0136_M5.jpg)
over a compact complex manifold
X ![](JUSTC-2023-0136_M6.jpg)
. According to the Koszul–Malgrange criterion, any holomorphic structure on
P ![](JUSTC-2023-0136_M5.jpg)
can be seen as a solution to this equation. Suppose that
G = SU(2) ![](JUSTC-2023-0136_M8.jpg)
or
SO(3) ![](JUSTC-2023-0136_M9.jpg)
and
X ![](JUSTC-2023-0136_M6.jpg)
is a complex surface with
H^1(X,\mathbbZ_2) = 0 ![](JUSTC-2023-0136_M11.jpg)
. We then prove that the
(0,2) ![](JUSTC-2023-0136_M12.jpg)
-part curvature of an irreducible Yang–Mills bar connection vanishes, i.e.,
(P,\bar\partial_A) ![](JUSTC-2023-0136_M13.jpg)
is holomorphic.