[1] |
Reyren N, Thiel S, Caviglia A D, et al. Superconducting interfaces between insulating oxides. Science, 2007, 317: 1196–1199. doi: 10.1126/science.1146006
|
[2] |
Catalan G. Progress in perovskite nickelate research. Phase Transitions, 2008, 81: 729–749. doi: 10.1080/01411590801992463
|
[3] |
Catalan G, Scott J F. Physics and applications of bismuth ferrite. Advanced Materials, 2009, 21: 2463–2485. doi: 10.1002/adma.200802849
|
[4] |
Gao R, Jain A C P, Pandya S, et al. Designing optimal perovskite structure for high ionic conduction. Advanced Materials, 2020, 32: 1905178. doi: 10.1002/adma.201905178
|
[5] |
Salamon M B, Jaime M. The physics of manganites: Structure and transport. Reviews of Modern Physics, 2001, 73: 583–628. doi: 10.1103/RevModPhys.73.583
|
[6] |
Yu P, Chu Y H, Ramesh R. Oxide interfaces: Pathways to novel phenomena. Materials Today, 2012, 15: 320–327. doi: 10.1016/S1369-7021(12)70137-2
|
[7] |
Jung I, Son J. A nonvolatile memory device made of a graphene nanoribbon and a multiferroic BiFeO3 gate dielectric layer. Carbon, 2012, 50: 3854–3858. doi: 10.1016/j.carbon.2012.04.027
|
[8] |
Rajapitamahuni A, Hoffman J, Ahn C H, et al. Examining graphene field effect sensors for ferroelectric thin film studies. Nano Letters, 2013, 13: 4374–4379. doi: 10.1021/nl402204t
|
[9] |
Aghabagheri S, Rasti M, Mohammadizadeh M, et al. High temperature superconducting YBCO microwave filters. Physica C: Superconductivity and Its Applications, 2018, 549: 22–26. doi: 10.1016/j.physc.2018.02.057
|
[10] |
Wang S X, Chapline M G. Room-temperature spin filtering in a CoFe2O4/MgAl2O4/Fe3O4 magnetic tunnel barrier. Physical Review B, 2006, 74 (1): 014418. doi: 10.1103/PhysRevB.74.014418
|
[11] |
Liu W, Wang H. Flexible oxide epitaxial thin films for wearable electronics: Fabrication, physical properties, and applications. Journal of Materiomics, 2020, 6: 385–396. doi: 10.1016/j.jmat.2019.12.006
|
[12] |
Zhou Z, Trassin M, Gao Y, et al. Probing electric field control of magnetism using ferromagnetic resonance. Nature Communica tions, 2015, 6: 6082. doi: 10.1038/ncomms7082
|
[13] |
Zhao S, Li J, Cao D, et al. Recent advancements in flexible and stretchable electrodes for electromechanical sensors: Strategies, materials, and features. ACS Applied Materials & Interfaces, 2017, 9: 12147–12164. doi: 10.1021/acsami.6b13800
|
[14] |
Pesquera D, Fernández A, Khestanova E, et al. Freestanding complex-oxide membranes. Journal of Physics: Condensed Matter, 2022, 34: 383001. doi: 10.1088/1361-648X/ac7dd5
|
[15] |
Nelson C T, Gao P, Jokisaari J R, et al. Domain dynamics during ferroelectric switching. Science, 2011, 334: 968–971. doi: 10.1126/science.1206980
|
[16] |
Zheng H, Wang J, Lofland S E, et al. Multiferroic BaTiO3-CoFe2O4 nanostructures. Science, 2004, 303: 661–663. doi: 10.1126/science.1094207
|
[17] |
Liu J, Feng Y, Tang R, et al. Mechanically tunable magnetic properties of flexible SrRuO3 epitaxial thin films on mica substrates. Advanced Electronic Materials, 2018, 4: 1700522. doi: 10.1002/aelm.201700522
|
[18] |
Jiang J, Bitla Y, Huang C W, et al. Flexible ferroelectric element based on van der Waals heteroepitaxy. Science Advances, 2017, 3: e1700121. doi: 10.1126/sciadv.1700121
|
[19] |
Li Y, Zhou P, Qi Y, et al. All-inorganic flexible high-temperature strain sensor based on SrRuO3/muscovite heteroepitaxy. Journal of the American Ceramic Society, 2022, 105: 2038–2045. doi: 10.1111/jace.18208
|
[20] |
Shen L, Wu L, Sheng Q, et al. Epitaxial lift-off of centimeter-scaled spinel ferrite oxide thin films for flexible electronics. Advanced Materials, 2017, 29: 1702411. doi: 10.1002/adma.201702411
|
[21] |
Pesquera D, Parsonnet E, Qualls A, et al. Beyond substrates: Strain engineering of ferroelectric membranes. Advanced Materials, 2020, 32: 2003780. doi: 10.1002/adma.202003780
|
[22] |
Lu D, Baek D J, Hong S S, et al. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. Nature Materials, 2016, 15: 1255–1260. doi: 10.1038/nmat4749
|
[23] |
Hong S S, Gu M, Verma M, et al. Extreme tensile strain states in La0.7Ca0.3MnO3 membranes. Science, 2020, 368: 71–76. doi: 10.1126/science.aax9753
|
[24] |
Dong G, Li S, Li T, et al. Periodic wrinkle-patterned single-crystalline ferroelectric oxide membranes with enhanced piezoelectricity. Advanced Materials, 2020, 32: 2004477. doi: 10.1002/adma.202004477
|
[25] |
Dubnack O, Müller F A. Oxidic 2D materials. Materials, 2021, 14: 5213. doi: 10.3390/ma14185213
|
[26] |
Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666–669. doi: 10.1126/science.1102896
|
[27] |
Staley N E, Wu J, Eklund P, et al. Electric field effect on superconductivity in atomically thin flakes of NbSe2. Physical Review B, 2009, 80: 184505. doi: 10.1103/PhysRevB.80.184505
|
[28] |
Lake R, Zahid F. Thermoelectric properties of quintuple layer Bi2Te3. Applied Physics Letters, 2010, 97: 212102. doi: 10.1063/1.3518078
|
[29] |
Wang X, You L X, Liu D K, et al. Thin-film-like BSCCO single crystals made by mechanical exfoliation. Physica C Superconductivity, 2012, 474: 13–17. doi: 10.1016/j.physc.2011.12.006
|
[30] |
Zeng M, Xiao Y, Liu J, et al. Exploring two-dimensional materials toward the next-generation circuits: From monomer design to assembly control. Chemical Reviews, 2018, 118: 6236–6296. doi: 10.1021/acs.chemrev.7b00633
|
[31] |
Butler S Z, Hollen S M, Cao L, et al. Progress, challenges, and opportunities in two dimensional materials beyond graphene. ACS Nano, 2013, 7: 2898–2926. doi: 10.1021/nn400280c
|
[32] |
Utama M I B, de la Mata M, Magen C, et al. Twinning-, polytypism-, and polarity-induced morphological modulation in nonplanar nanostructures with van der Waals epitaxy. Advanced Functional Materials, 2013, 23: 1636–1646. doi: 10.1002/adfm.201202027
|
[33] |
Jaegermann W, Klein A, Pettenkofer C. Electronic properties of van der Waals-epitaxy films and interfaces. In: Hughes H P, Starnberg H I, editors. Electron Spectroscopies Applied to Low-Dimensional Materials. Physics and Chemistry of Materials with Low-Dimensional Structures. Dordrecht, Netherlands: Springer, 2000 , 317–402.
|
[34] |
Bitla Y, Chu Y-H. MICAtronics: A new platform for flexible X-tronics. FlatChem, 2017, 3: 26–42. doi: 10.1016/j.flatc.2017.06.003
|
[35] |
Ma C H, Lin J C, Liu H J, et al. Van der Waals epitaxy of functional MoO2 film on mica for flexible electronics. Applied Physics Letters, 2016, 108: 253104. doi: 10.1063/1.4954172
|
[36] |
Liu H J, Wang C K, Su D, et al. Flexible heteroepitaxy of CoFe2O4/muscovite bimorph with large magnetostriction. ACS Applied Materials & Interfaces, 2017, 9: 7297–7304. doi: 10.1021/acsami.6b16485
|
[37] |
Chu Y H. Van der Waals oxide heteroepitaxy. npj Quantum Materials, 2017, 2: 67. doi: 10.1038/s41535-017-0069-9
|
[38] |
Yang C, Han Y, Qian J, et al. Flexible, temperature-stable, and fatigue-endurable PbZr0.52Ti0.48O3 ferroelectric film for nonvolatile memory. Advanced Electronic Materials, 2019, 5: 1900443. doi: 10.1002/aelm.201900443
|
[39] |
Bitla Y, Chen C, Lee H C, et al. Oxide heteroepitaxy for flexible optoelectronics. ACS Applied Materials & Interfaces, 2016, 8: 32401–32407. doi: 10.1021/acsami.6b10631
|
[40] |
Li C I, Lin J C, Liu H J, et al. Van der Waal epitaxy of flexible and transparent VO2 film on muscovite. Chemistry of Materials, 2016, 28: 3914–3919. doi: 10.1021/acs.chemmater.6b01180
|
[41] |
Zhang C, Ding S, Qiao K, et al. Large low-field magnetoresistance (LFMR) effect in free-standing La0.7Sr0.3MnO3 films. ACS Applied Materials & Interfaces, 2021, 13: 28442–28450. doi: 10.1021/acsami.1c03753
|
[42] |
Kum H S, Lee H, Kim S, et al. Heterogeneous integration of single-crystalline complex-oxide membranes. Nature, 2020, 578: 75–81. doi: 10.1038/s41586-020-1939-z
|
[43] |
Kum H, Lee D, Kong W, et al. Epitaxial growth and layer-transfer techniques for heterogeneous integration of materials for electronic and photonic devices. Nature Electronics, 2019, 2: 439–450. doi: 10.1038/s41928-019-0314-2
|
[44] |
Kong W, Li H, Qiao K, et al. Polarity governs atomic interaction through two-dimensional materials. Nature Materials, 2018, 17: 999–1004. doi: 10.1038/s41563-018-0176-4
|
[45] |
Wong W S, Sands T, Cheung N W. Damage-free separation of GaN thin films from sapphire substrates. Applied Physics Letters, 1998, 72: 599–601. doi: 10.1063/1.120816
|
[46] |
Wu P C, Chu Y H. Development of oxide heteroepitaxy for soft technology. Journal of Materials Chemistry C, 2018, 6: 6102–6117. doi: 10.1039/C8TC00959G
|
[47] |
Tsakalakos L, Sands T. Epitaxial ferroelectric (Pb,La)(Zr,Ti)O3 thin films on stainless steel by excimer laser liftoff. Applied Physics Letters, 2000, 76: 227. doi: 10.1063/1.125710
|
[48] |
Jeong C K, Park K I, Son J H, et al. Self-powered fully-flexible light-emitting system enabled by flexible energy harvester. Energy & Environmental Science, 2014, 7: 4035–4043. doi: 10.1039/C4EE02435D
|
[49] |
Lee H S, Chung J, Hwang G T, et al. Flexible inorganic piezoelectric acoustic nanosensors for biomimetic artificial hair cells. Advanced Functional Materials, 2014, 24: 6914–6921. doi: 10.1002/adfm.201402270
|
[50] |
Jeong C K, Cho S B, Han J H, et al. Flexible highly-effective energy harvester via crystallographic and computational control of nanointerfacial morphotropic piezoelectric thin film. Nano Research, 2017, 10: 437–455. doi: 10.1007/s12274-016-1304-6
|
[51] |
Zhang Y, Ma C, Lu X, et al. Recent progress on flexible inorganic single-crystalline functional oxide films for advanced electronics. Materials Horizons, 2019, 6: 911–930. doi: 10.1039/C8MH01598H
|
[52] |
Detchprohm T, Amano H, Hiramatsu K, et al. The growth of thick GaN film on sapphire substrate by using ZnO buffer layer. Journal of Crystal Growth, 1993, 128: 384–390. doi: 10.1016/0022-0248(93)90353-X
|
[53] |
Yablonovitch E, Gmitter T, Harbison J P, et al. Extreme selectivity in the lift-off of epitaxial GaAs films. Applied Physics Letters, 1987, 51: 2222–2224. doi: 10.1063/1.98946
|
[54] |
Paskiewicz D M, Sichel-Tissot R, Karapetrova E, et al. Single-crystalline SrRuO3 nanomembranes: A platform for flexible oxide electronics. Nano Letters, 2016, 16: 534–542. doi: 10.1021/acs.nanolett.5b04176
|
[55] |
Zhang Y, Shen L, Liu M, et al. Flexible quasi-two-dimensional CoFe2O4 epitaxial thin films for continuous strain tuning of magnetic properties. ACS Nano, 2017, 11: 8002–8009. doi: 10.1021/acsnano.7b02637
|
[56] |
Bakaul S R, Serrao C R, Lee M, et al. Single crystal functional oxides on silicon. Nature Communications, 2016, 7: 10547. doi: 10.1038/ncomms10547
|
[57] |
Bakaul S R, Serrao C R, Lee O, et al. High speed epitaxial perovskite memory on flexible substrates. Advanced Materials, 2017, 29: 1605699. doi: 10.1002/adma.201605699
|
[58] |
Gan Q, Rao R A, Eom C B, et al. Direct measurement of strain effects on magnetic and electrical properties of epitaxial SrRuO3 thin films. Applied Physics Letters, 1998, 72: 978–980. doi: 10.1063/1.120603
|
[59] |
Qi Y, Jafferis N T, Lyons K Jr, et al. Piezoelectric ribbons printed onto rubber for flexible energy conversion. Nano Letters, 2010, 10: 524–528. doi: 10.1021/nl903377u
|
[60] |
Qi Y, Kim J, Nguyen T D, et al. Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Letters, 2011, 11: 1331–1336. doi: 10.1021/nl104412b
|
[61] |
Baek D J, Lu D, Hikita Y, et al. Mapping cation diffusion through lattice defects in epitaxial oxide thin films on the water-soluble buffer layer Sr3Al2O6 using atomic resolution electron microscopy. APL Materials, 2017, 5: 096108. doi: 10.1063/1.4994538
|
[62] |
Lu D, Crossley S, Xu R, et al. Freestanding oxide ferroelectric tunnel junction memories transferred onto silicon. Nano Letters, 2019, 19: 3999–4003. doi: 10.1021/acs.nanolett.9b01327
|
[63] |
Luo Z D, Peters J J P, Sanchez A M, et al. Flexible memristors based on single-crystalline ferroelectric tunnel junctions. ACS Applied Materials & Interfaces, 2019, 11: 23313–23319. doi: 10.1021/acsami.9b04738
|
[64] |
Wang H, Shen L, Duan T, et al. Integration of both invariable and tunable microwave magnetisms in a single flexible La0.67Sr0.33MnO3 thin film. ACS Applied Materials & Interfaces, 2019, 11: 22677–22683. doi: 10.1021/acsami.9b04877
|
[65] |
Chen Z, Wang B Y, Goodge B H, et al. Freestanding crystalline YBa2Cu3O7− x heterostructure membranes. Physical Review Materials, 2019, 3: 060801. doi: 10.1103/PhysRevMaterials.3.060801
|
[66] |
Gu K, Katayama T, Yasui S, et al. Simple method to obtain large-size single-crystalline oxide sheets. Advanced Functional Materials, 2020, 30: 2001236. doi: 10.1002/adfm.202001236
|
[67] |
Wang Q, Fang H, Wang D, et al. Towards a large-area freestanding single-crystal ferroelectric BaTiO3 membrane. Crystals, 2020, 10 (9): 733. doi: 10.3390/cryst10090733
|
[68] |
Zhang B, Yun C, MacManus-Driscoll J L. High yield transfer of clean large-area epitaxial oxide thin films. Nano-Micro Letters, 2021, 13: 39. doi: 10.1007/s40820-020-00573-4
|
[69] |
Kim D, Jung W K, Lee S. Single-crystalline-level properties of ultrathin SrRuO3 flexible membranes with wide and clean surface. njp Flexible Electronics, 2022, 6: 24. doi: 10.1038/s41528-022-00155-x
|
[70] |
Hong S S, Yu J H, Lu D, et al. Two-dimensional limit of crystalline order in perovskite membrane films. Science Advances, 2017, 3: eaao5173. doi: 10.1126/sciadv.aao5173
|
[71] |
Ji D, Cai S, Paudel T R, et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature, 2019, 570: 87–90. doi: 10.1038/s41586-019-1255-7
|
[72] |
Singh P, Swartz A, Lu D, et al. Large-area crystalline BaSnO3 membranes with high electron mobilities. ACS Applied Electronic Materials, 2019, 1: 1269–1274. doi: 10.1021/acsaelm.9b00215
|
[73] |
Xu R, Huang J, Barnard E S, et al. Strain-induced room-temperature ferroelectricity in SrTiO3 membranes. Nature Communications, 2020, 11: 3141. doi: 10.1038/s41467-020-16912-3
|
[74] |
Zhang J, Lin T, Wang A, et al. Super-tetragonal Sr4Al2O7 as a sacrificial layer for high-integrity freestanding oxide membranes. Science, 2024, 383: 388–394. doi: 10.1126/science.adi6620
|
[75] |
Li D, Adamo C, Wang B Y, et al. Stabilization of Sr3Al2O6 growth templates for ex situ synthesis of freestanding crystalline oxide membranes. Nano Letters, 2021, 21: 4454–4460. doi: 10.1021/acs.nanolett.1c01194
|
[76] |
Suk J W, Kitt A, Magnuson C W, et al. Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano, 2011, 5: 6916–6924. doi: 10.1021/nn201207c
|
[77] |
Lu Z, Liu J, Feng J, et al. Synthesis of single-crystal La0.67Sr0.33MnO3 freestanding films with different crystal-orientation. APL Materials, 2020, 8: 051105. doi: 10.1063/1.5145029
|
[78] |
Chen X D, Liu Z B, Zheng C Y, et al. High-quality and efficient transfer of large-area graphene films onto different substrates. Carbon, 2013, 56: 271–278. doi: 10.1016/j.carbon.2013.01.011
|
[79] |
Keimer B, Kivelson S A, Norman M R, et al. From quantum matter to high-temperature superconductivity in copper oxides. Nature, 2015, 518: 179–186. doi: 10.1038/nature14165
|
[80] |
Hwang H Y, Iwasa Y, Kawasaki M, et al. Emergent phenomena at oxide interfaces. Nature Materials, 2012, 11: 103–113. doi: 10.1038/nmat3223
|
[81] |
Khan Y, Obaidulla S M, Habib M R, et al. Recent breakthroughs in two-dimensional van der Waals magnetic materials and emerging applications. Nano Today, 2020, 34: 100902. doi: 10.1016/j.nantod.2020.100902
|
[82] |
Harbola V, Crossley S, Hong S S, et al. Strain gradient elasticity in SrTiO3 membranes: Bending versus stretching. Nano Letters, 2021, 21: 2470–2475. doi: 10.1021/acs.nanolett.0c04787
|
[83] |
Davidovikj D, Groenendijk D J, Monteiro A M R V L, et al. Ultrathin complex oxide nanomechanical resonators. Communications Physics, 2020, 3: 163. doi: 10.1038/s42005-020-00433-y
|
[84] |
Dai L, Zhao J, Li J, et al. Highly heterogeneous epitaxy of flexoelectric BaTiO3- δ membrane on Ge. Nature Communications, 2022, 13: 2990. doi: 10.1038/s41467-022-30724-7
|
[85] |
Guo R, You L, Lin W, et al. Continuously controllable photoconductance in freestanding BiFeO3 by the macroscopic flexoelectric effect. Nature Communications, 2020, 11: 2571. doi: 10.1038/s41467-020-16465-5
|
[86] |
Cai S, Lun Y, Ji D, et al. Enhanced polarization and abnormal flexural deformation in bent freestanding perovskite oxides. Nature Communications, 2022, 13: 5116. doi: 10.1038/s41467-022-32519-2
|
[87] |
Huang J, Wang H, Sun X, et al. Multifunctional La0.67Sr0.33MnO3 (LSMO) thin films integrated on mica substrates toward flexible spintronics and electronics. ACS Applied Materials & Interfaces, 2018, 10: 42698–42705. doi: 10.1021/acsami.8b16626
|
[88] |
Dong G, Li S, Yao M, et al. Super-elastic ferroelectric single-crystal membrane with continuous electric dipole rotation. Science, 2019, 366: 475–479. doi: 10.1126/science.aay7221
|
[89] |
Peng B, Peng R C, Zhang Y Q, et al. Phase transition enhanced superior elasticity in freestanding single-crystalline multiferroic BiFeO3 membranes. Science Advances, 2020, 6: eaba5847. doi: 10.1126/sciadv.aba5847
|
[90] |
Jin C, Zhu Y, Li X, et al. Super-flexible freestanding BiMnO3 membranes with stable ferroelectricity and ferromagnetism. Advanced Science, 2021, 8: 2102178. doi: 10.1002/advs.202102178
|
[91] |
An F, Qu K, Zhong G, et al. Highly flexible and twistable freestanding single crystalline magnetite film with robust magnetism. Advanced Functional Materials, 2020, 30: 2003495. doi: 10.1002/adfm.202003495
|
[92] |
Elangovan H, Barzilay M, Seremi S, et al. Giant superelastic piezoelectricity in flexible ferroelectric BaTiO3 membranes. ACS Nano, 2020, 14: 5053–5060. doi: 10.1021/acsnano.0c01615
|
[93] |
Wu P C, Wei C C, Zhong Q, et al. Twisted oxide lateral homostructures with conjunction tunability. Nature Communications, 2022, 13: 2565. doi: 10.1038/s41467-022-30321-8
|
[94] |
Chen S, Zhang Q, Rong D, et al. Braiding lateral morphotropic grain boundaries in homogenetic oxides. Advanced Materials, 2023, 35: 2206961. doi: 10.1002/adma.202206961
|
[95] |
Han L, Addiego C, Prokhorenko S, et al. High-density switchable skyrmion-like polar nanodomains integrated on silicon. Nature, 2022, 603: 63–67. doi: 10.1038/s41586-021-04338-w
|
[96] |
Li Y, Zatterin E, Conroy M, et al. Electrostatically driven polarization flop and strain-induced curvature in free-standing ferroelectric superlattices. Advanced Materials, 2022, 34: 2106826. doi: 10.1002/adma.202106826
|
[97] |
Dubourdieu C, Bruley J, Arruda T M, et al. Erratum: Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode. Nature Nanotechnology, 2013, 8: 881. doi: 10.1038/nnano.2013.226
|
[98] |
Warusawithana M P, Cen C, Sleasman C R, et al. A ferroelectric oxide made directly on silicon. Science, 2009, 324: 367–370. doi: 10.1126/science.1169678
|
[99] |
Yao M, Cheng Y, Zhou Z, et al. Recent progress on the fabrication and applications of flexible ferroelectric devices. Journal of Materials Chemistry C, 2020, 8: 14–27. doi: 10.1039/C9TC04706A
|
[100] |
Yang A J, Han K, Huang K, et al. Van der Waals integration of high-κ perovskite oxides and two-dimensional semiconductors. Nature Electronics, 2022, 5: 233–240. doi: 10.1038/s41928-022-00753-7
|
[101] |
Wang Z, Pan X, He Y, et al. Piezoelectric nanowires in energy harvesting applications. Advances in Materials Science and Engineering, 2015, 2015: 165631. doi: 10.1155/2015/165631
|
[102] |
Wang Z L, Wu W. Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angewandte Chemie International Edition, 2012, 51: 11700–11721. doi: 10.1002/anie.201201656
|
[103] |
Park K I, Son J H, Hwang G T, et al. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Advanced Materials, 2014, 26: 2514–2520. doi: 10.1002/adma.201305659
|
[104] |
Hwang G T, Yang J, Yang S H, et al. A reconfigurable rectified flexible energy harvester via solid-state single crystal grown PMN–PZT. Advanced Energy Materials, 2015, 5: 1500051. doi: 10.1002/aenm.201500051
|
Figure 1. (a) Structural unit of mica. Surface structure of muscovite mica: (b) (001) projection and (c) (100) projection. Reproduced with permission from Ref. [34]. Copyright 2017, Elsevier. (d) Summary of vdW oxide heteroepitaxy. Reproduced with permission from Ref. [37]. Copyright 2017, Springer Nature.
Figure 2. (a) Process schematic for oxide membrane release and transfer. Reproduced with permission from Ref. [71]. Copyright 2019, Springer Nature. (b) Cubic lattice structure of SAO and Al6O1818− rings consisting of AlO4 tetrahedra. Reproduced with permission from Ref. [22]. Copyright 2016, Springer Nature. (c) (Top) Top 1/4 of the SAO unit cell projected onto the (001) plane, dashed circles indicate vacancy sites, and 4×4 unit cells of the STO crystal structure projected onto the (001) plane. Reproduced with permission from Ref. [22]. Copyright 2016, Springer Nature. (Bottom) Schematic illustrating the pseudocubic unit cell of SAO. Reproduced with permission from Ref. [61]. Copyright 2017, American Institute of Physics.
Figure 3. Schematics of four different wet-etching-based methods for fabricating oxide films. Reproduced with permission from Ref. [68]. Copyright 2021, Springer Nature.