ISSN 0253-2778

CN 34-1054/N

open

Temperature-robust diamond magnetometry based on the double-transition method

  • As a promising solid-state sensor at room temperature, diamond magnetometers based on nitrogen-vacancy (NV) centers have been developed tremendously in recent years. Many studies have demonstrated its potential for achieving high spatial resolution and sensitivity. However, the temperature dependence of the zero-field splitting D of NV centers poses an enormous challenge for the application of diamond magnetometry, since it is difficult to avoid temperature drift in most application scenarios. Here, we demonstrate a type of temperature-robust diamond magnetometry based on the double-transition method. By utilizing both transitions between |m_\rms=0\rangle and |m_\rms=\pm1\rangle sublevels with incomplete degeneracy of the |m_\rms=\pm1\ranglestates, the impacts of D variations induced by temperature drift can be counteracted. The drift of magnetic field measurement result has been reduced by approximately 7-fold. With further improvements, the temperature-robust diamond magnetometry has the potential to be applied in biomagnetism and space science research.
  • loading

Catalog

    {{if article.pdfAccess}}
    {{if article.articleBusiness.pdfLink && article.articleBusiness.pdfLink != ''}} {{else}} {{/if}}PDF
    {{/if}}
    XML

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return