[1] |
Lyons T W, Reinhard C T, Planavsky N J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature, 2014, 506 (7488): 307–315. doi: 10.1038/nature13068
|
[2] |
Cole D B, Mills D B, Erwin D H, et al. On the co-evolution of surface oxygen levels and animals. Geobiology, 2020, 18 (3): 260–281. doi: 10.1111/gbi.12382
|
[3] |
Reinhard C T, Planavsky N J, Olson S L, et al. Earth’s oxygen cycle and the evolution of animal life. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113 (32): 8933–8938. doi: 10.1073/pnas.1521544113
|
[4] |
Frei R, Gaucher C, Poulton S W, et al. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature, 2009, 461 (7261): 250–253. doi: 10.1038/nature08266
|
[5] |
Wei W, Klaebe R, Ling H-F, et al. Biogeochemical cycle of chromium isotopes at the modern Earth’s surface and its applications as a paleo-environment proxy. Chemical Geology, 2020, 541: 119570. doi: 10.1016/j.chemgeo.2020.119570
|
[6] |
Qin L, Wang X. Chromium isotope geochemistry. Reviews in Mineralogy and Geochemistry, 2017, 82 (1): 379–414. doi: 10.2138/rmg.2017.82.10
|
[7] |
Comber S, Gardner M. Chromium redox speciation in natural waters. Journal of Environmental Monitoring, 2003, 5 (3): 410–413. doi: 10.1039/b302827e
|
[8] |
Oze C, Bird D K, Fendorf S. Genesis of hexavalent chromium from natural sources in soil and groundwater. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104 (16): 6544–6549. doi: 10.1073/pnas.0701085104
|
[9] |
Daye M, Klepac-Ceraj V, Pajusalu M, et al. Light-driven anaerobic microbial oxidation of manganese. Nature, 2019, 576 (7786): 311–314. doi: 10.1038/s41586-019-1804-0
|
[10] |
Kitchen J W, Johnson T M, Bullen T D, et al. Chromium isotope fractionation factors for reduction of Cr(VI) by aqueous Fe(II) and organic molecules. Geochimica et Cosmochimica Acta, 2012, 89: 190–201. doi: 10.1016/j.gca.2012.04.049
|
[11] |
Pettine M, Millero F J, Passino R. Reduction of chromium(VI) with hydrogen sulfide in NaCl media. Marine Chemistry, 1994, 46 (4): 335–344. doi: 10.1016/0304-4203(94)90030-2
|
[12] |
Jamieson-Hanes J H, Gibson B D, Lindsay M B, et al. Chromium isotope fractionation during reduction of Cr(VI) under saturated flow conditions. Environmental Science & Technology, 2012, 46 (12): 6783–6789. doi: 10.1021/es2042383
|
[13] |
Schoenberg R, Zink S, Staubwasser M, et al. The stable Cr isotope inventory of solid Earth reservoirs determined by double spike MC-ICP-MS. Chemical Geology, 2008, 249 (3-4): 294–306. doi: 10.1016/j.chemgeo.2008.01.009
|
[14] |
Sander S, Koschinsky A. Onboard-ship redox speciation of chromium in diffuse hydrothermal fluids from the North Fiji Basin. Marine Chemistry, 2000, 71 (1): 83–102. doi: 10.1016/S0304-4203(00)00042-6
|
[15] |
Nakayama E, Kuwamoto T, Tsurubo S, et al. Chemical speciation of chromium in sea water: Part 1. Effect of naturally occurring organic materials on the complex formation of chromium(III). Analytica Chimica Acta, 1981, 130 (2): 289–294. doi: 10.1016/S0003-2670(01)93006-5
|
[16] |
McClain C N, Maher K. Chromium fluxes and speciation in ultramafic catchments and global rivers. Chemical Geology, 2016, 426: 135–157. doi: 10.1016/j.chemgeo.2016.01.021
|
[17] |
Sander S G, Koschinsky A. Metal flux from hydrothermal vents increased by organic complexation. Nature Geoscience, 2011, 4 (3): 145–150. doi: 10.1038/ngeo1088
|
[18] |
Crowe S A, Dossing L N, Beukes N J, et al. Atmospheric oxygenation three billion years ago. Nature, 2013, 501 (7468): 535–538. doi: 10.1038/nature12426
|
[19] |
Kraemer D, Frei R, Viehmann S, et al. Mobilization and isotope fractionation of chromium during water-rock interaction in presence of siderophores. Applied Geochemistry, 2019, 102: 44–54. doi: 10.1016/j.apgeochem.2019.01.007
|
[20] |
Saad E M, Wang X, Planavsky N J, et al. Redox-independent chromium isotope fractionation induced by ligand-promoted dissolution. Nature Communications, 2017, 8 (1): 1590. doi: 10.1038/s41467-017-01694-y
|
[21] |
Neaman A, Chorover J, Brantley S L. Implications of the evolution of organic acid moieties for basalt weathering over geological time. American Journal of Science, 2005, 305 (2): 147–185. doi: 10.2475/ajs.305.2.147
|
[22] |
Bau M, Frei R, Garbe-Schönberg D, et al. High-resolution Ge-Si-Fe, Cr isotope and Th-U data for the Neoarchean Temagami BIF, Canada, suggest primary origin of BIF bands and oxidative terrestrial weathering 2.7 Ga ago. Earth and Planetary Science Letters, 2022: 589. doi: 10.1016/j.jpgl.2022.117579
|
[23] |
He X, Chen G, Fang Z, et al. Source identification of chromium in the sediments of the Xiaoqing River and Laizhou Bay: A chromium stable isotope perspective. Environmental Pollution, 2020, 264: 114686. doi: 10.1016/j.envpol.2020.114686
|
[24] |
Fendorf S E, Lamble G M, Stapleton M G, et al. Mechanisms of chromium(III) sorption on silica. 1. Chromium(III) surface structure derived by extended X-ray absorption fine structure spectroscopy. Environmental Science & Technology, 1994, 28 (2): 284–289. doi: 10.1021/es00051a015
|
[25] |
Fang Z, Liu W, Yao T, et al. Experimental study of chromium(III) coprecipitation with calcium carbonate. Geochimica et Cosmochimica Acta, 2022, 322: 94–108. doi: 10.1016/j.gca.2022.01.019
|
[26] |
Garcia-Sanchez A, Alvarez-Ayuso E. Sorption of Zn, Cd and Cr on calcite. Application to purification of industrial wastewaters. Minerals Engineering, 2002, 15 (7): 539–547. doi: 10.1016/S0892-6875(02)00072-9
|
[27] |
Hao W, Chen N, Sun W, et al. Binding and transport of Cr(III) by clay minerals during the Great Oxidation Event. Earth and Planetary Science Letters, 2022, 584: 117503. doi: 10.1016/j.jpgl.2022.117503
|
[28] |
Charlet L, Manceau A A. X-ray absorption spectroscopic study of the sorption of Cr(III) at the oxide-water interface: II. Adsorption, coprecipitation, and surface precipitation on hydrous ferric oxide. Journal of Colloid and Interface Science, 1992, 148 (2): 443–458. doi: 10.1016/0021-9797(92)90182-L
|
[29] |
Gardea-Torresdey J, Dokken K, Tiemann K, et al. Infrared and X-ray absorption spectroscopic studies on the mechanism of chromium(III) binding to alfalfa biomass. Microchemical Journal, 2002, 71 (2): 157–166. doi: 10.1016/S0026-265X(02)00007-3
|
[30] |
Ellis A S, Johnson T M, Bullen T D. Using chromium stable isotope ratios to quantify Cr(VI) reduction: lack of sorption effects. Environmental Science & Technology, 2004, 38 (13): 3604–3607. doi: 10.1021/es0352294
|
[31] |
Liu Z, Gao Z, Wang Y, et al. Effect of conversion of upland into paddy field on content of carbon in soil aggregates along soil profile of red soil in critical red soil zone. Acta Pedologica Sinica, 2019, 56 (6): 1526–1535. doi: 10.11766/trxb201806200338
|
[32] |
Fitts J P, Brown G E, Parks G A. Structural evolution of Cr(III) polymeric species at the γ-Al2O3/water interface. Environmental Science & Technology, 2000, 34 (24): 5122–5128. doi: 10.1021/es9914285
|
[33] |
Cui W, Zhang X, Pearce C I, et al. Cr(III) Adsorption by cluster formation on boehmite nanoplates in highly alkaline solution. Environmental Science & Technology, 2019, 53 (18): 11043–11055. doi: 10.1021/acs.est.9b02693
|
[34] |
Lindqvist-Reis P, Munoz-Paez A, Díaz-Moreno S, et al. The structure of the hydrated gallium(III), indium(III), and chromium(III) ions in aqueous solution. A large angle X-ray scattering and EXAFS study. Inorganic Chemistry, 1998, 37 (26): 6675–6683. doi: 10.1021/ic980750y
|
[35] |
Wang X, Johnson T M, Ellis A S. Equilibrium isotopic fractionation and isotopic exchange kinetics between Cr(III) and Cr(VI). Geochimica et Cosmochimica Acta, 2015, 153: 72–90. doi: 10.1016/j.gca.2015.01.003
|
[36] |
Frei R, Gaucher C, Døssing L N, et al. Chromium isotopes in carbonates: A tracer for climate change and for reconstructing the redox state of ancient seawater. Earth and Planetary Science Letters, 2011, 312 (1-2): 114–125. doi: 10.1016/j.jpgl.2011.10.009
|
[37] |
Bonnand P, James R H, Parkinson I J, et al. The chromium isotopic composition of seawater and marine carbonates. Earth and Planetary Science Letters, 2013, 382: 10–20. doi: 10.1016/j.jpgl.2013.09.001
|
[38] |
Frei R, Gaucher C, Stolper D, et al. Fluctuations in late Neoproterozoic atmospheric oxidation: Cr isotope chemostratigraphy and iron speciation of the late Ediacaran lower Arroyo del Soldado Group (Uruguay). Gondwana Research, 2013, 23 (2): 797–811. doi: 10.1016/j.gr.2012.06.004
|
[39] |
Frei R, Polat A. Chromium isotope fractionation during oxidative weathering—Implications from the study of a Paleoproterozoic (ca. 1.9 Ga) paleosol, Schreiber Beach, Ontario, Canada. Precambrian Research, 2013, 224: 434–453. doi: 10.1016/j.precamres.2012.10.008
|
[40] |
Wille M, Nebel O, Van Kranendonk M J, et al. Mo-Cr isotope evidence for a reducing Archean atmosphere in 3.46–2.76 Ga black shales from the Pilbara, Western Australia. Chemical Geology, 2013, 340: 68–76. doi: 10.1016/j.chemgeo.2012.12.018
|
[41] |
Planavsky N J, Reinhard C T, Wang X, et al. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science, 2014, 346 (6209): 635–638. doi: 10.1126/science.1258410
|
[42] |
Reinhard C T, Planavsky N J, Wang X, et al. The isotopic composition of authigenic chromium in anoxic marine sediments: A case study from the Cariaco Basin. Earth and Planetary Science Letters, 2014, 407: 9–18. doi: 10.1016/j.jpgl.2014.09.024
|
[43] |
Sial A N, Campos M S, Gaucher C, et al. Algoma-type Neoproterozoic BIFs and related marbles in the Seridó Belt (NE Brazil): REE, C, O, Cr and Sr isotope evidence. Journal of South American Earth Sciences, 2015, 61: 33–52. doi: 10.1016/j.jsames.2015.04.001
|
[44] |
Cole D B, Reinhard C T, Wang X, et al. A shale-hosted Cr isotope record of low atmospheric oxygen during the Proterozoic. Geology, 2016, 44: 555–558. doi: 10.1130/G37787.1
|
[45] |
Frei R, Crowe S A, Bau M, et al. Oxidative elemental cycling under the low O2 Eoarchean atmosphere. Sci. Rep., 2016, 6: 21058. doi: 10.1038/srep21058
|
[46] |
Gilleaudeau G J, Frei R, Kaufman A J, et al. Oxygenation of the mid-Proterozoic atmosphere: Clues from chromium isotopes in carbonates. Geochemical Perspectives Letters, 2016, 2: 178–187. doi: 10.7185/geochemlet.1618
|
[47] |
Gueguen B, Reinhard C T, Algeo T J, et al. The chromium isotope composition of reducing and oxic marine sediments. Geochimica et Cosmochimica Acta, 2016, 184: 1–19. doi: 10.1016/j.gca.2016.04.004
|
[48] |
Holmden C, Jacobson A D, Sageman B B, et al. Response of the Cr isotope proxy to Cretaceous Ocean Anoxic Event 2 in a pelagic carbonate succession from the Western Interior Seaway. Geochimica et Cosmochimica Acta, 2016, 186: 277–295. doi: 10.1016/j.gca.2016.04.039
|
[49] |
Lehmann B, Frei R, Xu L, et al. Early Cambrian black shale-hosted Mo-Ni and V mineralization on the rifted margin of the Yangtze Platform, China: Reconnaissance chromium isotope data and a refined metallogenic model. Economic Geology, 2016, 111 (1): 89–103. doi: 10.2113/econgeo.111.1.89
|
[50] |
Rodler A S, Frei R, Gaucher C, et al. Chromium isotope, REE and redox-sensitive trace element chemostratigraphy across the late Neoproterozoic Ghaub glaciation, Otavi Group, Namibia. Precambrian Research, 2016, 286: 234–249. doi: 10.1016/j.precamres.2016.10.007
|
[51] |
Rodler A S, Hohl S V, Guo Q, et al. Chromium isotope stratigraphy of Ediacaran cap dolostones, Doushantuo Formation, South China. Chemical Geology, 2016, 436: 24–34. doi: 10.1016/j.chemgeo.2016.05.001
|
[52] |
Wang X, Reinhard C T, Planavsky N J, et al. Sedimentary chromium isotopic compositions across the Cretaceous OAE2 at Demerara Rise Site 1258. Chemical Geology, 2016, 429: 85–92. doi: 10.1016/j.chemgeo.2016.03.006
|
[53] |
D'Arcy J, Gilleaudeau G J, Peralta S, et al. Redox fluctuations in the Early Ordovician oceans: An insight from chromium stable isotopes. Chemical Geology, 2017, 448: 1–12. doi: 10.1016/j.chemgeo.2016.10.012
|
[54] |
Frei R, Døssing L N, Gaucher C, et al. Extensive oxidative weathering in the aftermath of a late Neoproterozoic glaciation: Evidence from trace element and chromium isotope records in the Urucum district (Jacadigo Group) and Puga iron formations (Mato Grosso do Sul, Brazil). Gondwana Research, 2017, 49: 1–20. doi: 10.1016/j.gr.2017.05.003
|
[55] |
Rodler A S, Frei R, Gaucher C, et al. Multiproxy isotope constraints on ocean compositional changes across the late Neoproterozoic Ghaub glaciation, Otavi Group, Namibia. Precambrian Research, 2017, 298: 306–324. doi: 10.1016/j.precamres.2017.05.006
|
[56] |
Teixeira N L, Caxito F A, Rosière C A, et al. Trace elements and isotope geochemistry (C, O, Fe, Cr) of the Cauê iron formation, Quadrilátero Ferrífero, Brazil: Evidence for widespread microbial dissimilatory iron reduction at the Archean/Paleoproterozoic transition. Precambrian Research, 2017, 298: 39–55. doi: 10.1016/j.precamres.2017.05.009
|
[57] |
Canfield D E, Zhang S, Frank A B, et al. Highly fractionated chromium isotopes in Mesoproterozoic-aged shales and atmospheric oxygen. Nature Communications, 2018, 9 (1): 2871. doi: 10.1038/s41467-018-05263-9
|
[58] |
Caxito F A, Frei R, Uhlein G J, et al. Multiproxy geochemical and isotope stratigraphy records of a Neoproterozoic Oxygenation Event in the Ediacaran Sete Lagoas cap carbonate, Bambuí Group, Brazil. Chemical Geology, 2018, 481: 119–132. doi: 10.1016/j.chemgeo.2018.02.007
|
[59] |
Gilleaudeau G J, Voegelin A R, Thibault N, et al. Stable isotope records across the Cretaceous-Paleogene transition, Stevns Klint, Denmark: New insights from the chromium isotope system. Geochimica et Cosmochimica Acta, 2018, 235: 305–332. doi: 10.1016/j.gca.2018.04.028
|
[60] |
Huang J, Liu J, Zhang Y, et al. Cr isotopic composition of the Laobao cherts during the Ediacaran–Cambrian transition in South China. Chemical Geology, 2018, 482: 121–130. doi: 10.1016/j.chemgeo.2018.02.011
|
[61] |
Wei W, Frei R, Gilleaudeau G J, et al. Oxygenation variations in the atmosphere and shallow seawaters of the Yangtze Platform during the Ediacaran Period: Clues from Cr-isotope and Ce-anomaly in carbonates. Precambrian Research, 2018, 313: 78–90. doi: 10.1016/j.precamres.2018.05.009
|
[62] |
Wei W, Frei R, Klaebe R, et al. Redox condition in the Nanhua Basin during the waning of the Sturtian glaciation: A chromium-isotope perspective. Precambrian Research, 2018, 319: 198–210. doi: 10.1016/j.precamres.2018.02.009
|
[63] |
Ackerman L, Pašava J, Šípková A, et al. Copper, zinc, chromium and osmium isotopic compositions of the Teplá-Barrandian unit black shales and implications for the composition and oxygenation of the Neoproterozoic-Cambrian ocean. Chemical Geology, 2019, 521: 59–75. doi: 10.1016/j.chemgeo.2019.05.013
|
[64] |
Frank A B, Klaebe R M, Xu L, et al. Redox fluctuations during the Ediacaran-Cambrian transition, Nanhua Basin, South China: Insights from Cr isotope and REE+Y data. Chemical Geology, 2019, 525: 321–333. doi: 10.1016/j.chemgeo.2019.07.031
|
[65] |
Xu L, Frank A B, Lehmann B, et al. Subtle Cr isotope signals track the variably anoxic Cryogenian interglacial period with voluminous manganese accumulation and decrease in biodiversity. Sci. Rep., 2019, 9 (1): 15056. doi: 10.1038/s41598-019-51495-0
|
[66] |
Bruggmann S, Rodler A S, Klaebe R M, et al. Chromium isotope systematics in modern and ancient microbialites. Minerals, 2020, 10 (10): 928. doi: 10.3390/min10100928
|
[67] |
Frei R, Lehmann B, Xu L, et al. Surface water oxygenation and bioproductivity: A link provided by combined chromium and cadmium isotopes in Early Cambrian metalliferous black shales (Nanhua Basin, South China). Chemical Geology, 2020, 552: 119785. doi: 10.1016/j.chemgeo.2020.119785
|
[68] |
Uhlein G J, Caxito F A, Frei R, et al. Microbially induced chromium isotope fractionation and trace elements behavior in lower Cambrian microbialites from the Jaíba Member, Bambuí Basin, Brazil. Gebiology, 2021, 19 (2): 125–146. doi: 10.1111/gbi.12426
|
[69] |
Wei W, Frei R, Gilleaudeau G J, et al. Variations of redox conditions in the atmosphere and Yangtze Platform during the Ediacaran-Cambrian transition: Constraints from Cr isotopes and Ce anomalies. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 543: 109598. doi: 10.1016/j.palaeo.2020.109598
|
[70] |
Bauer K W, Bottini C, Frei R, et al. Pulsed volcanism and rapid oceanic deoxygenation during Oceanic Anoxic Event 1a. Geology, 2021, 49 (12): 1452–1456. doi: 10.1130/G49065.1
|
[71] |
Fang Z, He X, Zhang G, et al. Ocean redox changes from the latest Permian to Early Triassic recorded by chromium isotopes. Earth and Planetary Science Letters, 2021, 570: 117050. doi: 10.1016/j.jpgl.2021.117050
|
[72] |
Fang Z, Qin L, Liu W, et al. Absence of hexavalent chromium in marine carbonates: implications for chromium isotopes as paleoenvironment proxy. National Science Review, 2021, 8 (3): nwaa090. doi: 10.1093/nsr/nwaa090
|
[73] |
Frank A B, Klaebe R M, Xu L, et al. Constraining shallow seawater oxygenation for the Yangtze Platform during the early Cambrian. Paleoceanography and Paleoclimatology, 2021, 36 (7): e2021PA004282. doi: 10.1029/2021PA004282
|
[74] |
Frei R, Xu L, Frederiksen J A, et al. Signals of combined chromium-cadmium isotopes in basin waters of the Early Cambrian: Results from the Maoshi and Zhijin sections, Yangtze Platform, South China. Chemical Geology, 2021, 563: 120061. doi: 10.1016/j.chemgeo.2021.120061
|
[75] |
Klaebe R, Swart P, Frei R. Chromium isotope heterogeneity on a modern carbonate platform. Chemical Geology, 2021, 573: 120227. doi: 10.1016/j.chemgeo.2021.120227
|
[76] |
Usma C D, Sial A N, Ferreira V P, et al. Ediacaran banded iron formations and carbonates of the Cachoeirinha Group of NE Brazil: Paleoenvironment and paleoredox conditions. Journal of South American Earth Sciences, 2021, 109: 103282. doi: 10.1016/j.jsames.2021.103282
|
[77] |
Wang C, Reinhard C T, Rybacki K S, et al. Chromium isotope systematics and the diagenesis of marine carbonates. Earth and Planetary Science Letters, 2021, 562: 116824. doi: 10.1016/j.jpgl.2021.116824
|
[78] |
Wei W, Frei R, Klaebe R, et al. A transient swing to higher oxygen levels in the atmosphere and oceans at ~1.4 Ga. Precambrian Research, 2021, 354: 106058. doi: 10.1016/j.precamres.2020.106058
|
[79] |
Mänd K, Planavsky N J, Porter S M, et al. Chromium evidence for protracted oxygenation during the Paleoproterozoic. Earth and Planetary Science Letters, 2022, 584: 117501. doi: 10.1016/j.jpgl.2022.117501
|
[80] |
Xu D, Wang X, Zhu J-M, et al. Chromium isotope evidence for oxygenation events in the Ediacaran ocean. Geochimica et Cosmochimica Acta, 2022, 323: 258–275. doi: 10.1016/j.gca.2022.02.019
|
Figure
1.
Schematic of non-redox Cr cycling. Stage I: Liberation of Cr(III) in the terrestrial silicate reservoir induced by biogenic organic ligands, acid or
Figure 4. Cr isotope compositions of remaining Cr in solution versus the fraction of Cr adsorbed during Cr(III) adsorption experiments by soil (green symbols) and river sediments (blue symbols). Squares represent results from flow-through experiments, and circles represent results from bottle-incubation experiments. The gray solid line denotes the Cr isotope composition of the initial solution, and the gray dashed lines denote the measurement uncertainty (2SD). The yellow lines are the modelling results for isotope fractionation using the Rayleigh fractionation model with different isotope fractionation factors α, and the violet lines are the calculation results assuming equilibrium fractionation.
Figure 5. (a) Compilation of Cr isotope compositions of sedimentary rocks throughout Earth history from the literature[4, 18, 22, 36–80]. The gray band indicates the range for igneous reservoir[13]. (b) Boxplot of the Cr isotope data at 100 million-year intervals. The box comprises the 25th and 75th percentiles, the black square in the box denotes the mean value, the line in the box represents the median value, the whiskers are the 2.5th and 97.5th percentiles, and the hollow dots are outliers.
[1] |
Lyons T W, Reinhard C T, Planavsky N J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature, 2014, 506 (7488): 307–315. doi: 10.1038/nature13068
|
[2] |
Cole D B, Mills D B, Erwin D H, et al. On the co-evolution of surface oxygen levels and animals. Geobiology, 2020, 18 (3): 260–281. doi: 10.1111/gbi.12382
|
[3] |
Reinhard C T, Planavsky N J, Olson S L, et al. Earth’s oxygen cycle and the evolution of animal life. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113 (32): 8933–8938. doi: 10.1073/pnas.1521544113
|
[4] |
Frei R, Gaucher C, Poulton S W, et al. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature, 2009, 461 (7261): 250–253. doi: 10.1038/nature08266
|
[5] |
Wei W, Klaebe R, Ling H-F, et al. Biogeochemical cycle of chromium isotopes at the modern Earth’s surface and its applications as a paleo-environment proxy. Chemical Geology, 2020, 541: 119570. doi: 10.1016/j.chemgeo.2020.119570
|
[6] |
Qin L, Wang X. Chromium isotope geochemistry. Reviews in Mineralogy and Geochemistry, 2017, 82 (1): 379–414. doi: 10.2138/rmg.2017.82.10
|
[7] |
Comber S, Gardner M. Chromium redox speciation in natural waters. Journal of Environmental Monitoring, 2003, 5 (3): 410–413. doi: 10.1039/b302827e
|
[8] |
Oze C, Bird D K, Fendorf S. Genesis of hexavalent chromium from natural sources in soil and groundwater. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104 (16): 6544–6549. doi: 10.1073/pnas.0701085104
|
[9] |
Daye M, Klepac-Ceraj V, Pajusalu M, et al. Light-driven anaerobic microbial oxidation of manganese. Nature, 2019, 576 (7786): 311–314. doi: 10.1038/s41586-019-1804-0
|
[10] |
Kitchen J W, Johnson T M, Bullen T D, et al. Chromium isotope fractionation factors for reduction of Cr(VI) by aqueous Fe(II) and organic molecules. Geochimica et Cosmochimica Acta, 2012, 89: 190–201. doi: 10.1016/j.gca.2012.04.049
|
[11] |
Pettine M, Millero F J, Passino R. Reduction of chromium(VI) with hydrogen sulfide in NaCl media. Marine Chemistry, 1994, 46 (4): 335–344. doi: 10.1016/0304-4203(94)90030-2
|
[12] |
Jamieson-Hanes J H, Gibson B D, Lindsay M B, et al. Chromium isotope fractionation during reduction of Cr(VI) under saturated flow conditions. Environmental Science & Technology, 2012, 46 (12): 6783–6789. doi: 10.1021/es2042383
|
[13] |
Schoenberg R, Zink S, Staubwasser M, et al. The stable Cr isotope inventory of solid Earth reservoirs determined by double spike MC-ICP-MS. Chemical Geology, 2008, 249 (3-4): 294–306. doi: 10.1016/j.chemgeo.2008.01.009
|
[14] |
Sander S, Koschinsky A. Onboard-ship redox speciation of chromium in diffuse hydrothermal fluids from the North Fiji Basin. Marine Chemistry, 2000, 71 (1): 83–102. doi: 10.1016/S0304-4203(00)00042-6
|
[15] |
Nakayama E, Kuwamoto T, Tsurubo S, et al. Chemical speciation of chromium in sea water: Part 1. Effect of naturally occurring organic materials on the complex formation of chromium(III). Analytica Chimica Acta, 1981, 130 (2): 289–294. doi: 10.1016/S0003-2670(01)93006-5
|
[16] |
McClain C N, Maher K. Chromium fluxes and speciation in ultramafic catchments and global rivers. Chemical Geology, 2016, 426: 135–157. doi: 10.1016/j.chemgeo.2016.01.021
|
[17] |
Sander S G, Koschinsky A. Metal flux from hydrothermal vents increased by organic complexation. Nature Geoscience, 2011, 4 (3): 145–150. doi: 10.1038/ngeo1088
|
[18] |
Crowe S A, Dossing L N, Beukes N J, et al. Atmospheric oxygenation three billion years ago. Nature, 2013, 501 (7468): 535–538. doi: 10.1038/nature12426
|
[19] |
Kraemer D, Frei R, Viehmann S, et al. Mobilization and isotope fractionation of chromium during water-rock interaction in presence of siderophores. Applied Geochemistry, 2019, 102: 44–54. doi: 10.1016/j.apgeochem.2019.01.007
|
[20] |
Saad E M, Wang X, Planavsky N J, et al. Redox-independent chromium isotope fractionation induced by ligand-promoted dissolution. Nature Communications, 2017, 8 (1): 1590. doi: 10.1038/s41467-017-01694-y
|
[21] |
Neaman A, Chorover J, Brantley S L. Implications of the evolution of organic acid moieties for basalt weathering over geological time. American Journal of Science, 2005, 305 (2): 147–185. doi: 10.2475/ajs.305.2.147
|
[22] |
Bau M, Frei R, Garbe-Schönberg D, et al. High-resolution Ge-Si-Fe, Cr isotope and Th-U data for the Neoarchean Temagami BIF, Canada, suggest primary origin of BIF bands and oxidative terrestrial weathering 2.7 Ga ago. Earth and Planetary Science Letters, 2022: 589. doi: 10.1016/j.jpgl.2022.117579
|
[23] |
He X, Chen G, Fang Z, et al. Source identification of chromium in the sediments of the Xiaoqing River and Laizhou Bay: A chromium stable isotope perspective. Environmental Pollution, 2020, 264: 114686. doi: 10.1016/j.envpol.2020.114686
|
[24] |
Fendorf S E, Lamble G M, Stapleton M G, et al. Mechanisms of chromium(III) sorption on silica. 1. Chromium(III) surface structure derived by extended X-ray absorption fine structure spectroscopy. Environmental Science & Technology, 1994, 28 (2): 284–289. doi: 10.1021/es00051a015
|
[25] |
Fang Z, Liu W, Yao T, et al. Experimental study of chromium(III) coprecipitation with calcium carbonate. Geochimica et Cosmochimica Acta, 2022, 322: 94–108. doi: 10.1016/j.gca.2022.01.019
|
[26] |
Garcia-Sanchez A, Alvarez-Ayuso E. Sorption of Zn, Cd and Cr on calcite. Application to purification of industrial wastewaters. Minerals Engineering, 2002, 15 (7): 539–547. doi: 10.1016/S0892-6875(02)00072-9
|
[27] |
Hao W, Chen N, Sun W, et al. Binding and transport of Cr(III) by clay minerals during the Great Oxidation Event. Earth and Planetary Science Letters, 2022, 584: 117503. doi: 10.1016/j.jpgl.2022.117503
|
[28] |
Charlet L, Manceau A A. X-ray absorption spectroscopic study of the sorption of Cr(III) at the oxide-water interface: II. Adsorption, coprecipitation, and surface precipitation on hydrous ferric oxide. Journal of Colloid and Interface Science, 1992, 148 (2): 443–458. doi: 10.1016/0021-9797(92)90182-L
|
[29] |
Gardea-Torresdey J, Dokken K, Tiemann K, et al. Infrared and X-ray absorption spectroscopic studies on the mechanism of chromium(III) binding to alfalfa biomass. Microchemical Journal, 2002, 71 (2): 157–166. doi: 10.1016/S0026-265X(02)00007-3
|
[30] |
Ellis A S, Johnson T M, Bullen T D. Using chromium stable isotope ratios to quantify Cr(VI) reduction: lack of sorption effects. Environmental Science & Technology, 2004, 38 (13): 3604–3607. doi: 10.1021/es0352294
|
[31] |
Liu Z, Gao Z, Wang Y, et al. Effect of conversion of upland into paddy field on content of carbon in soil aggregates along soil profile of red soil in critical red soil zone. Acta Pedologica Sinica, 2019, 56 (6): 1526–1535. doi: 10.11766/trxb201806200338
|
[32] |
Fitts J P, Brown G E, Parks G A. Structural evolution of Cr(III) polymeric species at the γ-Al2O3/water interface. Environmental Science & Technology, 2000, 34 (24): 5122–5128. doi: 10.1021/es9914285
|
[33] |
Cui W, Zhang X, Pearce C I, et al. Cr(III) Adsorption by cluster formation on boehmite nanoplates in highly alkaline solution. Environmental Science & Technology, 2019, 53 (18): 11043–11055. doi: 10.1021/acs.est.9b02693
|
[34] |
Lindqvist-Reis P, Munoz-Paez A, Díaz-Moreno S, et al. The structure of the hydrated gallium(III), indium(III), and chromium(III) ions in aqueous solution. A large angle X-ray scattering and EXAFS study. Inorganic Chemistry, 1998, 37 (26): 6675–6683. doi: 10.1021/ic980750y
|
[35] |
Wang X, Johnson T M, Ellis A S. Equilibrium isotopic fractionation and isotopic exchange kinetics between Cr(III) and Cr(VI). Geochimica et Cosmochimica Acta, 2015, 153: 72–90. doi: 10.1016/j.gca.2015.01.003
|
[36] |
Frei R, Gaucher C, Døssing L N, et al. Chromium isotopes in carbonates: A tracer for climate change and for reconstructing the redox state of ancient seawater. Earth and Planetary Science Letters, 2011, 312 (1-2): 114–125. doi: 10.1016/j.jpgl.2011.10.009
|
[37] |
Bonnand P, James R H, Parkinson I J, et al. The chromium isotopic composition of seawater and marine carbonates. Earth and Planetary Science Letters, 2013, 382: 10–20. doi: 10.1016/j.jpgl.2013.09.001
|
[38] |
Frei R, Gaucher C, Stolper D, et al. Fluctuations in late Neoproterozoic atmospheric oxidation: Cr isotope chemostratigraphy and iron speciation of the late Ediacaran lower Arroyo del Soldado Group (Uruguay). Gondwana Research, 2013, 23 (2): 797–811. doi: 10.1016/j.gr.2012.06.004
|
[39] |
Frei R, Polat A. Chromium isotope fractionation during oxidative weathering—Implications from the study of a Paleoproterozoic (ca. 1.9 Ga) paleosol, Schreiber Beach, Ontario, Canada. Precambrian Research, 2013, 224: 434–453. doi: 10.1016/j.precamres.2012.10.008
|
[40] |
Wille M, Nebel O, Van Kranendonk M J, et al. Mo-Cr isotope evidence for a reducing Archean atmosphere in 3.46–2.76 Ga black shales from the Pilbara, Western Australia. Chemical Geology, 2013, 340: 68–76. doi: 10.1016/j.chemgeo.2012.12.018
|
[41] |
Planavsky N J, Reinhard C T, Wang X, et al. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science, 2014, 346 (6209): 635–638. doi: 10.1126/science.1258410
|
[42] |
Reinhard C T, Planavsky N J, Wang X, et al. The isotopic composition of authigenic chromium in anoxic marine sediments: A case study from the Cariaco Basin. Earth and Planetary Science Letters, 2014, 407: 9–18. doi: 10.1016/j.jpgl.2014.09.024
|
[43] |
Sial A N, Campos M S, Gaucher C, et al. Algoma-type Neoproterozoic BIFs and related marbles in the Seridó Belt (NE Brazil): REE, C, O, Cr and Sr isotope evidence. Journal of South American Earth Sciences, 2015, 61: 33–52. doi: 10.1016/j.jsames.2015.04.001
|
[44] |
Cole D B, Reinhard C T, Wang X, et al. A shale-hosted Cr isotope record of low atmospheric oxygen during the Proterozoic. Geology, 2016, 44: 555–558. doi: 10.1130/G37787.1
|
[45] |
Frei R, Crowe S A, Bau M, et al. Oxidative elemental cycling under the low O2 Eoarchean atmosphere. Sci. Rep., 2016, 6: 21058. doi: 10.1038/srep21058
|
[46] |
Gilleaudeau G J, Frei R, Kaufman A J, et al. Oxygenation of the mid-Proterozoic atmosphere: Clues from chromium isotopes in carbonates. Geochemical Perspectives Letters, 2016, 2: 178–187. doi: 10.7185/geochemlet.1618
|
[47] |
Gueguen B, Reinhard C T, Algeo T J, et al. The chromium isotope composition of reducing and oxic marine sediments. Geochimica et Cosmochimica Acta, 2016, 184: 1–19. doi: 10.1016/j.gca.2016.04.004
|
[48] |
Holmden C, Jacobson A D, Sageman B B, et al. Response of the Cr isotope proxy to Cretaceous Ocean Anoxic Event 2 in a pelagic carbonate succession from the Western Interior Seaway. Geochimica et Cosmochimica Acta, 2016, 186: 277–295. doi: 10.1016/j.gca.2016.04.039
|
[49] |
Lehmann B, Frei R, Xu L, et al. Early Cambrian black shale-hosted Mo-Ni and V mineralization on the rifted margin of the Yangtze Platform, China: Reconnaissance chromium isotope data and a refined metallogenic model. Economic Geology, 2016, 111 (1): 89–103. doi: 10.2113/econgeo.111.1.89
|
[50] |
Rodler A S, Frei R, Gaucher C, et al. Chromium isotope, REE and redox-sensitive trace element chemostratigraphy across the late Neoproterozoic Ghaub glaciation, Otavi Group, Namibia. Precambrian Research, 2016, 286: 234–249. doi: 10.1016/j.precamres.2016.10.007
|
[51] |
Rodler A S, Hohl S V, Guo Q, et al. Chromium isotope stratigraphy of Ediacaran cap dolostones, Doushantuo Formation, South China. Chemical Geology, 2016, 436: 24–34. doi: 10.1016/j.chemgeo.2016.05.001
|
[52] |
Wang X, Reinhard C T, Planavsky N J, et al. Sedimentary chromium isotopic compositions across the Cretaceous OAE2 at Demerara Rise Site 1258. Chemical Geology, 2016, 429: 85–92. doi: 10.1016/j.chemgeo.2016.03.006
|
[53] |
D'Arcy J, Gilleaudeau G J, Peralta S, et al. Redox fluctuations in the Early Ordovician oceans: An insight from chromium stable isotopes. Chemical Geology, 2017, 448: 1–12. doi: 10.1016/j.chemgeo.2016.10.012
|
[54] |
Frei R, Døssing L N, Gaucher C, et al. Extensive oxidative weathering in the aftermath of a late Neoproterozoic glaciation: Evidence from trace element and chromium isotope records in the Urucum district (Jacadigo Group) and Puga iron formations (Mato Grosso do Sul, Brazil). Gondwana Research, 2017, 49: 1–20. doi: 10.1016/j.gr.2017.05.003
|
[55] |
Rodler A S, Frei R, Gaucher C, et al. Multiproxy isotope constraints on ocean compositional changes across the late Neoproterozoic Ghaub glaciation, Otavi Group, Namibia. Precambrian Research, 2017, 298: 306–324. doi: 10.1016/j.precamres.2017.05.006
|
[56] |
Teixeira N L, Caxito F A, Rosière C A, et al. Trace elements and isotope geochemistry (C, O, Fe, Cr) of the Cauê iron formation, Quadrilátero Ferrífero, Brazil: Evidence for widespread microbial dissimilatory iron reduction at the Archean/Paleoproterozoic transition. Precambrian Research, 2017, 298: 39–55. doi: 10.1016/j.precamres.2017.05.009
|
[57] |
Canfield D E, Zhang S, Frank A B, et al. Highly fractionated chromium isotopes in Mesoproterozoic-aged shales and atmospheric oxygen. Nature Communications, 2018, 9 (1): 2871. doi: 10.1038/s41467-018-05263-9
|
[58] |
Caxito F A, Frei R, Uhlein G J, et al. Multiproxy geochemical and isotope stratigraphy records of a Neoproterozoic Oxygenation Event in the Ediacaran Sete Lagoas cap carbonate, Bambuí Group, Brazil. Chemical Geology, 2018, 481: 119–132. doi: 10.1016/j.chemgeo.2018.02.007
|
[59] |
Gilleaudeau G J, Voegelin A R, Thibault N, et al. Stable isotope records across the Cretaceous-Paleogene transition, Stevns Klint, Denmark: New insights from the chromium isotope system. Geochimica et Cosmochimica Acta, 2018, 235: 305–332. doi: 10.1016/j.gca.2018.04.028
|
[60] |
Huang J, Liu J, Zhang Y, et al. Cr isotopic composition of the Laobao cherts during the Ediacaran–Cambrian transition in South China. Chemical Geology, 2018, 482: 121–130. doi: 10.1016/j.chemgeo.2018.02.011
|
[61] |
Wei W, Frei R, Gilleaudeau G J, et al. Oxygenation variations in the atmosphere and shallow seawaters of the Yangtze Platform during the Ediacaran Period: Clues from Cr-isotope and Ce-anomaly in carbonates. Precambrian Research, 2018, 313: 78–90. doi: 10.1016/j.precamres.2018.05.009
|
[62] |
Wei W, Frei R, Klaebe R, et al. Redox condition in the Nanhua Basin during the waning of the Sturtian glaciation: A chromium-isotope perspective. Precambrian Research, 2018, 319: 198–210. doi: 10.1016/j.precamres.2018.02.009
|
[63] |
Ackerman L, Pašava J, Šípková A, et al. Copper, zinc, chromium and osmium isotopic compositions of the Teplá-Barrandian unit black shales and implications for the composition and oxygenation of the Neoproterozoic-Cambrian ocean. Chemical Geology, 2019, 521: 59–75. doi: 10.1016/j.chemgeo.2019.05.013
|
[64] |
Frank A B, Klaebe R M, Xu L, et al. Redox fluctuations during the Ediacaran-Cambrian transition, Nanhua Basin, South China: Insights from Cr isotope and REE+Y data. Chemical Geology, 2019, 525: 321–333. doi: 10.1016/j.chemgeo.2019.07.031
|
[65] |
Xu L, Frank A B, Lehmann B, et al. Subtle Cr isotope signals track the variably anoxic Cryogenian interglacial period with voluminous manganese accumulation and decrease in biodiversity. Sci. Rep., 2019, 9 (1): 15056. doi: 10.1038/s41598-019-51495-0
|
[66] |
Bruggmann S, Rodler A S, Klaebe R M, et al. Chromium isotope systematics in modern and ancient microbialites. Minerals, 2020, 10 (10): 928. doi: 10.3390/min10100928
|
[67] |
Frei R, Lehmann B, Xu L, et al. Surface water oxygenation and bioproductivity: A link provided by combined chromium and cadmium isotopes in Early Cambrian metalliferous black shales (Nanhua Basin, South China). Chemical Geology, 2020, 552: 119785. doi: 10.1016/j.chemgeo.2020.119785
|
[68] |
Uhlein G J, Caxito F A, Frei R, et al. Microbially induced chromium isotope fractionation and trace elements behavior in lower Cambrian microbialites from the Jaíba Member, Bambuí Basin, Brazil. Gebiology, 2021, 19 (2): 125–146. doi: 10.1111/gbi.12426
|
[69] |
Wei W, Frei R, Gilleaudeau G J, et al. Variations of redox conditions in the atmosphere and Yangtze Platform during the Ediacaran-Cambrian transition: Constraints from Cr isotopes and Ce anomalies. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 543: 109598. doi: 10.1016/j.palaeo.2020.109598
|
[70] |
Bauer K W, Bottini C, Frei R, et al. Pulsed volcanism and rapid oceanic deoxygenation during Oceanic Anoxic Event 1a. Geology, 2021, 49 (12): 1452–1456. doi: 10.1130/G49065.1
|
[71] |
Fang Z, He X, Zhang G, et al. Ocean redox changes from the latest Permian to Early Triassic recorded by chromium isotopes. Earth and Planetary Science Letters, 2021, 570: 117050. doi: 10.1016/j.jpgl.2021.117050
|
[72] |
Fang Z, Qin L, Liu W, et al. Absence of hexavalent chromium in marine carbonates: implications for chromium isotopes as paleoenvironment proxy. National Science Review, 2021, 8 (3): nwaa090. doi: 10.1093/nsr/nwaa090
|
[73] |
Frank A B, Klaebe R M, Xu L, et al. Constraining shallow seawater oxygenation for the Yangtze Platform during the early Cambrian. Paleoceanography and Paleoclimatology, 2021, 36 (7): e2021PA004282. doi: 10.1029/2021PA004282
|
[74] |
Frei R, Xu L, Frederiksen J A, et al. Signals of combined chromium-cadmium isotopes in basin waters of the Early Cambrian: Results from the Maoshi and Zhijin sections, Yangtze Platform, South China. Chemical Geology, 2021, 563: 120061. doi: 10.1016/j.chemgeo.2021.120061
|
[75] |
Klaebe R, Swart P, Frei R. Chromium isotope heterogeneity on a modern carbonate platform. Chemical Geology, 2021, 573: 120227. doi: 10.1016/j.chemgeo.2021.120227
|
[76] |
Usma C D, Sial A N, Ferreira V P, et al. Ediacaran banded iron formations and carbonates of the Cachoeirinha Group of NE Brazil: Paleoenvironment and paleoredox conditions. Journal of South American Earth Sciences, 2021, 109: 103282. doi: 10.1016/j.jsames.2021.103282
|
[77] |
Wang C, Reinhard C T, Rybacki K S, et al. Chromium isotope systematics and the diagenesis of marine carbonates. Earth and Planetary Science Letters, 2021, 562: 116824. doi: 10.1016/j.jpgl.2021.116824
|
[78] |
Wei W, Frei R, Klaebe R, et al. A transient swing to higher oxygen levels in the atmosphere and oceans at ~1.4 Ga. Precambrian Research, 2021, 354: 106058. doi: 10.1016/j.precamres.2020.106058
|
[79] |
Mänd K, Planavsky N J, Porter S M, et al. Chromium evidence for protracted oxygenation during the Paleoproterozoic. Earth and Planetary Science Letters, 2022, 584: 117501. doi: 10.1016/j.jpgl.2022.117501
|
[80] |
Xu D, Wang X, Zhu J-M, et al. Chromium isotope evidence for oxygenation events in the Ediacaran ocean. Geochimica et Cosmochimica Acta, 2022, 323: 258–275. doi: 10.1016/j.gca.2022.02.019
|