[1] |
Braun-Munzinger P, Stachel J. The quest for the quark-gluon plasma. Nature, 2007, 448: 302–309. doi: 10.1038/nature06080
|
[2] |
Matsui T, Satz H. J/ψ suppression by quark-gluon plasma formation. Physics Letters B, 1986, 178 (4): 416–422. doi: 10.1016/0370-2693(86)91404-8
|
[3] |
Yan L, Zhuang P F, Xu N. J/ψ production in quark-gluon plasma. Physical Review Letters, 2006, 97: 232301. doi: 10.1103/PhysRevLett.97.232301
|
[4] |
Ferreiro E G, Fleuret F, Lansberg J P, et al. Cold nuclear matter effects on J/ψ production: Intrinsic and extrinsic transverse momentum effects. Physics Letters B, 2009, 680 (1): 50–55. doi: 10.1016/j.physletb.2009.07.076
|
[5] |
Adamczyk L, Adkins J K, Agakishiev G, et al. (STAR Collaboration). Energy dependence of J/ψ production in Au+Au collisions at
|
[6] |
van Hees H, Rapp R. Dilepton radiation at the CERN super-proton synchrotron. Nuclear Physics A, 2008, 806: 339–387. doi: 10.1016/j.nuclphysa.2008.03.009
|
[7] |
Rapp R. Dilepton spectroscopy of QCD matter at collider energies. Advances in High Energy Physics, 2013, 2013: 148253. doi: 10.1155/2013/148253
|
[8] |
Krauss F, Greiner M, Soff G. Photon and gluon induced processes in relativistic heavy-ion collisions. Progress in Particle and Nuclear Physics, 1997, 39: 503–564. doi: 10.1016/S0146-6410(97)00049-5
|
[9] |
Fermi E. Über die Theorie des Stoßes zwischen Atomen und elektrisch geladenen Teilchen. Zeitschrift für Physik, 1924, 29: 315–327. doi: 10.1007/BF03184853
|
[10] |
Weizsäcker C F V. Ausstrahlung bei Stößen sehr schneller Elektronen. Zeitschrift für Physik, 1934, 88: 612–625. doi: 10.1007/BF01333110
|
[11] |
Adler C, Ahammed Z, Allgower C, et al. (STAR Collaboration). Coherent
|
[12] |
Adam J, et al. (ALICE Collaboration). Measurement of an excess in the yield of J/ψ at very low
|
[13] |
Adam J, Adamczyk L, Adams J R, et al. (STAR Collaboration). Observation of excess J/ψ yield at very low transverse momenta in Au+Au collisions at
|
[14] |
Adam J, Adamczyk L, Adams J R, et al. (STAR Collaboration). Low-
|
[15] |
Aaboud M, Aad G, Abbott B, et al. (ATLAS Collaboration). Observation of centrality-dependent acoplanarity for muon pairs produced via two-photon scattering in Pb+Pb collisions at
|
[16] |
Guzey V, Zhalov M. Exclusive J/ψ production in ultraperipheral collisions at the LHC: Constraints on the gluon distributions in the proton and nuclei. Journal of High Energy Physics, 2013, 2013: 207. doi: 10.1007/JHEP10(2013)207
|
[17] |
The ALICE Collaboration, Aamodt K, Quintana A A, et al. (ALICE Collaboration). The ALICE experiment at the CERN LHC. Journal of Instrumentation, 2008, 3: S08002. doi: https://doi.org/10.1088/1748-0221/3/08/s08002
|
[18] |
Abelev B, Abramyan A, Adam J, et al. (ALICE Collaboration). Performance of the ALICE experiment at the CERN LHC. International Journal of Modern Physics A, 2014, 29: 1430044. doi: https://doi.org/10.1142/S0217751X14300440
|
[19] |
Klein S R, Nystrand J, Seger J, et al. STARlight: A Monte Carlo simulation program for ultra-peripheral collisions of relativistic ions. Computer Physics Communications, 2017, 212: 258–268. doi: 10.1016/j.cpc.2016.10.016
|
[20] |
Liu Y P, Qu Z, Xu N, et al. J/ψ transverse momentum distribution in high energy nuclear collisions. Physics Letters B, 2009, 678 (1): 72–76. doi: https://doi.org/10.1016/j.physletb.2009.06.006
|
[21] |
Zhao X B, Rapp R. Charmonium in medium: From correlators to experiment. Physical Review C, 2010, 82: 064905. doi: https://doi.org/10.1103/PhysRevC.82.064905
|
[22] |
Abelev B, et al. (ALICE Collaboration). Coherent J/ψ photoproduction in ultra-peripheral Pb–Pb collisions at
|
[23] |
Shi W, Zha W, Chen B Y. Charmonium coherent photoproduction and hadroproduction with effects of quark gluon plasma. Physics Letters B, 2018, 777: 399–405. doi: 10.1016/j.physletb.2017.12.055
|
[24] |
Miller M L, Reygers K, Sanders S J, et al. Glauber modeling in high-energy nuclear collisions. Annual Review of Nuclear and Particle Science, 2007, 57: 205–243. doi: doi:10.1146/annurev.nucl.57.090506.123020
|
[25] |
Tanabashi M, et al. (Particle Data Group). Review of particle physics. Physical Review D, 2018, 98: 030001. doi: 10.1103/PhysRevD.98.030001
|
[26] |
Bertulani C A, Klein S R, Nystrand J. Physics of ultra-peripheral nuclear collisions. Annual Review of Nuclear and Particle Science, 2005, 55: 271–310. doi: 10.1146/annurev.nucl.55.090704.151526
|
[27] |
Zha W, Huang B C, Ma R R, et al. Systematic study of the experimental measurements on J/ψ cross sections and kinematic distributions in p+p collisions at different energies. Physical Review C, 2016, 93: 024919. doi: 10.1103/PhysRevC.93.024919
|
[28] |
Zha W M, Klein S R, Ma R, et al. Coherent J/ψ photoproduction in hadronic heavy-ion collisions. Physical Review C, 2018, 97: 044910. doi: 10.1103/PhysRevC.97.044910
|
[29] |
Bauer T H, Spital R D, Yennie D R, et al. The hadronic properties of the photon in high-energy interactions. Review of Modern Physics, 1978, 50: 261. doi: 10.1103/RevModPhys.50.261
|
[30] |
Zha W, Ruan L, Tang Z, et al. Coherent photo-produced J/ψ and dielectron yields in isobaric collisions. Physics Letters B, 2019, 789: 238–242. doi: 10.1016/j.physletb.2018.12.041
|
[31] |
Jönsson C. Elektroneninterferenzen an mehreren künstlich hergestellten Feinspalten. Zeitschrift für Physik, 1961, 161(4): 454–474. doi: 10.1007/BF01342460
|
[32] |
Zeilinger A, Gähler R, C. G. Shull, et al. Single- and double-slit diffraction of neutrons. Review of Modern Physics, 1988, 60: 1067. doi: https://doi.org/10.1103/RevModPhys.60.1067
|
[33] |
Carnal O, Mlynek J. Young’s double-slit experiment with atoms: A simple atom interferometer. Physical Review Letters, 1991, 66: 2689. doi: 10.1103/PhysRevLett.66.2689
|
[34] |
Arndt M, Nairz O, Vos-Andreae J, et al. Wave–particle duality of C60 molecules. Nature, 1999, 401: 680–682. doi: 10.1038/44348
|
[35] |
Hackermüller L, Uttenthaler S, Hornberger K, et al. Wave nature of biomolecules and fluorofullerenes. Physical Review Letters, 2003, 91: 090408. doi: 10.1103/PhysRevLett.91.090408
|
[36] |
Zha W, Ruan L, Tang Z, et al. Double-slit experiment at Fermi scale: Coherent photoproduction in heavy-ion collisions. Physical Review C, 2019, 99: 061901. doi: 10.1103/PhysRevC.99.061901
|
[37] |
Barrett R C, Jackson D F. Nuclear Sizes and Structure. Oxford, UK: Oxford University Press, 1977.
|
[38] |
Matsui T, Satz H. J/ψ suppression by quark-gluon plasma formation. Physics Letters B, 1986, 178 (4): 416–422. doi: 10.1016/0370-2693(86)91404-8
|
[39] |
Chen B Y. Detailed rapidity dependence of J/ψ production at energies available at the Large Hadron Collider. Physical Review C, 2016, 93: 054905. doi: 10.1103/PhysRevC.93.054905
|
[40] |
Zha W, Ruan L, Tang Z, et al. Coherent lepton pair production in hadronic heavy ion collisions. Physics Letters B, 2018, 781: 182–186. doi: 10.1016/j.physletb.2018.04.006
|
[41] |
Inghirami G, Del Zanna L, Beraudo A, et al. Numerical magneto-hydrodynamics for relativistic nuclear collisions. The European Physical Journal C, 2016, 76 (12): 659. doi: 10.1140/epjc/s10052-016-4516-8
|
[42] |
Asakawa M, Majumder A, Muller B. Electric charge separation in strong transient magnetic fields. Physical Review C, 2010, 81: 064912. doi: 10.1103/PhysRevC.81.064912
|
[43] |
Kharzeev D E, Warringa H J. Chiral magnetic conductivity. Physical Review D, 2009, 80: 034028. doi: 10.1103/PhysRevD.80.034028
|
[44] |
The ATLAS Collaboration1, Aad G, Abat E, et al. (ATLAS Collaboration). The ATLAS experiment at the CERN Large Hadron Collider. Journal of Instrumentation, 2008, 3: S08003. doi: 10.1088/1748-0221/3/08/s08003
|
[45] |
ATLAS Collaboration, Aad G, Abbott B, et al. (ATLAS Collaboration). Measurement of the muon reconstruction performance of the ATLAS detector using 2011 and 2012 LHC proton-proton collision data. The European Physical Journal C, 2014, 74: 3130. doi: 10.1140/epjc/s10052-014-3130-x
|
[46] |
ATLAS Collaboration, Aad G, Abbott B, et al. (ATLAS Collaboration). Muon reconstruction performance of the ATLAS detector in proton–proton collision data at
|
[47] |
Zha W, Brandenburg J D, Tang Z, et al. Initial transverse-momentum broadening of Breit-Wheeler process in relativistic heavy-ion collisions. Physics Letters B, 2020, 800: 135089. doi: 10.1016/j.physletb.2019.135089
|
[48] |
Vidović M, Greiner M, Best C, et al. Impact-parameter dependence of the electromagnetic particle production in ultrarelativistic heavy-ion collisions. Physical Review C, 1993, 47: 2308. doi: 10.1103/PhysRevC.47.2308
|
[49] |
Hencken K, Trautmann D, Baur G. Impact-parameter dependence of the total probability for electromagnetic electron-positron pair production in relativistic heavy-ion collisions. Physical Review A, 1995, 51: 1874. doi: 10.1103/PhysRevA.51.1874
|
[50] |
Alscher A, Hencken K, Trautmann D, et al. Multiple electromagnetic electron-positron pair production in relativistic heavy-ion collisions. Physical Review A, 1997, 55: 396. doi: 10.1103/PhysRevA.55.396
|
[51] |
Adams J, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration). Production of
|
[52] |
Abelev B, et al. (ALICE Collaboration). J/ψ suppression at forward rapidity in Pb-Pb collisions at
|
[53] |
Abelev B I, et al. (STAR Collaboration).
|
[54] |
PHENIX Collaboration, S.Afanasiev S, Aidalag C, et al. (PHENIX Collaboration). Photoproduction of J/ψ and of high mass
|
[55] |
The ALICE Collaboration, Abbas E, Abelev B, et al. (ALICE Collaboration). Charmonium and
|
[56] |
Khachatryan V, Sirunyan A M, Tumasyan A, et al. (CMS Collaboration). Coherent J/ψ photoproduction in ultra-peripheral Pb-Pb collisions at
|
[57] |
Abelevbv B, Adamal J, Adamová D, et al. (ALICE Collaboration). Centrality, rapidity and transverse momentum dependence of J/ψ suppression in Pb-Pb collisions at
|
[58] |
Klein S R. Two-photon production of dilepton pairs in peripheral heavy ion collisions. Physical Review C, 2018, 97: 054903. doi: 10.1103/PhysRevC.97.054903
|
Figure
1.
Raw OS dimuon
Figure
2.
J/ψ
Figure
3.
J/ψ inclusive nuclear modification factor as a function of the number of participants
Figure
4.
J/ψ inclusive nuclear modification factor as a function of the number of participants
Figure
5.
J/ψ invariant yields for Au + Au collisions at
Figure
6.
J/ψ
Figure
7.
The
Figure
8.
Coherent J/ψ production yields as a function of
Figure
9.
Amplitude and momentum distribution patterns of coherent J/ψ photoproduction in different scenarios for b = 10 fm in Au + Au collisions at
Figure
10.
Amplitude and momentum distribution patterns of coherent J/ψ photoproduction at midrapidity (y = 0) in Au + Au collisions at
Figure
11.
Schematic diagram for different charmonium production mechanisms at different transverse momentum regions in semi-central nucleus–nucleus collisions in the presence of both QGP and strong transverse electromagnetic fields. Photoproduction, regeneration, and initial production dominate the J/ψ final yields in extremely low
Figure
12.
Charmonium hadroproduction and photoproduction as a function of the number of participants
Figure 13. Charmonium prompt nuclear modification factor as a function of transverse momentum for impact parameter b = 10.2 fm in the forward rapidity 2.5 < y < 4 in LHC 2.76 TeV Pb + Pb collisions. Figure taken from Ref. [23].
Figure
14.
(a) Centrality dependence of
Figure
15.
Figure
16.
Centrality dependence of integrated excess yields in the mass regions 0.4–0.76,0.76–1.2,1.2–2.6 GeV/
Figure
17.
(a)–(c) Distributions of excess yields within the STAR acceptance for the different mass regions in 60%–80% Au + Au and U + U collisions. (d) Corresponding
Figure
18.
Background-subtracted distributions for α (upper row) and A (lower row) in Pb + Pb collisions at
Figure
19.
Results of fits to the muon pair α distributions using the sum of Gaussian and background functions. A standard Gaussian function is shown as a solid curve whilst the dotted curve shows a Gaussian function in α convolved with the measured
Figure
20.
Figure
21.
Differential pair mass spectrum
Figure 22. Mass spectrum of electron pairs for different centrality classes. The mass distributions are compared to hadronic cocktail simulations without the ρ contribution in-medium ρ mass spectrum and QGP thermal radiation. Figure taken from Ref. [40].
Figure
23.
Invariant mass spectrum of
Figure
24.
Figure
25.
Figure
26.
Distributions of the broadening variable α obtained from the gEPA1, gEPA2, and QED approaches for muon pairs in Pb + Pb collisions at
[1] |
Braun-Munzinger P, Stachel J. The quest for the quark-gluon plasma. Nature, 2007, 448: 302–309. doi: 10.1038/nature06080
|
[2] |
Matsui T, Satz H. J/ψ suppression by quark-gluon plasma formation. Physics Letters B, 1986, 178 (4): 416–422. doi: 10.1016/0370-2693(86)91404-8
|
[3] |
Yan L, Zhuang P F, Xu N. J/ψ production in quark-gluon plasma. Physical Review Letters, 2006, 97: 232301. doi: 10.1103/PhysRevLett.97.232301
|
[4] |
Ferreiro E G, Fleuret F, Lansberg J P, et al. Cold nuclear matter effects on J/ψ production: Intrinsic and extrinsic transverse momentum effects. Physics Letters B, 2009, 680 (1): 50–55. doi: 10.1016/j.physletb.2009.07.076
|
[5] |
Adamczyk L, Adkins J K, Agakishiev G, et al. (STAR Collaboration). Energy dependence of J/ψ production in Au+Au collisions at
|
[6] |
van Hees H, Rapp R. Dilepton radiation at the CERN super-proton synchrotron. Nuclear Physics A, 2008, 806: 339–387. doi: 10.1016/j.nuclphysa.2008.03.009
|
[7] |
Rapp R. Dilepton spectroscopy of QCD matter at collider energies. Advances in High Energy Physics, 2013, 2013: 148253. doi: 10.1155/2013/148253
|
[8] |
Krauss F, Greiner M, Soff G. Photon and gluon induced processes in relativistic heavy-ion collisions. Progress in Particle and Nuclear Physics, 1997, 39: 503–564. doi: 10.1016/S0146-6410(97)00049-5
|
[9] |
Fermi E. Über die Theorie des Stoßes zwischen Atomen und elektrisch geladenen Teilchen. Zeitschrift für Physik, 1924, 29: 315–327. doi: 10.1007/BF03184853
|
[10] |
Weizsäcker C F V. Ausstrahlung bei Stößen sehr schneller Elektronen. Zeitschrift für Physik, 1934, 88: 612–625. doi: 10.1007/BF01333110
|
[11] |
Adler C, Ahammed Z, Allgower C, et al. (STAR Collaboration). Coherent
|
[12] |
Adam J, et al. (ALICE Collaboration). Measurement of an excess in the yield of J/ψ at very low
|
[13] |
Adam J, Adamczyk L, Adams J R, et al. (STAR Collaboration). Observation of excess J/ψ yield at very low transverse momenta in Au+Au collisions at
|
[14] |
Adam J, Adamczyk L, Adams J R, et al. (STAR Collaboration). Low-
|
[15] |
Aaboud M, Aad G, Abbott B, et al. (ATLAS Collaboration). Observation of centrality-dependent acoplanarity for muon pairs produced via two-photon scattering in Pb+Pb collisions at
|
[16] |
Guzey V, Zhalov M. Exclusive J/ψ production in ultraperipheral collisions at the LHC: Constraints on the gluon distributions in the proton and nuclei. Journal of High Energy Physics, 2013, 2013: 207. doi: 10.1007/JHEP10(2013)207
|
[17] |
The ALICE Collaboration, Aamodt K, Quintana A A, et al. (ALICE Collaboration). The ALICE experiment at the CERN LHC. Journal of Instrumentation, 2008, 3: S08002. doi: https://doi.org/10.1088/1748-0221/3/08/s08002
|
[18] |
Abelev B, Abramyan A, Adam J, et al. (ALICE Collaboration). Performance of the ALICE experiment at the CERN LHC. International Journal of Modern Physics A, 2014, 29: 1430044. doi: https://doi.org/10.1142/S0217751X14300440
|
[19] |
Klein S R, Nystrand J, Seger J, et al. STARlight: A Monte Carlo simulation program for ultra-peripheral collisions of relativistic ions. Computer Physics Communications, 2017, 212: 258–268. doi: 10.1016/j.cpc.2016.10.016
|
[20] |
Liu Y P, Qu Z, Xu N, et al. J/ψ transverse momentum distribution in high energy nuclear collisions. Physics Letters B, 2009, 678 (1): 72–76. doi: https://doi.org/10.1016/j.physletb.2009.06.006
|
[21] |
Zhao X B, Rapp R. Charmonium in medium: From correlators to experiment. Physical Review C, 2010, 82: 064905. doi: https://doi.org/10.1103/PhysRevC.82.064905
|
[22] |
Abelev B, et al. (ALICE Collaboration). Coherent J/ψ photoproduction in ultra-peripheral Pb–Pb collisions at
|
[23] |
Shi W, Zha W, Chen B Y. Charmonium coherent photoproduction and hadroproduction with effects of quark gluon plasma. Physics Letters B, 2018, 777: 399–405. doi: 10.1016/j.physletb.2017.12.055
|
[24] |
Miller M L, Reygers K, Sanders S J, et al. Glauber modeling in high-energy nuclear collisions. Annual Review of Nuclear and Particle Science, 2007, 57: 205–243. doi: doi:10.1146/annurev.nucl.57.090506.123020
|
[25] |
Tanabashi M, et al. (Particle Data Group). Review of particle physics. Physical Review D, 2018, 98: 030001. doi: 10.1103/PhysRevD.98.030001
|
[26] |
Bertulani C A, Klein S R, Nystrand J. Physics of ultra-peripheral nuclear collisions. Annual Review of Nuclear and Particle Science, 2005, 55: 271–310. doi: 10.1146/annurev.nucl.55.090704.151526
|
[27] |
Zha W, Huang B C, Ma R R, et al. Systematic study of the experimental measurements on J/ψ cross sections and kinematic distributions in p+p collisions at different energies. Physical Review C, 2016, 93: 024919. doi: 10.1103/PhysRevC.93.024919
|
[28] |
Zha W M, Klein S R, Ma R, et al. Coherent J/ψ photoproduction in hadronic heavy-ion collisions. Physical Review C, 2018, 97: 044910. doi: 10.1103/PhysRevC.97.044910
|
[29] |
Bauer T H, Spital R D, Yennie D R, et al. The hadronic properties of the photon in high-energy interactions. Review of Modern Physics, 1978, 50: 261. doi: 10.1103/RevModPhys.50.261
|
[30] |
Zha W, Ruan L, Tang Z, et al. Coherent photo-produced J/ψ and dielectron yields in isobaric collisions. Physics Letters B, 2019, 789: 238–242. doi: 10.1016/j.physletb.2018.12.041
|
[31] |
Jönsson C. Elektroneninterferenzen an mehreren künstlich hergestellten Feinspalten. Zeitschrift für Physik, 1961, 161(4): 454–474. doi: 10.1007/BF01342460
|
[32] |
Zeilinger A, Gähler R, C. G. Shull, et al. Single- and double-slit diffraction of neutrons. Review of Modern Physics, 1988, 60: 1067. doi: https://doi.org/10.1103/RevModPhys.60.1067
|
[33] |
Carnal O, Mlynek J. Young’s double-slit experiment with atoms: A simple atom interferometer. Physical Review Letters, 1991, 66: 2689. doi: 10.1103/PhysRevLett.66.2689
|
[34] |
Arndt M, Nairz O, Vos-Andreae J, et al. Wave–particle duality of C60 molecules. Nature, 1999, 401: 680–682. doi: 10.1038/44348
|
[35] |
Hackermüller L, Uttenthaler S, Hornberger K, et al. Wave nature of biomolecules and fluorofullerenes. Physical Review Letters, 2003, 91: 090408. doi: 10.1103/PhysRevLett.91.090408
|
[36] |
Zha W, Ruan L, Tang Z, et al. Double-slit experiment at Fermi scale: Coherent photoproduction in heavy-ion collisions. Physical Review C, 2019, 99: 061901. doi: 10.1103/PhysRevC.99.061901
|
[37] |
Barrett R C, Jackson D F. Nuclear Sizes and Structure. Oxford, UK: Oxford University Press, 1977.
|
[38] |
Matsui T, Satz H. J/ψ suppression by quark-gluon plasma formation. Physics Letters B, 1986, 178 (4): 416–422. doi: 10.1016/0370-2693(86)91404-8
|
[39] |
Chen B Y. Detailed rapidity dependence of J/ψ production at energies available at the Large Hadron Collider. Physical Review C, 2016, 93: 054905. doi: 10.1103/PhysRevC.93.054905
|
[40] |
Zha W, Ruan L, Tang Z, et al. Coherent lepton pair production in hadronic heavy ion collisions. Physics Letters B, 2018, 781: 182–186. doi: 10.1016/j.physletb.2018.04.006
|
[41] |
Inghirami G, Del Zanna L, Beraudo A, et al. Numerical magneto-hydrodynamics for relativistic nuclear collisions. The European Physical Journal C, 2016, 76 (12): 659. doi: 10.1140/epjc/s10052-016-4516-8
|
[42] |
Asakawa M, Majumder A, Muller B. Electric charge separation in strong transient magnetic fields. Physical Review C, 2010, 81: 064912. doi: 10.1103/PhysRevC.81.064912
|
[43] |
Kharzeev D E, Warringa H J. Chiral magnetic conductivity. Physical Review D, 2009, 80: 034028. doi: 10.1103/PhysRevD.80.034028
|
[44] |
The ATLAS Collaboration1, Aad G, Abat E, et al. (ATLAS Collaboration). The ATLAS experiment at the CERN Large Hadron Collider. Journal of Instrumentation, 2008, 3: S08003. doi: 10.1088/1748-0221/3/08/s08003
|
[45] |
ATLAS Collaboration, Aad G, Abbott B, et al. (ATLAS Collaboration). Measurement of the muon reconstruction performance of the ATLAS detector using 2011 and 2012 LHC proton-proton collision data. The European Physical Journal C, 2014, 74: 3130. doi: 10.1140/epjc/s10052-014-3130-x
|
[46] |
ATLAS Collaboration, Aad G, Abbott B, et al. (ATLAS Collaboration). Muon reconstruction performance of the ATLAS detector in proton–proton collision data at
|
[47] |
Zha W, Brandenburg J D, Tang Z, et al. Initial transverse-momentum broadening of Breit-Wheeler process in relativistic heavy-ion collisions. Physics Letters B, 2020, 800: 135089. doi: 10.1016/j.physletb.2019.135089
|
[48] |
Vidović M, Greiner M, Best C, et al. Impact-parameter dependence of the electromagnetic particle production in ultrarelativistic heavy-ion collisions. Physical Review C, 1993, 47: 2308. doi: 10.1103/PhysRevC.47.2308
|
[49] |
Hencken K, Trautmann D, Baur G. Impact-parameter dependence of the total probability for electromagnetic electron-positron pair production in relativistic heavy-ion collisions. Physical Review A, 1995, 51: 1874. doi: 10.1103/PhysRevA.51.1874
|
[50] |
Alscher A, Hencken K, Trautmann D, et al. Multiple electromagnetic electron-positron pair production in relativistic heavy-ion collisions. Physical Review A, 1997, 55: 396. doi: 10.1103/PhysRevA.55.396
|
[51] |
Adams J, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration). Production of
|
[52] |
Abelev B, et al. (ALICE Collaboration). J/ψ suppression at forward rapidity in Pb-Pb collisions at
|
[53] |
Abelev B I, et al. (STAR Collaboration).
|
[54] |
PHENIX Collaboration, S.Afanasiev S, Aidalag C, et al. (PHENIX Collaboration). Photoproduction of J/ψ and of high mass
|
[55] |
The ALICE Collaboration, Abbas E, Abelev B, et al. (ALICE Collaboration). Charmonium and
|
[56] |
Khachatryan V, Sirunyan A M, Tumasyan A, et al. (CMS Collaboration). Coherent J/ψ photoproduction in ultra-peripheral Pb-Pb collisions at
|
[57] |
Abelevbv B, Adamal J, Adamová D, et al. (ALICE Collaboration). Centrality, rapidity and transverse momentum dependence of J/ψ suppression in Pb-Pb collisions at
|
[58] |
Klein S R. Two-photon production of dilepton pairs in peripheral heavy ion collisions. Physical Review C, 2018, 97: 054903. doi: 10.1103/PhysRevC.97.054903
|