• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

基于期望传播的活跃用户检测和信道估计

Active user detection and channel estimation based on expectation propagation

  • 摘要: 5G无线通信网络中,大规模机器类通信(massive machine type communication,mMTC)是一个新兴的研究课题.对于mMTC,已经提出非正交多址接入(non-orthogonal multiple access,NOMA)来支持其大规模接入.由于mMTC实时接入的稀疏性,基于压缩感知的算法可用于识别活跃用户并恢复稀疏信道状态信息(channel state information,CSI)向量.于是提出一种基于期望传播(expectation propagation,EP)的贝叶斯消息传递算法,用于NOMA中的联合活跃用户检测(active user detection,AUD)和信道估计(channel estimation,CE).该算法使用高斯分布对复杂的目标分布函数近似表达,实现线性计算复杂度,通过引入阻尼因子可以确保算法的收敛性.分析与仿真结果表明,基于EP的消息传递算法在联合活跃用户检测和信道估计中比现有算法具有更高的检测准确率和更低的漏检率及均方误差.

     

    Abstract: In the 5th-generation (5G) wireless communication network, massive machine type communication (mMTC) is an emerging research topic. For mMTC, non-orthogonal multiple access (NOMA) has been proposed to support its large-scale connectivity. Due to the sparsity of mMTC, compressed sensing based algorithms can be used to identify the active users and recover the sparse channel state information (CSI) vector. A Bayesian message passing algorithm based on expectation propagation (EP) is proposed for joint active user detection (AUD) and channel estimation (CE) in NOMA. The proposed method approximates the complicated target distribution with a Gaussian distribution to achieve linear complexity. By introducing a damping factor, the convergence performance of the algorithm can be effectively ensured. Simulations demonstrate that the EP-based algorithm can achieve better performance in joint AUD and CE than the exiting algorithms, especially in the low SNR regime.

     

/

返回文章
返回