• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

稀疏谱聚类算法在高维数据上的应用

Application of sparse spectral clustering algorithm in high-dimensional data

  • 摘要: 提出一种新的稀疏谱聚类算法——基于PAM算法的HSSPAM聚类(high-dimensional sparse spectral clustering based on partitioning around medoids).该算法先用高相关系数过滤及主成分分析降维方法以有效减小甚至消除维度灾难对高维数据处理的影响,再采用Minkowski距离指数变换函数及稀疏化算法来构建分块对角矩阵以重新解释样本之间的相似度;然后构造新颖的拉普拉斯矩阵以实现进一步压缩数据矩阵,进而结合partitioning around medoids(PAM)算法取代传统谱聚类中的K-means算法对特征向量聚类以提高算法的聚类稳定性;最后引入高维基因数据设计了实验,并以不同的聚类评价指标来衡量该研究算法的聚类质量,实验结果表明,新算法能够更精确、更稳定地对基因数据聚类.

     

    Abstract: A new sparse spectral clustering algorithm——high-dimensional sparse spectral clustering based on partitioning around medoids (HSSPAM) was proposed, which takes advantage of the sparse similarity matrix in computation as well as the superiority of the PAM algorithm over K-means. To reduce or even eliminate the impact of “dimensionality curse” on high dimensional data processing, the high correlation filter (HCF) and the principal component analysis (PCA) method are also investigated in the algorithm. The proposed method has higher precision and more stable clustering results than the algorithms introduced in this paper for comparison in the real high-dimensional gene data under different clustering evaluation criteria.

     

/

返回文章
返回