• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

用于高效高速量子网络节点的光纤腔-离子阱耦合系统的设计

Design of a fiber cavity ion trap for a high-efficiency and high-rate quantum network node

  • 摘要: 本文的主要目的是设计新型的离子阱与光纤腔的耦合系统,此方案是通过制造一个在侧面和端面具有金属层的光纤腔实现。带有金属层的光纤腔可以传输光和电荷,同时,光纤端面的金属层可以屏蔽介质高反膜上的电荷。此系统旨在捕获单个138Ba+离子,并实现光纤腔与138Ba+离子493 nm荧光的耦合。为了有效地收集荧光光子,我们对整个系统进行理论分析,以实现各个部分的最佳耦合。光纤的腔长被设计为250 μm,优化后的耦合参数为(g, κ, γ)/2π = (55, 105, 20) MHz。我们还通过分析振动、离子阱性能和热稳定性来提高系统的稳定性和可靠性。系统的核心部分是由热膨胀系数相近的材料构成,以提高热稳定性。系统还使用弹簧连接真空腔体,用于隔绝腔体内外的振动。我们从理论上分析制造该耦合系统的难点,并实验验证了部分关键技术。整个系统有望被扩展成一个复杂的量子网络,以实现量子计算和量子通信。

     

    Abstract: The main purpose of this paper is to design a novel coupled system of an ion trap and a fiber cavity. This integrated solution is achieved by fabricating a fiber cavity with a metal mask on the side and end faces of the fiber. The fiber cavity with the metal mask can transmit light and electric charges, and the metal mask on the fiber end-face can shield electric charges on the dielectric high-reflection film. This system is designed to trap a single ^138\textBa^+ ion and realize coupling of the fiber cavity to the fluorescence at a 493 nm wavelength of ^138\textBa^+ . To efficiently collect fluorescent photons, we perform a theoretical analysis of the overall system to achieve optimal coupling of each individual part. The cavity length is designed to be 250 μm, and the optimized coupling parameters are (g,\kappa,\gamma)/2\textπ=(55,\;105,\;20) MHz. We also improve the stability and reliability of the system by analyzing the vibration, performance of the ion trap, and thermal stability. The core of the system is composed of materials with similar thermal expansion coefficients to improve thermal stability. The system uses spring connections to isolate vibrations inside and outside the vacuum chamber. We theoretically solve the difficulties of manufacturing the coupled system and have completed the experimental verification of some key technologies. The whole system is expected to be extended into a complex quantum network system to realize quantum computation and communication.

     

/

返回文章
返回