• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

训练过程中使用支持集信息的单样本学习算法

A one-shot learning algorithm using support set information during training

  • 摘要: 单样本学习的目的是利用一个包含大量训练样本的源类别数据集以及每个类别只包含一个训练样本的目标类别数据集来构建一种学习算法,使得算法能够对目标类别空间中的样本进行准确分类.已有的单样本学习算法主要是先利用源类别数据来训练模型,然后在测试时将目标类别训练数据作为支持集来实现对未标注样本的分类,因此在训练时没有有效地利用支持集的信息.为此提出一种在训练阶段和测试阶段同时利用支持集信息的单样本学习算法,基本思想是利用孪生神经网络构建模型并在训练时加入支持集信息,即让不同类别的支持集样本之间的相似度尽可能小.在Omniglot数据集和满文识别问题上的实验结果表明,该算法能取得较好的识别准确率.

     

    Abstract: The purpose of one-shot learning is to use a source category dataset containing a large number of training samples and a target category dataset containing only one training sample per category to construct a learning algorithm that enables accurate classification of samples in the target category space. The existing one-shot learning algorithm mainly uses the source category data to train the model, and then uses the training data of the target category as the support set to realize the classification of the unlabeled samples during the test. Therefore, it fails to effectively utilize the information of the support set during the training. Here, a one-shot learning algorithm using support set information in both the training and test stages is established. The basic idea is to use Siamese neural networks to build models and add support set information during training, that is, to make the similarity between different types of support set samples as small as possible. Experimental results on Omniglot data set and Manchu recognition show that the proposed algorithm can achieve better recognition accuracy.

     

/

返回文章
返回