• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

基于双编码器利用在线社交网络信息的股票价格预测

A dual encoder-based approach to predicting stock price by leveraging online social network

  • 摘要: 设计了双编码器-解码器模型,在模型的双编码器端分别对情绪变量和技术指标进行单独编码,以提高两类信息输入时编码器-解码器模型对股价的预测准确率.首先,对模型的编码和解码,基于门控循环单元(GRU) 进行改进,通过去掉重置门,使用更新门代替重置门的功能,将激活函数tanh替换为ReLU激活函数,以达到提高网络训练速度和模型精度的效果.其次,将市场情绪看作离散时间的随机过程,当固定时间时,市场情绪是服从某个概率分布的变量,对其概率分布进行估计,可得市场情绪关于积极、消极和中立的概率估计.进一步的,基于构建伪标签的情感分类器,建立情绪得分公式,并基于Bagging集成的方法对市场情绪的概率分布进行估计,作为投资者情绪变量的补充.另一方面,对多个超参数调整选优,设计正交试验,大大缩短了模型选参时间.实验结果表明,两输入的双编码器-解码器,不仅提升了编码器-解码器框架的股价预测效果,还通过引入投资者情绪,提高了模型的准确率和鲁棒性.

     

    Abstract: We propose a dual-encoder which encodes the investor sentiment and technical indicators separately to improve the accuracy of the encoder-decoder model in predicting stock price by using two types of information. For the dual-encoder and decoder, we revise the gated recurrent unit (GRU) by removing the reset gate, using the update gate instead of the reset gate function and replacing tanh activation function with ReLU activation function to improve the speed of network training and the accuracy of the model. We regard market sentiment as a discrete-time stochastic process. When fixed time, market sentiment is a variable subject to a certain probability distribution. Sentiment score formulas are built for investor sentiment by a pseudo-label based sentiment classifier, and the market sentiment is estimated through ensemble Bagging learning. The orthogonal table experiment design is used to select parameters in our dual-encoder based model, which greatly reduces the time of parameter adjustment. Finally, experiments are conducted to show that our dual-encoder based model is more accurate than encoder-decoder model, and investor sentiment helps improve the stock forecasting in our model.

     

/

返回文章
返回