• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

基于用户行为影响的微博突发话题检测方法

Bursty topic detection method for microblog based on influence from user behaviors

  • 摘要: 考虑到微博数据存在时序性特征以及包含用户的社交网络行为特征,提出一种动量信号增强模型算法来有效地检测微博突发话题.由于传统模型未考虑微博数据变化以及用户社交行为的影响,为此首次提出影响力因子以及热度因子,用以修正动量模型.为获取影响力因子,将计算出当前时点前给定周期内的数据对当前数据的变化差值的指数累计影响作为影响力的衡量标准,以体现词频在该区间段的重要性.影响力因子将用于修正词频序列,以获取MACD值指标.由于用户的社交行为对话题产生影响巨大,进而提出热度因子用以修正MACD值指标.当模型满足指标阈值时,特征词则列为突发特征词.最后,通过K-means聚类算法将特征词进行归类合并,以获取突发话题.实验结果表明,模型精度能达到81.82%,表现良好.

     

    Abstract: Social networks are becoming more and more popular where people can post anything anytime. Due to the huge user community, social network data is increasing with each passing day. Therefore how to explore the knowledge in huge data seems to be hard work. As microblog has time-related characteristics and social network behavior attributes, momentum signal enhancement model is put forward to detect bursty microblog topics effectively. Influence factor and hot energy factor are put forward to improve the momentum model. The influence factor uses the data before the current point but within a given period to calculate the

     

/

返回文章
返回