• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

具有饱和发生率与混合控制策略的SEIQR模型的全局动力学

Global dynamics of an SEIQR model with saturation incidence rate and hybrid strategies

  • 摘要: 建立了一个具有饱和接触率和混合控制策略的SEIQR传染病模型,从理论和数值模拟方面分析了模型的稳定性.首先,得到了疾病灭绝与否的阈值——基本再生数R0;其次,当R0<1时,利用LaSalle不变集原理证明了无病平衡点是全局渐近稳定的,疾病最终消亡.当R0>1时,根据Routh-Hurwitz 判据定理证明了地方病平衡点局部渐近稳定;然后, 当R0>1时,运用周期轨道稳定性理论和第二加性复合矩阵证明了地方病平衡点全局渐近稳定,疾病持续存在;最后,利用计算机仿真,进一步证实理论分析的正确性.

     

    Abstract: An SEIQR epidemic model with the saturation incidence rate and hybrid strategies was proposed, and the stability of the model was analyzed theoretically and numerically. Firstly, the basic reproduction number R0 was derived, which determines whether the disease was extinct or not. Secondly, through LaSalle's invariance principle, it was proved that the disease-free equilibrium is globally asymptotically stable and the disease generally dies out when R0<1. By Routh-Hurwitz criterion theory, it was proved that the disease-free equilibrium is unstable and the unique endemic equilibrium is locally asymptotically stable when R0>1. Thirdly, according to the periodic orbit stability theory and the second additive compound matrix, it was proved that the unique endemic equilibrium is globally asymptotically stable and the disease persists at this endemic equilibrium if it initially exists when R0>1. Finally, some numerical simulations were carried out to illustrate the results.

     

/

返回文章
返回