• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

一种机器学习与相变之间的新型映射

A novel mapping between machine learning and phase transition

  • 摘要: 相变是一个重要的物理概念,它代表着从一个热力学状态到另一个热力学状态的转变.它在凝聚态物理、粒子物理、天体物理等物理领域有着广泛的应用.机器学习是研究通过经验自动改进的计算机算法.近年来,随着深入学习的成功,它也是一个非常活跃的研究领域.于是从视觉上证明了监督学习的训练过程与阶段过渡过程十分相似,有可能确定相变理论的核心概念,如对称性断裂或机器学习中的临界点.以MNIST数据集的伊辛模型和自动编码器为例,说明了机器学习训练过程中的“相变”.这种介于机器学习和相变之间的新映射,为理解机器学习带来了新的方法,并使从物理角度解决机器学习问题成为可能.

     

    Abstract: Phase transition is an important physical concept which represents the transformation from one thermodynamic state to another. It has a wide application in physics such as condensed matter physics, particle physics and astrophysics. Machine learning is the study of computer algorithms that improve automatically through experience. It is also a very active research field with the success of deep learning in recent years. This paper visually gives the evidence that the training process of supervised learning is quite similar to phase transition. Accordingly, it is possible to identify the central concepts of phase transition theory, such as symmetry breaking or critical point in machine learning. The Ising model and an autoencoder of the MNIST dataset are used as two examples to explain the “phase transition” in the training process of machine learning. This novel mapping between machine learning and phase transition brings a new method to understand machine learning and makes it possible to solve machine learning problems from a physical perspective.

     

/

返回文章
返回