• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

基于数据划分的k-近邻分类加速算法机理分析

Mechanism analysis of the accelerator for k-nearest neighbor algorithm based on data partition

  • 摘要: k-近邻(kNN)分类算法因具有不对数据分布做任何假设、操作简单且泛化性能较强的特点,在人脸识别、文本分类、情感分析等领域被广泛使用.kNN分类算法不需要训练过程,其简单存储训练实例并根据测试实例与存储的训练实例进行相似度比较来预测分类.由于kNN分类算法需要计算测试实例与所有训练实例之间的相似度,故难以高效地处理大规模数据.为此提出将寻找近邻的过程转化为一个优化问题,并给出了原始优化问题与使用数据划分优化问题的最优解下目标函数差异的估计.通过对此估计的理论分析表明,聚类划分可以有效的减小此差异,进而保证基于聚类的k-近邻分类(DC-kNN)算法具有较强的泛化性能.在公开数据集的实验结果显示,DC-kNN分类算法在很大程度上为测试实例提供了与原始kNN分类算法相同的k个近邻进而获得较高的分类精度.

     

    Abstract: Due to its absence of hypotheses for the underlying distributions of data, simple execution and strong generation ability, k-nearest neighbor classification algorithm (kNN) is widely used in face recognition, text classification, emotional analysis and other fields. kNN does not need the training process, but it only stores the training instances until the unlabeled instance appears, and executes the predicted process. However, kNN needs to compute the similarity between the unlabeled instance and all the training instances, hence it is difficult to deal with large-scale data. To overcome this difficulty, #br

     

/

返回文章
返回