• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

马来语领域多词组无监督识别

Unsupervised identification of Malay domain multiword expressions

  • 摘要: 多词组是一种优化的语言复用粒度.,由于一些非通用语言的多词组与词之间缺乏显式形态边界,导致多词组自动识别困难.针对马来语领域多词组识别问题,提出一种基于自然标注的无监督抽取与聚类算法.算法首先采用空格符二值分类实现变长马来语多词组抽取;然后将文档级的自然类别标注迁移到多词组级类别聚类;最后过滤掉通用多词组,萃取多个领域多词组数据集.在272 783马来语文本文档数据集上的实验结果表明,提出的算法不但能够精准地抽取多词组,而且能够高效地实现多词组领域词典聚类.

     

    Abstract: Multiword expression (MWE) is an optimal granularity of language reuse. However, no explicit formal boundaries between MWEs and other words cause a serious problem on automatic identification of MWEs for some non-common languages. We address the identification issue of Malay domain MWEs, and propose a natural-annotation-based unsupervised extraction and clustering algorithm.In the novel algorithm, we firstly use a binary classification for each space character to solve length-varying Malay MWEs extraction, secondly transfer natural document-level category annotations to MWE-level ones for Malay MWEs clustering, and finally distill out several domain datasets of MWEs after filtering general MWEs.The experimental results in the Malay dataset of 272 783 text documents show that our algorithm can extract MWEs precisely and dispatch them into domain lexicons efficiently.

     

/

返回文章
返回