• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

基于自适应局部保持投影的无监督特征选择方法

Unsupervised feature selection method based on adaptive locality preserving projection

  • 摘要: 基于谱图的无监督特征选择方法在原始高维空间构建图,易受噪声或冗余特征干扰.为此提出一种基于自适应局部保持投影的无监督特征选择方法,利用全局线性回归函数建立特征选择模型,结合自适应局部保持投影提高模型准确度,引入l2,1约束提升特征之间可区分度,避免噪声干扰.最后通过实验验证了该方法的有效性.

     

    Abstract: The unsupervised feature selection method based on spectrogram is constructed in the original high dimensional data space, which is easily disturbed by noise or redundant features. To overcome these deficiencies, an unsupervised feature selection method based on adaptive locality preserving projection is proposed. Global linear regression function is utilized to construct feature selection model, and the adaptive local preserving projection is adopted to improve model accuracy. Then the l2,1-norm constraint is added to improve the distinguishability of different features and avoid noise interference. A comparison with several state-of-the-art feature selection methods demostrate the effectiveness of the proposed method.

     

/

返回文章
返回