• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

基于用户及物品间差异的推荐算法研究

Recommender algorithms based on tendencies between users and items

  • 摘要: 推荐系统是解决信息过载问题最有效的工具之一,协同过滤是目前推荐算法中广泛应用的技术,然而协同过滤算法存在着诸如数据稀疏、难以扩展等问题.在基于偏好算法的基础上,通过把用户评分按照用户评分偏好和物品得分趋势分类,在每类上进行线性回归,得到了基于用户及物品间差异的回归模型.该模型不仅能改善数据稀疏和可扩展性问题,而且能够降低计算复杂度和空间复杂度.实验结果表明改进后的算法在近似的计算复杂度情况下,预测精度比基于偏好算法平均提高了3.97%.

     

    Abstract: Recommender systems are one of the most effective technologies to help users filter the overload of information, and collaborative filtering (CF) is one of the most widely used techniques in recommender systems. However, CF algorithms have difficulty dealing with the problems such as the sparseness of data and the scalability for new users. As an alternative, an improved algorithm based on the preference (tendencies-based, TB) algorithm was proposed. In the proposed method: firstly, the user rating set was classified into different groups according to user rating preference and item rated tendencies; then the regression model was obtained by linear regression performed on each class. The improved model not only achieves higher accuracy in rating prediction on sparse datasets, but also greatly reduces computational complexity and space complexity. Through extensive experiments on three benchmark data sets, the results show that the improved approach increases recommendation accuracy by an average of 3.97% compared with TB algorithm.

     

/

返回文章
返回