• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

基于原型理论的相对属性学习

Prototype based relative attribute learning

  • 摘要: 对于表示学习的研究,合理的特征表示对系统性能的影响在许多分类问题中已经超越了分类器的作用,成为系统设计中最重要的组成部分.为此以心理学中认知科学的原型理论为基础,提出了一种新的特征表示方法.根据额外数据集中部分具有代表性的数据作为各类数据的代表,组成各类数据的原型数据集.通过学习数据与各原型之间的相对关系,得到衡量任意数据与原型数据集之间关系的函数,即等级函数(rank function).由此,任意数据都可以利用等级函数组来评价它们与原型之间的相对关系,以此作为数据的新特征表示用于分类任务.通过在MINST和Pubfig数据库上的实验验证可以看到,相比于灰度特征和属性特征,原型相对属性不但符合人类对于图像的认知,而且在识别性能上具有更高的精度.

     

    Abstract: According to the research on representation learning, a proper feature representation of data has a greater impact than classifiers on classification. It’s almost become the most important part in system design. In this paper, based on prototype theorem in psychology, a new feature is proposed. Specifically, the prototype dataset is composed of representative data of extra datasets. Then, the rank functions are derived based on the relationship between the prototype dataset and any data set. Thus, any data could be represented via the rank functions and the values of the functions are their new features. The proposed method has been checked on the MINST database and Pubfig database. Compared with the gray-scale feature and attribute, the prototype based relative attribute is more reasonable and has better performance.

     

/

返回文章
返回