• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

支持向量机在高考成绩预测分析中的应用

National matriculation test prediction based on support vector machines

  • 摘要: 支持向量机作为一种机器学习算法因其良好的推广性和强大的非线性处理能力而令人瞩目.为此将支持向量机与国家高考的实际数据相结合,以具体高校的高考模拟考试成绩为主要训练数据,进行学生的高考成绩预测.实验考虑了三种情形.一是通过六次模拟考试的特征分来预测高考的特征分;二是通过六次模拟考试和高考的特征分来预测高考的录取批次;三是通过六次模拟考试的特征分和高考的预测特征分来预测高考的录取批次.通过与神经网络算法的比较,实验结果均表明了支持向量机方法的稳定性和良好的预测性.

     

    Abstract: Support vector machine(SVM), one of machine learning methods, is very impressive for its good generalization and powerful nonlinearly processing ability. SVM was combined with national matriculation, where scores of six mock exams are taken as training data to predict the final admission scores. Three situations were considered. First, the scores of NMT were predicted using scores in six simulation tests. Second, the admission batch was predicted by using scores in six simulation tests and NMT. Third, the admission batch was predicted by using scores in six simulation tests and the estimated scores in NMT. In all experiments, SVMs were compared with neural networks (NNs). Experimental results show that SVMs are much more stable and have better prediction ability.

     

/

返回文章
返回