• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

一种基于BP神经网络的属性重要性计算方法

A computing method for attribute importance based on BP neural network

  • 摘要: 人工神经网络学习作为机器学习的重要方式,在人工智能、模式识别、图像处理等领域已成功应用;BP网络作为神经网络学习的精华,它利用误差反传的方式不断修正权重以达到最佳拟合.多属性决策问题是决策理论研究领域的热点,当研究的问题涉及多个属性时,需要分析各属性的重要程度,即属性的权重.针对多分类输出结果的多输入属性相关性和重要性问题,提出了利用BP神经网络计算复杂输入属性的重要性方法;并对神经网络的节点数量、网络层数、学习策略、学习因子等进行研究,建立了适合属性重要性计算的BP神经网络模型;以烟台大学学生评教数据作为具体实例,利用k-fold方法验证其可行性和有效性.

     

    Abstract: As an important method for machine learning, artificial neural network has been applied successfully in artificial intelligence, pattern recognition, image processing and other fields. As the essence of neural network learning, BP network utilizes the error back propagation to correct weights continually in order to achieve the best-fit. The multi-attribute decision-making problem is a hotspot in decision theory. When involving multiple attributes, it needs to analyze the importance degrees for different attributes, i.e., weights of attributes.According to the correlation and importance problems of multiple input attributes for multi-classification output results, an importance method for calculating complex input attributes based on BP neural network was proposed. In addition, the BP neural network model for calculating the importance degrees of attributes was established through researching the number of nodes, the layers of network, learning strategies and learning factors in neural networks. The data of teaching evaluation of Yantai University is utilized to verify the feasibility and validity of the proposed method through applying k-fold approach.

     

/

返回文章
返回