• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

基于改进Elman神经网络的徽派古建筑寿命预测

Life span prediction of Huizhou architecture based on improved Elman neural network

  • 摘要: 徽派建筑是我国四大古建筑流派之一,木构件是徽派建筑的核心.准确预测徽派木构件的寿命,对于古建筑的保护具有重要的意义.目前系统考虑多种因素对木构件寿命共同影响的研究较少,Elman神经网络是一种典型的多层动态递归神经网络,通过存储内部状态使其具备映射动态特性的功能,从而使系统具有适应时变特性的能力,可用于预测木构件复杂的非线性时变系统的建模.针对基本的Elman神经网络存在训练速度慢、容易陷入局部极小值的特点,使用带有自适应变异算子的粒子群优化算法对基本的Elman 神经网络进行改进,优化网络中各层之间的连接权值,提高学习速度,并在全局范围内寻找最优解.仿真结果表明,改进后的网络能较准确地拟合训练值,并进行有效预测,能够较好应用于徽派古建筑寿命预测.

     

    Abstract: Huizhou architecture comprises one of the four ancient architectural schools in China, with wood components being its core. The accurate prediction of Huizhou architectures wood life is of great significance for the protection of ancient buildings. At present, there are few studies have been conducted on the influence of various factors on the service life of the wood components. Elman neural network is typical multi-layer dynamic recurrent neural network, which has the function of mapping dynamic characteristics by storing internal state. This gives the network the ability to adapt to time-varying characteristics, which can be used to predict the complex nonlinear time-varying system. The basic Elman neural network has the characteristics of slow training speed and the tendency to fall into local minimums. Therefore the particle swarm optimization algorithm with adaptive mutation operator is used to improve the basic Elman neural network. The algorithm optimizes the weights of each layer in the network, improves the learning speed, and finds the optimal solution in the global range. The improved network can fit the training value more accurately and can effectively predict the test value. The simulation results show that the network structure can be well applied to the life span prediction of Huizhou architecture.

     

/

返回文章
返回