• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

基于Finsler几何的k-means算法

The k-means algorithm based on Finsler geometry

  • 摘要: 针对k-means算法存在的相似性度量、准则函数优化效果不理想及多维流形数据分析性能效果不好等问题,引入Finsler几何中的Finsler度量,提出了一种基于Finsler几何的k-means算法,并在UCI数据集和ORL人脸数据库上与传统k-means算法及SBKM算法进行了比较,实验结果验证了该算法的可行性和有效性.

     

    Abstract: The problems with the k-means algorithm that the optimization effect of similarity measure and criterion function is not ideal and the analysis performance of multi-dimensional manifold data is ineffective, a modified version based on Finsler geometry was proposed, which introduces Finsler metric. Experimental results in comparison with traditional k-means algorithm and SBKM algorithm on UCI data sets and ORL face image sets show the feasibility and effectiveness of the algorithm.

     

/

返回文章
返回