基于Finsler几何的k-means算法
The k-means algorithm based on Finsler geometry
-
摘要: 针对k-means算法存在的相似性度量、准则函数优化效果不理想及多维流形数据分析性能效果不好等问题,引入Finsler几何中的Finsler度量,提出了一种基于Finsler几何的k-means算法,并在UCI数据集和ORL人脸数据库上与传统k-means算法及SBKM算法进行了比较,实验结果验证了该算法的可行性和有效性.Abstract: The problems with the k-means algorithm that the optimization effect of similarity measure and criterion function is not ideal and the analysis performance of multi-dimensional manifold data is ineffective, a modified version based on Finsler geometry was proposed, which introduces Finsler metric. Experimental results in comparison with traditional k-means algorithm and SBKM algorithm on UCI data sets and ORL face image sets show the feasibility and effectiveness of the algorithm.
下载: